Non-commutative probability theory description of strongly correlated electronic systems

Razvan Teodorescu

Theoretical Division (T-13) \&
Center for Nonlinear Studies
March 25, 2008

Classical and Quantum Problems

Classical and Quantum Problems

- TQFT with special properties (toric code and generalizations)

Classical and Quantum Problems

- TQFT with special properties (toric code and generalizations)
- Effect of time-correlated noise on quantum q-state systems

Classical and Quantum Problems

- TQFT with special properties (toric code and generalizations)
- Effect of time-correlated noise on quantum q-state systems
- Entanglement, relaxation of quantum spin systems

Classical and Quantum Problems

- TQFT with special properties (toric code and generalizations)
- Effect of time-correlated noise on quantum q-state systems
- Entanglement, relaxation of quantum spin systems
- Quantum algorithms on classical computers

Classical and Quantum Problems

- TQFT with special properties (toric code and generalizations)
- Effect of time-correlated noise on quantum q-state systems
- Entanglement, relaxation of quantum spin systems
- Quantum algorithms on classical computers
- Algorithms for fast relaxation of classical disordered spin models

Classical and Quantum Problems

- TQFT with special properties (toric code and generalizations)
- Effect of time-correlated noise on quantum q-state systems
- Entanglement, relaxation of quantum spin systems
- Quantum algorithms on classical computers
- Algorithms for fast relaxation of classical disordered spin models

Is there a unifying statistical formalism ?

Lessons from the past I: QFT

- Quantum Field Theory n-point amplitudes

$$
\left\langle\Omega_{i}\right| \mathrm{T}\left\{: \exp \left[\frac{i}{\hbar} \int_{-\infty}^{\infty} \mathcal{L}(\hat{\phi}) d \tau\right] \hat{\phi}\left(x_{1}\right) \hat{\phi}\left(x_{2}\right) \ldots \hat{\phi}\left(x_{n}\right):\right\}\left|\Omega_{o}\right\rangle
$$

Lessons from the past I: QFT

- Quantum Field Theory n-point amplitudes

$$
\left\langle\Omega_{i}\right| \mathrm{T}\left\{: \exp \left[\frac{i}{\hbar} \int_{-\infty}^{\infty} \mathcal{L}(\hat{\phi}) d \tau\right] \hat{\phi}\left(x_{1}\right) \hat{\phi}\left(x_{2}\right) \ldots \hat{\phi}\left(x_{n}\right):\right\}\left|\Omega_{o}\right\rangle
$$

- Stochastic Field Theory n-point functions

$$
Z^{-1} \int \mathcal{D}[\phi] \exp \left[\frac{i}{\hbar} \int_{-\infty}^{\infty} \mathcal{L}(\phi) d \tau\right] \phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(x_{n}\right)
$$

Lessons from the past II: CFT - SLE

Stochastic interpretation of boundary operators

Lessons from the past II: CFT - SLE

Stochastic interpretation of boundary operators

Lessons from the past II: CFT - SLE

Stochastic interpretation of boundary operators

Lessons from the past III: Witten TFT - Kontsevich RMT

- Correlation functions in TFT and the matrix Airy function

$$
A(X) \equiv \int d M e^{i \operatorname{Tr}\left[\frac{M^{3}}{3}-X M\right]}, \quad M \text { hermitian }
$$

Lessons from the past III: Witten TFT - Kontsevich RMT

- Correlation functions in TFT and the matrix Airy function

$$
A(X) \equiv \int d M e^{i \operatorname{Tr}\left[\frac{M^{3}}{3}-X M\right]}, \quad M \text { hermitian }
$$

- The topological amplitude is directly related to the Jones polynomial

Generalized r.v.

Matrices: non-commuting random variables

- \mathcal{A} a non-commutative algebra over $\mathbb{C}, 1 \in \mathcal{A}$, with functional $\phi: \mathcal{A} \rightarrow$ $\mathbb{C}, \phi(1)=1$

Matrices: non-commuting random variables

- \mathcal{A} a non-commutative algebra over $\mathbb{C}, 1 \in \mathcal{A}$, with functional $\phi: \mathcal{A} \rightarrow$ $\mathbb{C}, \phi(1)=1$
- Example: $\mathcal{A}=$ bounded operators over Hilbert space $\mathcal{H}, \xi \in \mathcal{H},\|\xi\|=1$,

$$
\phi(A)=\langle\xi| A|\xi\rangle .
$$

Matrices: non-commuting random variables

- \mathcal{A} a non-commutative algebra over $\mathbb{C}, 1 \in \mathcal{A}$, with functional $\phi: \mathcal{A} \rightarrow$ $\mathbb{C}, \phi(1)=1$
- Example: $\mathcal{A}=$ bounded operators over Hilbert space $\mathcal{H}, \xi \in \mathcal{H},\|\xi\|=1$,

$$
\phi(A)=\langle\xi| A|\xi\rangle .
$$

- Example: $\mathcal{A}=$ von Neumann algebra over \mathcal{H}, with $\phi=\operatorname{Tr}$.

Matrices: non-commuting random variables

- \mathcal{A} a non-commutative algebra over $\mathbb{C}, 1 \in \mathcal{A}$, with functional $\phi: \mathcal{A} \rightarrow$ $\mathbb{C}, \phi(1)=1$
- Example: $\mathcal{A}=$ bounded operators over Hilbert space $\mathcal{H}, \xi \in \mathcal{H},\|\xi\|=1$,

$$
\phi(A)=\langle\xi| A|\xi\rangle .
$$

- Example: $\mathcal{A}=$ von Neumann algebra over \mathcal{H}, with $\phi=\operatorname{Tr}$.
- Free non-commutative r.v.: if $\phi\left(A_{i}\right)=0$,

$$
\phi\left(A_{i_{1}} A_{i_{2}} \ldots A_{i_{k}}\right)=0, \quad A_{i_{j}} \neq A_{i_{j+1}} .
$$

Computing with free random variables

- Brave new world ...

Computing with free random variables

- Brave new world ...
- Gaussian distribution in free probability theory is held by the semi-circle distribution (Wigner-Dyson) $\rho(\lambda)=\sqrt{a^{2}-\lambda^{2}}$

Computing with free random variables

- Brave new world ...
- Gaussian distribution in free probability theory is held by the semi-circle distribution (Wigner-Dyson) $\rho(\lambda)=\sqrt{a^{2}-\lambda^{2}}$
- Poisson distribution: the free correspondent is a distribution related to the Marchenko-Pastur (elliptical law) $\rho(\lambda)=\sqrt{(\lambda-a)(b-\lambda)}$

Computing with free random variables

- Brave new world ...
- Gaussian distribution in free probability theory is held by the semi-circle distribution (Wigner-Dyson) $\rho(\lambda)=\sqrt{a^{2}-\lambda^{2}}$
- Poisson distribution: the free correspondent is a distribution related to the Marchenko-Pastur (elliptical law) $\rho(\lambda)=\sqrt{(\lambda-a)(b-\lambda)}$
- The free Cauchy distribution is the Cauchy distribution itself

Computing with free random variables

- Brave new world ...
- Gaussian distribution in free probability theory is held by the semi-circle distribution (Wigner-Dyson) $\rho(\lambda)=\sqrt{a^{2}-\lambda^{2}}$
- Poisson distribution: the free correspondent is a distribution related to the Marchenko-Pastur (elliptical law) $\rho(\lambda)=\sqrt{(\lambda-a)(b-\lambda)}$
- The free Cauchy distribution is the Cauchy distribution itself
- Free Cramér-Rao inequality for free Fisher entropy

Computing with free random variables

- Brave new world ...
- Gaussian distribution in free probability theory is held by the semi-circle distribution (Wigner-Dyson) $\rho(\lambda)=\sqrt{a^{2}-\lambda^{2}}$
- Poisson distribution: the free correspondent is a distribution related to the Marchenko-Pastur (elliptical law) $\rho(\lambda)=\sqrt{(\lambda-a)(b-\lambda)}$
- The free Cauchy distribution is the Cauchy distribution itself
- Free Cramér-Rao inequality for free Fisher entropy

Random $N \times N$ matrices become free in the large N limit!

Wegner-Efetov model for 2D Anderson localization

- d-dimensional lattice (cubic ...), n states (orbitals) at each state $|x, i\rangle, i=1, \ldots, n$

Wegner-Efetov model for 2D Anderson localization

- d-dimensional lattice (cubic ...), n states (orbitals) at each state $|x, i\rangle, i=1, \ldots, n$
- Hamiltonian for nearest-neighbor interaction and on-site disorder:

$$
H=H_{0}+H_{d}, \quad H_{0}=\sum_{n,\langle x, y\rangle} t_{x, y}|x, n\rangle\langle y, n|, \quad H_{d}=\sum_{x, i, j} f^{i j}|x, i\rangle\langle x, j|
$$

Wegner-Efetov model for 2D Anderson localization

- d-dimensional lattice (cubic ...), n states (orbitals) at each state $|x, i\rangle, i=1, \ldots, n$
- Hamiltonian for nearest-neighbor interaction and on-site disorder:

$$
H=H_{0}+H_{d}, \quad H_{0}=\sum_{n,\langle x, y\rangle} t_{x, y}|x, n\rangle\langle y, n|, \quad H_{d}=\sum_{x, i, j} f^{i j}|x, i\rangle\langle x, j|
$$

- Matrix $f^{i, j}$ can be Hermitian, Orthogonal, Symplectic, based on symmetries of the system

Wegner-Efetov model for 2D Anderson localization

- d-dimensional lattice (cubic ...), n states (orbitals) at each state $|x, i\rangle, i=1, \ldots, n$
- Hamiltonian for nearest-neighbor interaction and on-site disorder:

$$
H=H_{0}+H_{d}, \quad H_{0}=\sum_{n,\langle x, y\rangle} t_{x, y}|x, n\rangle\langle y, n|, \quad H_{d}=\sum_{x, i, j} f^{i j}|x, i\rangle\langle x, j|
$$

- Matrix $f^{i, j}$ can be Hermitian, Orthogonal, Symplectic, based on symmetries of the system
- Random matrices with symmetry group $S U(1,1)$

Entanglement in quantum spin chains

- $X Y$ spin chain:

$$
H=\sum_{n=-\infty}^{\infty}(1+\gamma) \sigma_{n}^{x} \sigma_{n+1}^{x}+(1-\gamma) \sigma_{n}^{y} \sigma_{n+1}^{y}+h \sigma_{n}^{z}
$$

Entanglement in quantum spin chains

- $X Y$ spin chain:

$$
H=\sum_{n=-\infty}^{\infty}(1+\gamma) \sigma_{n}^{x} \sigma_{n+1}^{x}+(1-\gamma) \sigma_{n}^{y} \sigma_{n+1}^{y}+h \sigma_{n}^{z}
$$

- Probability of having a macroscopic subset of "flipped" spins: ...1111100000001111...

Entanglement in quantum spin chains

- $X Y$ spin chain:

$$
H=\sum_{n=-\infty}^{\infty}(1+\gamma) \sigma_{n}^{x} \sigma_{n+1}^{x}+(1-\gamma) \sigma_{n}^{y} \sigma_{n+1}^{y}+h \sigma_{n}^{z}
$$

- Probability of having a macroscopic subset of "flipped" spins: ...1111100000001111...

$$
P[0, \ell] \sim \operatorname{det}\left[I-K_{\ell}\right], \quad K_{\ell}(x, y), \text { sine kernel on } L^{2}[0, \ell]
$$

Overview

- Non-commutative generalization of probability theory

Overview

- Non-commutative generalization of probability theory
- When free, becomes proper tool to study systems of non-abelian anyons

Overview

- Non-commutative generalization of probability theory
- When free, becomes proper tool to study systems of non-abelian anyons
- Efficient method for simulating quantum dynamics on classical variables

