IQI 04, Seminar 1

- Seminar overview.
- Classical information units and processing.
- Information science: The big picture.
- Qubit state space.
- Simple qubit gates.
- Black box problems.

Quantum information processing, science of - The theoretical, experimental and technological areas covering the use of quantum mechanics for communication and computation.

Seminar overview

Goal: To learn the basic concepts and tools of quantum information, appreciate its power and limitations, and understand the issues involved in realizing it.
Prerequsites: Linear algebra, polynomials, binary logic, probability. Structure: 15 seminars, each consisting of a 50 min lecture, followed by discussions and/or problem solving.
Grading: Based on participation-see hand-out. Required meeting with me in the second half of the semester.
Assignments: Problems to be handed out. Errors in solutions handed in have no effect on grade.
Reading: References provided in handout, limited number of hard copies of LAScience issue.
Office hours: CU: Wednesdays after class, $1 \mathrm{pm}-3 \mathrm{pm}$, S315 or by appointment. NIST: Thursdays after class, 2:15pm-3:15pm, Bldg 1, Rm 4049, or drop in any time I am there.
Sign-up: Please provide your email, if possible. Let me know if it is difficult for you to use PDF and PS attachments.

Classical Information Units

- The classical information unit is the bit. The bit is a system with state space $\{0,1\}$.

Classical Information Units

- The classical information unit is the bit.

The bit is a system with state space $\{0,1\}$.

- Physical examples:
- Mag. domain on a hard disk, state of mag. moment. \circ is "right", $_$is "left" magnetization.

Classical Information Units

- The classical information unit is the bit.

The bit is a system with state space $\{0,1\}$.

- Physical examples:
- Mag. domain on a hard disk, state of mag. moment. \circ is "right", $_$is "left" magnetization.
- Location on a piece of paper, ink pattern. o if it looks like 0,1 if it looks like 1

Classical Information Units

- The classical information unit is the bit.

The bit is a system with state space $\{0,1\}$.

- Physical examples:
- Mag. domain on a hard disk, state of mag. moment. \circ is "right", $_$is "left" magnetization.
- Location on a piece of paper, ink pattern. 0 if it looks like 0,1 if it looks like 1

Classical Information Units

- The classical information unit is the bit.

The bit is a system with state space $\{0,1\}$.

- Physical examples:
- Mag. domain on a hard disk, state of mag. moment. \circ is "right", $_$is "left" magnetization.
- Location on a piece of paper, ink pattern. o if it looks like 0,1 if it looks like 1

Classical Information Units

- The classical information unit is the bit.

The bit is a system with state space $\{0,1\}$.

- Physical examples:
- Mag. domain on a hard disk, state of mag. moment. \circ is "right", $_$is "left" magnetization.
- Location on a piece of paper, ink pattern. o if it looks like 0,1 if it looks like 1
- Multiple units' state space: By concatenation of states.
= Two bits' state space: $\{00,01,10,11\}$.

Classical Information Units

- The classical information unit is the bit.

The bit is a system with state space $\{0,1\}$.

- Physical examples:
- Mag. domain on a hard disk, state of mag. moment. \circ is "right", $_$is "left" magnetization.
- Location on a piece of paper, ink pattern. o if it looks like 0,1 if it looks like 1
- Multiple units' state space: By concatenation of states.
- Two bits' state space: $\{00,01,10,11\}$.
- How many states do n bits have?

Classical Information Units

- The classical information unit is the bit.

The bit is a system with state space $\{0,1\}$.

- Physical examples:
- Mag. domain on a hard disk, state of mag. moment. \circ is "right", $_$is "left" magnetization.
- Location on a piece of paper, ink pattern. o if it looks like 0,1 if it looks like 1
- Multiple units' state space: By concatenation of states.
= Two bits' state space: $\{00,01,10,11\}$.
- How many states do n bits have? Answer: 2^{n}.

Classical Gate Networks

- A one-bit network.

Time

Classical Gate Networks

- A one-bit network.

Time

Classical Gate Networks

- A one-bit network.

Classical Gate Networks

- A one-bit network.

Time

Classical Gate Networks

- A one-bit network.

- A three-bit network.

Classical Gate Networks

- A one-bit network.

- A three-bit network.

Classical Gate Networks

- A one-bit network.

- A three-bit network.

Classical Gate Networks

- A one-bit network.

- A three-bit network. Controlled-not $\left\{\begin{array}{l}00 \rightarrow 00,01 \rightarrow 01, \\ 10 \rightarrow 11,11 \rightarrow 10 .\end{array}\right.$

Classical Gate Networks

- A one-bit network.

- A three-bit network. Controlled-not $\left\{\begin{array}{l}00 \rightarrow 00,01 \rightarrow 01, \\ 10 \rightarrow 11,11 \rightarrow 10 .\end{array}\right.$

Classical Gate Networks

- A one-bit network.

- A three-bit network.

Classical Gate Networks

- A one-bit network.

- A three-bit network.

Classical Programming

Guide to Information Processing

Information type

Quantum Information Science

Quantum Information Science

- Motivation.
- Quantum cryptography.
- Quantum factoring.
... Quantum control,

- Quantum physics simulation.
- Unstructured search.
complexity theory, ...

Quantum Information Science

- Motivation.
- Quantum cryptography. - Quantum physics simulation.
- Quantum factoring. - Unstructured search.
... Quantum control, complexity theory, ...
- Practical relevance.
- QIP is physically realizable in principle:

Accuracy Threshold Theorem: If the error rate is sufficiently low, then it is possible to efficiently process quantum information arbitrarily accurately.

The Quantum Bit

- The qubit: A system with (pure) state space all superpositions of two logical states $|0\rangle$ and $|\perp\rangle$:

$$
\left\{\alpha|\mathbf{0}\rangle+\beta|\perp\rangle \text { with }|\alpha|^{2}+|\beta|^{2}=1\right\}
$$

The Quantum Bit

- The qubit: A system with (pure) state space all superpositions of two logical states $|0\rangle$ and $|1\rangle$:

$$
\left\{\alpha|0\rangle+\beta|\downarrow\rangle \text { with }|\alpha|^{2}+|\beta|^{2}=1\right\}
$$

- Examples:

$$
\begin{gathered}
|0\rangle, \quad|1\rangle, \\
\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{\sqrt{2}}}|\lambda\rangle, \\
\frac{1}{\sqrt{2}}|0\rangle+\frac{i}{\sqrt{2}}|1\rangle, \\
\left.\frac{3}{5}|0\rangle+\frac{4}{5}| \rangle\right\rangle .
\end{gathered}
$$

The Quantum Bit

- The qubit: A system with (pure) state space all superpositions of two logical states $|0\rangle$ and $|\perp\rangle$:

$$
\left\{\alpha|\mathbf{0}\rangle+\beta|\perp\rangle \text { with }|\alpha|^{2}+|\beta|^{2}=1\right\}
$$

- Examples:

$$
\begin{aligned}
& |0\rangle, \quad|1\rangle, \\
& \frac{1}{\sqrt{2}}|\mathbf{~}\rangle+\frac{1}{\sqrt{2}}|\mathbf{1}\rangle, \\
& \frac{1}{\sqrt{2}}|0\rangle+\frac{i}{\sqrt{2}}|\mathbf{1}\rangle, \\
& \frac{3}{5}|0\rangle+\frac{4}{5}|1\rangle \text {. }
\end{aligned}
$$

The Quantum Bit

- The qubit: A system with (pure) state space all superpositions of two logical states $|0\rangle$ and $|1\rangle$:

$$
\left\{\alpha|\mathbf{0}\rangle+\beta|\perp\rangle \text { with }|\alpha|^{2}+|\beta|^{2}=1\right\}
$$

- Examples:

$$
\begin{gathered}
|0\rangle, \quad|1\rangle, \\
\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{\sqrt{2}} \mid}| \rangle, \\
\frac{1}{\sqrt{2}}|0\rangle+\frac{i}{\sqrt{2}}|1\rangle, \\
\frac{3}{5}|0\rangle+\frac{4}{5}| \rangle .
\end{gathered}
$$

For example: $|\psi\rangle=\frac{3}{5}|0\rangle+\frac{4 i}{5}|1\rangle$

State Space Representations

- Vectors.

$$
\alpha|\mathbf{0}\rangle+\beta|\mathbf{\imath}\rangle \leftrightarrow\binom{\alpha}{\beta}
$$

State Space Representations

- Vectors.

$$
\alpha|\mathbf{0}\rangle+\beta|\mathbf{1}\rangle \leftrightarrow\binom{\alpha}{\beta}
$$

- Bloch sphere.

Classical:
0

1

State Space Representations

- Vectors.

$$
\alpha|\mathbf{0}\rangle+\beta|\mathbf{1}\rangle \leftrightarrow\binom{\alpha}{\beta}
$$

- Bloch sphere.

Quantum:

State Space Representations

- Vectors.

$$
\alpha|\mathbf{0}\rangle+\beta|\mathbf{1}\rangle \leftrightarrow\binom{\alpha}{\beta}
$$

- Bloch sphere.

State Space Representations

- Vectors.

$$
\alpha|\mathbf{0}\rangle+\beta|\mathbf{1}\rangle \leftrightarrow\binom{\alpha}{\beta}
$$

- Bloch sphere.

$$
\alpha|\mathbf{O}\rangle+\beta|\mathbf{\imath}\rangle \cong e^{-i \phi / 2} \cos (\theta / 2)|\mathbf{0}\rangle+e^{i \phi / 2} \sin (\theta / 2)|\mathbf{\wedge}\rangle
$$

State Space Representations

- Vectors.

$$
\alpha|\mathbf{0}\rangle+\beta|\mathbf{1}\rangle \leftrightarrow\binom{\alpha}{\beta}
$$

- Bloch sphere.

$$
\alpha|\mathbf{0}\rangle+\beta|\mathbf{\imath}\rangle \cong e^{-i \phi / 2} \cos (\theta / 2)|\mathbf{0}\rangle+e^{i \phi / 2} \sin (\theta / 2)|\mathbf{\imath}\rangle
$$

- Global phase:
$\alpha|\mathbf{0}\rangle+\beta|\boldsymbol{\perp}\rangle$ and $e^{i \varphi} \alpha|\mathbf{0}\rangle+e^{i \varphi} \beta|\mathbf{\perp}\rangle$ are the same state.

Photonic Qubit

- Photonic qubit: One photon in a superposition of two modes.

Photonic Qubit

- Photonic qubit: One photon in a superposition of two modes.

Photonic Qubit

- Photonic qubit: One photon in a superposition of two modes.

Photonic Qubit

- Photonic qubit: One photon in a superposition of two modes.

Photonic Qubit

- Photonic qubit: One photon in a superposition of two modes.

Photonic Qubit

- Photonic qubit: One photon in a superposition of two modes.

Photonic Qubit

- Photonic qubit: One photon in a superposition of two modes.

Photonic Qubit

- Photonic qubit: One photon in a superposition of two modes.

$|0\rangle$
$|1\rangle$

Photonic Qubit

- Photonic qubit: One photon in a superposition of two modes.

$|0\rangle$

Photonic Qubit

- Photonic qubit: One photon in a superposition of two modes.

- Photonic qubits are usually "flying" qubits.

Photonic Qubit

- Photonic qubit: One photon in a superposition of two modes.

= Photonic qubits are usually "flying" qubits.
- Making a superposition state:

Photonic Qubit

- Photonic qubit: One photon in a superposition of two modes.

= Photonic qubits are usually "flying" qubits.
- Making a superposition state:

Photonic Qubit

- Photonic qubit: One photon in a superposition of two modes.

= Photonic qubits are usually "flying" qubits.
- Making a superposition state:

Photonic Qubit

- Photonic qubit: One photon in a superposition of two modes.

= Photonic qubits are usually "flying" qubits.
- Making a superposition state:

Photonic Qubit

- Photonic qubit: One photon in a superposition of two modes.

= Photonic qubits are usually "flying" qubits.
- Making a superposition state:

Spin $1 / 2$ Qubit

- Spin $1 / 2$ in oriented space: One particle in a superposition of the states "up" (| $|\uparrow\rangle)$ and "down" (| $|\downarrow\rangle$).

Spin $1 / 2$ Qubit

- Spin $1 / 2$ in oriented space: One particle in a superposition of the states "up" (| $\rangle)$ and "down" (| $|\downarrow\rangle$).

= Orientation of magnetic moment (average) corresponds to the state in the Bloch sphere.

Spin $1 / 2$ Qubit

- Spin $1 / 2$ in oriented space: One particle in a superposition of the states "up" (| $\mid \uparrow)$ and "down" (| $|\downarrow\rangle$).

= Orientation of magnetic moment (average) corresponds to the state in the Bloch sphere.
- Examples include nuclear spins of ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$.

These are observable by nuclear magnetic resonance.

Spin $1 / 2$ Qubit

- Spin $1 / 2$ in oriented space: One particle in a superposition of the states "up" (| \rangle) and "down" ($| \downarrow\rangle$).

= Orientation of magnetic moment (average) corresponds to the state in the Bloch sphere.
- Examples include nuclear spins of ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$.

These are observable by nuclear magnetic resonance.

- Distinguish $|\uparrow\rangle$ from $|\downarrow\rangle$ by using a Stern-Gerlach apparatus:

Spin $1 / 2$ Qubit

- Spin $1 / 2$ in oriented space: One particle in a superposition of the states "up" (| \rangle) and "down" ($| \downarrow\rangle$).

= Orientation of magnetic moment (average) corresponds to the state in the Bloch sphere.
- Examples include nuclear spins of ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$. These are observable by nuclear magnetic resonance.
- Distinguish $|\uparrow\rangle$ from $|\downarrow\rangle$ by using a Stern-Gerlach apparatus:

Spin $1 / 2$ Qubit

- Spin $1 / 2$ in oriented space: One particle in a superposition of the states "up" (| \rangle) and "down" ($| \downarrow\rangle$).

= Orientation of magnetic moment (average) corresponds to the state in the Bloch sphere.
- Examples include nuclear spins of ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$.

These are observable by nuclear magnetic resonance.

- Distinguish $|\uparrow\rangle$ from $|\downarrow\rangle$ by using a Stern-Gerlach apparatus:

Spin $1 / 2$ Qubit

- Spin $1 / 2$ in oriented space: One particle in a superposition of the states "up" (| \rangle) and "down" ($| \downarrow\rangle$).

= Orientation of magnetic moment (average) corresponds to the state in the Bloch sphere.
- Examples include nuclear spins of ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$.

These are observable by nuclear magnetic resonance.

- Distinguish $|\uparrow\rangle$ from $|\downarrow\rangle$ by using a Stern-Gerlach apparatus:

Spin $1 / 2$ Qubit

- Spin $1 / 2$ in oriented space: One particle in a superposition of the states "up" (| \rangle) and "down" ($| \downarrow\rangle$).

= Orientation of magnetic moment (average) corresponds to the state in the Bloch sphere.
- Examples include nuclear spins of ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$.

These are observable by nuclear magnetic resonance.

- Distinguish $|\uparrow\rangle$ from $|\downarrow\rangle$ by using a Stern-Gerlach apparatus:

Spin $1 / 2$ Qubit

- Spin $1 / 2$ in oriented space: One particle in a superposition of the states "up" (| \rangle) and "down" ($| \downarrow\rangle$).

= Orientation of magnetic moment (average) corresponds to the state in the Bloch sphere.
- Examples include nuclear spins of ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$. These are observable by nuclear magnetic resonance.
- Distinguish $|\uparrow\rangle$ from $|\downarrow\rangle$ by using a Stern-Gerlach apparatus:

Spin $1 / 2$ Qubit

- Spin $1 / 2$ in oriented space: One particle in a superposition of the states "up" (| $|\uparrow\rangle)$ and "down" ($|\downarrow\rangle$).

= Orientation of magnetic moment (average) corresponds to the state in the Bloch sphere.
- Examples include nuclear spins of ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$. These are observable by nuclear magnetic resonance.
- Distinguish $|\uparrow\rangle$ from $|\downarrow\rangle$ by using a Stern-Gerlach apparatus:

Spin $1 / 2$ Qubit

- Spin $1 / 2$ in oriented space: One particle in a superposition of the states "up" (| $|\uparrow\rangle)$ and "down" ($|\downarrow\rangle$).

= Orientation of magnetic moment (average) corresponds to the state in the Bloch sphere.
- Examples include nuclear spins of ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$. These are observable by nuclear magnetic resonance.
- Distinguish $|\uparrow\rangle$ from $|\downarrow\rangle$ by using a Stern-Gerlach apparatus:

One-Qubit Gates I

- State preparation, prep(o), prep(1).

One-Qubit Gates I

- State preparation, $\operatorname{prep}(0), \operatorname{prep}(1)$.

- Bit flip, not.

$$
\left.\begin{array}{l}
\alpha|\mathbf{o}\rangle+\beta|\mathbf{\perp}\rangle \\
\text { not. }
\end{array}\right\}=\begin{aligned}
& \alpha|\mathbf{\imath}\rangle+\beta|\mathbf{0}\rangle
\end{aligned}
$$

One-Qubit Gates I

- State preparation, $\operatorname{prep}(0), \operatorname{prep}(1)$.

- Bit flip, not.

$$
\left.\begin{array}{l}
\text { not. } \\
\alpha|\mathbf{0}\rangle+\beta|\mathbf{1}\rangle \\
\binom{\alpha}{\beta}
\end{array}\right\} \bigoplus\left\{\begin{array}{l}
\alpha|\mathbf{1}\rangle+\beta|\mathbf{0}\rangle \\
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\alpha}{\beta}=\binom{\beta}{\alpha}
\end{array}\right.
$$

One-Qubit Gates I

- State preparation, $\operatorname{prep}(0), \operatorname{prep}(1)$.

$1-|1\rangle$
- Bit flip, not.

$$
\left.\begin{array}{l}
\left.\begin{array}{c}
\text { not. } \\
\alpha|\mathbf{o}\rangle+\beta|\mathbf{1}\rangle \\
\alpha \\
\beta
\end{array}\right)
\end{array}\right\} \xlongequal{\alpha|\mathbf{1}\rangle+\beta|\mathbf{o}\rangle} \begin{aligned}
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\alpha}{\beta}=\binom{\beta}{\alpha}
\end{aligned}
$$

- Sign flip, sgn.

One-Qubit Gates I

- State preparation, $\operatorname{prep}(0), \operatorname{prep}(1)$.

- Bit flip, not.

$$
\left.\begin{array}{l}
\left.\begin{array}{c}
\text { not. } \\
\alpha|\mathbf{o}\rangle+\beta|\mathbf{1}\rangle \\
\alpha \\
\beta
\end{array}\right)
\end{array}\right\} \xlongequal{\alpha|\mathbf{1}\rangle+\beta|\mathbf{0}\rangle} \begin{aligned}
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\alpha}{\beta}=\binom{\beta}{\alpha}
\end{aligned}
$$

- Sign flip, sgn.

$$
\begin{aligned}
& \alpha|\mathbf{o}\rangle+\beta|\mathbf{1}\rangle \\
& \binom{\alpha}{\beta} \\
& \} \\
& \text { (2)- }\left\{\begin{array}{l}
\alpha|0\rangle-\beta|\mathbf{1}\rangle \\
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\alpha}{\beta}=\binom{\alpha}{-\beta}
\end{array}\right.
\end{aligned}
$$

One-Qubit Gates I

- State preparation, $\operatorname{prep}(0), \operatorname{prep}(1)$.

$$
|0\rangle
$$

$$
1\rangle|1\rangle
$$

- Bit flip, not.
- Sign flip, sgn.

$$
\begin{aligned}
& \alpha|0\rangle+\beta|1\rangle \\
& \binom{\alpha}{\beta} \\
& \text { (2)- }\left\{\begin{array}{l}
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\alpha}{\beta}=\binom{\alpha}{-\beta} ~
\end{array}\right.
\end{aligned}
$$

- So far: Cannot generate proper superpositions.

One-Qubit Gates II

One-Qubit Gates II

- Hadamard.
$\binom{\alpha}{\beta} \quad\left\{\begin{array}{l}\mathbf{H} \\ \frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\binom{\alpha}{\beta}=\frac{1}{\sqrt{2}}\binom{\alpha+\beta}{\alpha-\beta}\end{array}\right.$

One-Qubit Gates II

- Hadamard. $\left.\begin{array}{l}\alpha|\mathbf{0}\rangle+\beta|\mathbf{1}\rangle \\ \binom{\alpha}{\beta}\end{array}\right\} \quad \mathbf{H}=\left\{\begin{array}{l}\frac{1}{\sqrt{2}}(\alpha+\beta)|\mathbf{0}\rangle+\frac{1}{\sqrt{2}}(\alpha-\beta)|\mathbf{1}\rangle \\ \frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\binom{\alpha}{\beta}=\frac{1}{\sqrt{2}}\binom{\alpha+\beta}{\alpha-\beta}\end{array}\right.$

One-Qubit Gates II

- Hadamard.

$$
\left.\begin{array}{c}
\alpha|\mathbf{o}\rangle+\beta|\mathbf{1}\rangle \\
\binom{\alpha}{\beta}
\end{array}\right\} \quad \mathbf{H}=\left\{\begin{array}{l}
\frac{1}{\sqrt{2}}(\alpha+\beta)|\mathbf{o}\rangle+\frac{1}{\sqrt{2}}(\alpha-\beta)|\mathbf{1}\rangle \\
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{\alpha}{\beta}=\frac{1}{\sqrt{2}}\binom{\alpha+\beta}{\alpha-\beta}
\end{array}\right.
$$

- Example: Prepare the state $\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle+|\mathbf{1}\rangle)$.

One-Qubit Gates II

- Hadamard.

$$
\left.\begin{array}{c}
\alpha|\mathbf{o}\rangle+\beta|\mathbf{1}\rangle \\
\binom{\alpha}{\beta}
\end{array}\right\} \quad \mathbf{H}=\left\{\begin{array}{l}
\frac{1}{\sqrt{2}}(\alpha+\beta)|\mathbf{o}\rangle+\frac{1}{\sqrt{2}}(\alpha-\beta)|\mathbf{1}\rangle \\
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{\alpha}{\beta}=\frac{1}{\sqrt{2}}\binom{\alpha+\beta}{\alpha-\beta}
\end{array}\right.
$$

- Example: Prepare the state $\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle+|\mathbf{1}\rangle)$.

One-Qubit Gates II

- Hadamard.

$$
\left.\begin{array}{c}
\alpha|\mathbf{o}\rangle+\beta|\mathbf{1}\rangle \\
\binom{\alpha}{\beta}
\end{array}\right\} \quad \mathbf{H}=\left\{\begin{array}{l}
\frac{1}{\sqrt{2}}(\alpha+\beta)|\mathbf{o}\rangle+\frac{1}{\sqrt{2}}(\alpha-\beta)|\mathbf{1}\rangle \\
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{\alpha}{\beta}=\frac{1}{\sqrt{2}}\binom{\alpha+\beta}{\alpha-\beta}
\end{array}\right.
$$

- Example: Prepare the state $\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle+|\mathbf{1}\rangle)$.

One-Qubit Gates II

- Hadamard.

$$
\left.\begin{array}{c}
\alpha|\mathbf{o}\rangle+\beta|\mathbf{1}\rangle \\
\binom{\alpha}{\beta}
\end{array}\right\} \quad \mathbf{H}=\left\{\begin{array}{l}
\frac{1}{\sqrt{2}}(\alpha+\beta)|\mathbf{o}\rangle+\frac{1}{\sqrt{2}}(\alpha-\beta)|\mathbf{1}\rangle \\
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{\alpha}{\beta}=\frac{1}{\sqrt{2}}\binom{\alpha+\beta}{\alpha-\beta}
\end{array}\right.
$$

- Example: Prepare the state $\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle+|\mathbf{1}\rangle)$.

One-Qubit Gates II

- Hadamard.

$$
\left.\begin{array}{c}
\alpha|\mathbf{o}\rangle+\beta|\mathbf{1}\rangle \\
\binom{\alpha}{\beta}
\end{array}\right\}=\mathbf{H}\left\{\begin{array}{l}
\frac{1}{\sqrt{2}}(\alpha+\beta)|\mathbf{o}\rangle+\frac{1}{\sqrt{2}}(\alpha-\beta)|\mathbf{1}\rangle \\
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{\alpha}{\beta}=\frac{1}{\sqrt{2}}\binom{\alpha+\beta}{\alpha-\beta}
\end{array}\right.
$$

- Example: Prepare the state $\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle+|\mathbf{1}\rangle)$.

$\operatorname{prep}(0)$. had

One-Qubit Gates II

- Hadamard.

$$
\left.\begin{array}{c}
\alpha|\mathbf{o}\rangle+\beta|\mathbf{1}\rangle \\
\binom{\alpha}{\beta}
\end{array}\right\} \quad \mathbf{H}=\left\{\begin{array}{l}
\frac{1}{\sqrt{2}}(\alpha+\beta)|\mathbf{o}\rangle+\frac{1}{\sqrt{2}}(\alpha-\beta)|\mathbf{1}\rangle \\
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{\alpha}{\beta}=\frac{1}{\sqrt{2}}\binom{\alpha+\beta}{\alpha-\beta}
\end{array}\right.
$$

- Example: Prepare the state $\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle+|\mathbf{1}\rangle)$.

$\operatorname{prep}(0)$. had
- With the gates so far, can we prepare $\frac{1}{\sqrt{2}}(|\boldsymbol{\mathcal { O }}\rangle+i|\mathbf{1}\rangle)$?

Read-out

- Read-out reduces a state destructively to classical information.

0/1 b

Read-out

- Read-out reduces a state destructively to classical information.

$$
|0\rangle \quad 0 / 1 \quad b \quad\{b=0
$$

Read-out

- Read-out reduces a state destructively to classical information.

$$
|1\rangle \longrightarrow 0 / 1 \quad\{b=1
$$

Read-out

- Read-out reduces a state destructively to classical information.

$$
\alpha|\mathbf{0}\rangle+\beta|\mathbf{\imath}\rangle< \begin{cases}\mathrm{b}=0 & \text { with probability }|\alpha|^{2}, \\ \mathrm{~b}=1 & \text { with probability }|\beta|^{2} .\end{cases}
$$

Read-out

- Read-out reduces a state destructively to classical information.

$$
\alpha|\mathbf{0}\rangle+\beta|\mathbf{1}\rangle= \begin{cases}\mathrm{b}=0 & \text { with probability }|\alpha|^{2}, \\ \mathrm{~b}=\boldsymbol{1} & \text { with probability }|\beta|^{2} .\end{cases}
$$

- Example:

Read-out

- Read-out reduces a state destructively to classical information.

$$
\alpha|\boldsymbol{o}\rangle+\beta|\mathbf{1}\rangle<\begin{array}{ll}
\mathrm{b}=0 & \text { with probability }|\alpha|^{2}, \\
\mathrm{~b}=1 & \text { with probability }|\beta|^{2} .
\end{array}
$$

- Example:

Read-out

- Read-out reduces a state destructively to classical information.

$$
\alpha|\boldsymbol{o}\rangle+\beta|\mathbf{1}\rangle<\begin{array}{ll}
\mathrm{b}=0 & \text { with probability }|\alpha|^{2}, \\
\mathrm{~b}=1 & \text { with probability }|\beta|^{2} .
\end{array}
$$

Read-out

- Read-out reduces a state destructively to classical information.

$$
\alpha|0\rangle+\beta|\mathbf{1}\rangle \xlongequal{0 / 1} \left\lvert\, \mathbf{b}- \begin{cases}\mathrm{b}=0 & \text { with probability }|\alpha|^{2}, \\ \mathrm{~b}=1 & \text { with probability }|\beta|^{2} .\end{cases}\right.
$$

$\operatorname{prep}(0) \cdot \operatorname{had} . \operatorname{meas}(Z \mapsto b)$

"Black Box" Problems

Classical:

- Given: Unknown one-bit device, a "black box".

"Black Box" Problems

Classical:

- Given:

Unknown one-bit device, a "black box". Promise:

It either flips the bit or does nothing.

"Black Box" Problems

Classical:

- Given:

Promise:
Unknown one-bit device, a "black box". Problem: Determine which using the device once.

"Black Box" Problems

Classical:

- Given: Unknown one-bit device, a "black box". Promise: It either flips the bit or does nothing. Problem: Determine which using the device once.
- Solution:

"Black Box" Problems

Classical:

- Given: Unknown one-bit device, a "black box".

Promise: It either flips the bit or does nothing.
Problem: Determine which using the device once.

- Solution:

$\left\{\begin{array}{c}0: \text { doesn't flip, }\end{array}\right.$ 1: flips.

"Black Box" Problems

Quantum:

"Black Box" Problems

Quantum:

- Given:

Promise:
Problem:

Unknown one-qubit device, a "black box".
It either applies sgn or does nothing.
Determine which using the device once.

"Black Box" Problems

Quantum:

- Given:

Promise:
Unknown one-qubit device, a "black box".
Problem: Determine which using the device once.

- Solution:

"Black Box" Problems

Quantum:

- Given:

Promise:
Unknown one-qubit device, a "black box".
Problem: Determine which using the device once.

- Solution:

"Black Box" Problems

Quantum:

- Given:

Promise:
Unknown one-qubit device, a "black box".
Problem: Determine which using the device once.

- Solution:

"Black Box" Problems

Quantum:

- Given:

Promise:
Unknown one-qubit device, a "black box".
Problem: Determine which using the device once.

- Solution:

"Black Box" Problems

Quantum:

- Given:

Promise:
Problem: Determine which using the device once.

- Solution:

"Black Box" Problems

Quantum:

- Given:

Promise:
Problem: Determine which using the device once.

- Solution:

"Black Box" Problems

Quantum:

- Given:

Promise:
Problem: Determine which using the device once.

- Solution:

"Black Box" Problems

Quantum:

- Given:

Promise:
Unknown one-qubit device, a "black box".
Problem: Determine which using the device once.

- Solution:

"Black Box" Problems

Quantum:

- Given:

Promise:
Unknown one-qubit device, a "black box".
Problem: Determine which using the device once.

- Solution:

"Black Box" Problems

Quantum:

- Given:

Unknown one-qubit device, a "black box".
Promise: It either applies sgn or does nothing.
Problem: Determine which using the device once.

- Solution:

- Given: Unknown one-qubit device, a "black box".

Promise: It either applies not, sgn, sgn.not or does nothing.
Problem: Determine which using the device once.

"Black Box" Problems

Quantum:

- Given:

Unknown one-qubit device, a "black box".
Promise: It either applies sgn or does nothing.
Problem: Determine which using the device once.

- Solution:

- Given: Unknown one-qubit device, a "black box".

Promise: It either applies not, sgn, sgn.not or does nothing.
Problem: Determine which using the device once.

- Is this possible?

Contents

Title: IQI 04, Seminar 1
Photonic Qubit top... 9
Spin 1/2 Qubit 10
One-Qubit Gates I 11
One-Qubit Gates II top... 12
Read-out top... 13
"Black Box" Problems: Classical top... 14
"Black Box" Problems: Quantum 15
References 17

References

[1] S. Wiesner. Conjugate coding. Sigact News, (original manuscript ~ 1969), 15:78-88, 1983.
[2] C. H. Bennett and G. Brassard. Quantum cryptography: Public key deistribution and coin tossing. In Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, pages 175-179, Los Alamitos, Calif, 1984. IEEE Comp. Soc. Press.
[3] P. Benioff. The computer as a physical system: A microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. J. Stat. Phys., 22:563-591, 1980.
[4] Y. I. Manin. The Computable and the Not Computable. Sovetskoye Radio, Moscow, 1980. In Russian.
[5] R. P. Feynman. Simulating physics with computers. Int. J. Theor. Phys., 21:467-488, 1982.
[6] P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35 'th Annual Symposium on Foundations of Computer Science, pages 124-134, Los Alamitos, California, 1994. IEEE Press.
[7] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput., 26:1484-1509, 1997.
[8] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the 28th Annual ACM Symposium on the Theory of Computation, pages 212-219, New York, New York, 1996. ACM press.
[9] A. Yu. Kitaev. Quantum computations: algorithms and error correction. Russian Math. Surveys, 52:1191-1249, 1997.
[10] D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant error. In Proceedings of the 29th Annual ACM Symposium on the Theory of Computation (STOC), pages 176-188, New York, New York, 1996. ACM Press.
[11] E. Knill, R. Laflamme, and W. H. Zurek. Resilient quantum computation. Science, 279:342-345, 1998.

