Geochemical Monitoring in CO₂-Enhanced Petroleum Recovery

Bill Gunter and Ernie Perkins,

Alberta Research Council, Edmonton, T6N 1E4, Canada

&

Ian Hutcheon,

University of Calgary, Calgary, Alberta, T2N 1N4, Canada

Geochemistry Task Purpose

- To monitor and predict the reactions taking place between CO_2 , reservoir fluids and the minerals in the reservoir:
- For reservoir management (short term)
- For greenhouse gas sequestration (long term)

Geochemistry Task Objectives

To establish a chemical history for the reservoir:

- To monitor the movement of the CO₂ front in the reservoir
- To validate the short term modelling of CO₂ water-rock reaction in the reservoir
- To predict the long term geochemical fate of CO₂ in the reservoir

Geochemistry Task Problems being addressed

- Short term: Breakthrough of CO₂ at the production wells, which limits oil production and CO₂ storage
- Long term: How much CO₂ can be ultimately locked up by mineral formation in the reservoir

- Baseline Geochemistry (before CO₂ injection)
 - Sample & analyze reservoir fluids and injection fluids
 - Identify reservoir mineralogy
 - Determine reservoir heterogenity in the geochemical properties
- Geochemical Sampling of Production/Injection Fluids
- Core floods and experiments for calibration
- Geochemical Modelling

- Geochemical Sampling
 - Sample and analyze production fluids (water and gas for:
 - major inorganic and organic ions,
 - pH, TIC/alkalinity, temperature, and pressure,
 - stable isotopes of Carbon,
 - gasses (both free and dissolved),
 - as a function of location and time in the pilot

Analytical Data

WATER

pH@T°C

Alk H₂S Na K Ca Mg Mn Li Fe Sr Ba Si Cl SO₄ $\delta^{18}O$ SO₄, $\delta^{34}S$ SO₄, $\delta^{18}O$ H₂O, δD H₂O, $\delta^{13}C$ HCO₃⁻, $\delta^{34}S$ H₂S

GAS

 $\delta^{34}S H_2S, \, \delta^{13}C_{1-3}H_{4-6}, \, \delta^{13}CO_2$ Mole amounts C_1 - C_1 , CO_2 , H_2S

Geochemical Modelling (short term)

- Use a two phase model to track the movement of CO₂ between the gas and aqueous phases.
- Determine if scaling will occur in the production wells.
- Determine the nature and scope of the reactions occurring in the wellbore and the reservoir in years.

Probable Isotope composition - CO₂ Sources

Using CO₂ as a Tracer CO₂ Injector _____ Producer

Gas travels faster than Water δ^{13} C of gas drops as injected CO_2 reaches well

°

Flow of Water

0

Adding CO₂ to Dolomite

CO_2 (1molal) = Pco₂ of 87 bars

Nisku Carbonate

UNIVERSITY OF CALGARY

Nisku Aquifer (CO₂)

OF CALGARY

Geochemical Modelling (long term)

- Predict the amount of CO₂ sequestered in the subsurface in 100's of years.
- Predict cap rock chemical integrity.

CO_2 (1molal) = Pco₂ of 87 bars

Glauconitic Sandstone

PCO2: $87 \longrightarrow 0.02$ bars

Glauconitic Aquifer (CO₂)

UNIVERSITY OF CALGARY

Glauconitic Aquifer (CO₂)

UNIVERSITY OF CALGARY

Geochemistry Task Benefits

- Short Term: Allows the prediction of the movement of the CO₂ in the reservoir.
- Long Term: Establish the basis for greenhouse gas credits.

