

Overview of the Material Selection Methodology

Process Consists of Repeated Material Evaluations

- Qualitative comparison to seal functional and design requirements
- Quantitative comparison to specific design requirements
 - evaluation of material properties
- Future evaluations as seal requirements are refined
 - evaluation of material properties

Initial Material Screen

REFERENCE: SAND84-1895

Second Material Evaluation

General Design Requirements Developed For

- Strength
- Emplacement considerations
- Seal-groundwater chemistry
- Environmental conditions

Specific Design Requirements Developed For

Hydraulic conductivity

ł

Observed Properties of Candidate Seal Materials

PROPERTY	CEMENTITIOUS MATERIALS	EARTHEN MATERIALS
HYDRAULIC CONDUCTIVITY	TYPICAL: $10^{-8} - 10^{-6}$ $\frac{cm}{sec}$ BEST: 10^{-10} $\frac{cm}{sec}$	TYPICAL: $10^{-5} - 10^{+2} \frac{\text{cm}}{\text{sec}}$ BEST: $10^{-10} \frac{\text{cm}}{\text{sec}}$
STABILITY	CHEMICAL ALTERATION	DEHYDRATION
GROUNDWATER CHEMISTRY INTERACTIONS	INCREASED LEVELS OF OH ⁻ , Na ⁺ , K ⁺ , SO ₄ ⁼ , Si, and Ca ⁺⁺ STABILIZING EFFECT OF TUFF	INCREASED LEVELS OF Na † K † Ca ++, Mg ++, Si, Al CONCENTRATION INCREASES CONTROLLABLE
STRENGTH	HIGH CONTROLLABLE	CRACKING POTENTIAL SWELLING

Overview

Cementitious Sealing Material Degradation Model

- Differential expansion causes pressure
- Microscopic and macroscopic analyses based upon spherical/cylindrical analysis of Timoshenko and Goodier

Microscopic Analyses

- Microscopic inclusions in C-S-H Matrix
 - Ettringite
 - Hydrogarnet
 - Portlandite
 - Silica
 - Gypsum
 - Unreacted cement phases
 - Fine aggregate
 - Coarse aggregate
- Tensile stresses compared to
 - Confining stress
 - Tensile strength

Microscopic Analyses

- Stress greater than tensile strength or confining stress
 - Plug unstable to thermal expansive stresses
- Similar results obtained for
 - Portlandite
 - Unreacted cement phases
- Amounts of gypsum, Portlandite, and unreacted cement phases must be controlled

ŧ.

- Thermally-induced stresses less than half of confining stresses
- Similar results obtained for Station seal and Calico Hills seal

Overview

Cementitious Sealing Material Degradation Model

Mechanical Interactions

• Minimum and maximum principal stresses--spherical inclusion (Jaeger and Cook)

- For normal in situ stresses--plug stresses are minor
- For low horizontal stresses--high water/cement ratios and low aggregate fractions are preferred

Mechanical Interactions

- Comité Européen du Beton method
- Creep increases with higher water-to-cement ratios
- Creep increases with lower aggregate fractions
- Higher water-to-cement ratios and lower aggregate fractions preferred

Overview

Cementitious Sealing Material Degradation Model

- Shrinkage-swelling effects controlled by relative humidity variations
- For in situ saturations between 0.4 and 1.0, the relative humidity is bounded between 0.97 and 1.0

Conclusion

 Saturation variation will have little effect on shrinkage-swelling effects

Overview

Cementitious Sealing Material Degradation Model

1

Geochemical Interactions

Cement - J-13 water interactions

Future Considerations

- Cement-tuff-water interactions
- Kinetic effects
- Leaching effects
- Validation

EQ3NR/EQ6 Geochemical Code Assumptions for the Interaction of Concretes with J-13 Water

• Use of surrogates

BASE MATERIAL	SURROGATE
C-S-H GEL	TOBERMORITE
C3AH6	HYDROGARNET
SULPHATE CEMENT PHASE	ETTRINGITE
SIO2	CRISTOBALITE

- Local equilibrium assumed
- Closed system assumed--dissolved gases limited
- Minerals suppressed

TOBERMORITE (80.8%)

EPC-S Concrete

Silica-Rich, Ettringite-Rich Concrete

OPC-C Concrete

Calcium-Rich, OPC Concrete

J-13 Water Composition

SPECIES	CONCENTRATION (mg/L)
Са	11.62
Mg	1.75
Na	45.1
К	5.32
Li	0.062
Fe	0.045
Mn	0.001
AI	0.027
Si	30.05
F	2.1
CI ⁻	6.4
SO4 ⁻²	18.25
NO ₃	9.92
HCO ₃	142.8 ⁽¹⁾

.\

рН	6.9
Eh	0.120 V

1. Titration alkalinity expressed as HCO^{3-} .

OPC-B Concrete

EPC-S Concrete

OPC-C Concrete

Steps in Modeling Cement

Permeability Modification

۱

Projected Change in Volume

Summary of Geochemical Interactions

Water Chemistry

- Calcium-rich and silica-rich concretes have similar responses in J-13 water
 - Small concrete addition--solution strongly buffered by J-13 water
 - Large concrete addition--concrete dominates solution

Concrete Alteration

- For closed system--reducing conditions and minimal carbonate formation
- Mass and volume change is described by a few chemical reactions
 - Ettringite and Portlandite open concrete structure
 - Excess silica tightens the concrete structure
- Permeability changes for this study are small

Conclusions from Geochemical Considerations

- Material screens indicate that both cements and earthen materials
 are potentially suitable as sealing materials
- Cementitious material evaluations indicate that high-quality cementitious sealing materials may be achievable by controlling the cement composition
 - Important factors
 - Calcium-to-silica ratio
 - Water-to-cement ratio
 - Aggregate weight percent
 - Gypsum
 - Portlandite
 - Unreacted cement phases

.