Origin, Age, and Geochemical Evolution of Dixie Valley Geothermal Fluid

Cathy Janik U. S. Geological Survey June 12, 2002

REGIONAL FLUID GEOCHEMISTRY

Principal Investigators Greg Nimz LLNL Fraser Goff LANL Cathy Janik USGS

Research Supported by the Geothermal Technology Division USDOE

Collaborators

 Charles Dunlap, UC Santa Cruz
 Oxbow Power Services, Inc. Stuart Johnson Dick Benoit

Analysts

- Dale Counce LANL
- Mark Huebner USGS
- T. Coplen Lab USGS
- Doug White USGS
- Cathy Janik USGS G

Water and gas chemistry
C-isotope preps
δD and δ¹⁸O
¹³C mass spectrometry
Gas chemistry

 Characterize relations between Regional ground waters Valley hot springs Geothermal production fluids • Using: Fluid chemistry δD and $\delta^{18} O$ ¹⁴C and δ^{13} C ⁸⁷Sr/⁸⁶Sr, and ³⁶Cl/Cl

Carson

Sink

km

Generalized Carbon Evolution Path

Lopolith

Interaction of marine rocks and regional waters

Conclusions

- DV Reservoir Fluid evolved from Valley Waters.
- Water-rock interaction with marine carbonates, NOT with the lopolith.
- These waters are Pleistocene in age, 12,000–20,000 years old.
- Recharge to the reservoir was NOT from the mountain ranges.

THE BOTTOM LINE

The origin of the Dixie Valley geothermal reservoir fluid was vertical recharge of water from "Lake Dixie" in the Pleistocene. To reach 250°C, the water circulated to 5–6 km depth.

Origin, Age, and Geochemical Evolution of Dixie Valley Geothermal Fluid

Cathy Janik U. S. Geological Survey June 12, 2002