Analysis and Forecasts of a Historic Rain and Flood Event

Richard H. Grumm National Weather Service State College and Jia Xuxuan Shenyang Central Metrological Observatory

Overview

We will examine a major Flood event

- Significant impact on North Korea
- Devastated crops in mid-August

Ideal to see what happened

- Examine aspects of a major flood \rightarrow where did it rain
- Analysis and forecast issues can be addressed \rightarrow
 - What did the pattern look like and was it forecast as such?

Ideal application of ensembles

- Precipitation amounts (Probabilities) and timing
- Meteorological setting
 - Intensity of key features associated with heavy rainfall.
 - Key features associated with heavy rains events

Put features in a context \rightarrow Climate anomalies of key features

RHC

RHG1 We do not know the truth and are slaves to our analysis of choice/record. Richard Grumm, 11/11/2007

A few points

- Some key characteristics
 - Anomalously high PW values in affected region
 - Strong and anomalous low-level southerly winds
 - Tropical Moisture streams
 - A pattern often seen in the eastern United States
- Blend EPS and Climatic Data can
 - Define areas of high confidence \rightarrow poorman's RMOP
 - In this case the GEFS was remarkable in the amounts of rain forecast
 - What would an good mesoscale ensemble have done?

Estimate Rainfall valid 0000 UTC 10-14 August 2007

JRA25 Accumulated Rainfall

Biggest Days and totals

Rainfall Summary

- Period ending 0000 UTC 14 August was a big event
- So was the period ending 0000 UTC on 12 August
- JRA and CMORPH data
 - showed the same affected areas
 - Similar amounts over similar time periods.
 - 350 mm is ~14 inches biggest report was 17in.
- We lack definitive rainfall data!

What the pattern looked like JRA25 perspective

About the Peak \rightarrow 850 winds too!

2

-3 -4

-5

-2 -3

-4

-5

13BE

135E

120E

123E

126E

129E

132E

The Pattern

Classic quasi-stationary North-South frontal system

- Maddox Synoptic Type
- Similar to US of same pattern (next Slide)
- Generalized Pattern
 - \blacksquare *N-S front*
 - Above normal PW in warm sector with tropical connection
 - Strong southerly flow into region of heavy rainfall.

Figure 1. Composite of all cold season Synoptic events showing the a) the composite mean sea-level pressure (hPa) and the mean standardized anomaly and b) the composite precipitable water (mm) and

Figure 2 Composite of all cold season Synoptic events showing the a) 850 hPa mean winds and 850 hPa v-wind anomalies and b) 925 hPa winds and v-wind anomalies. Winds are in knots and anomalies in standard deviations from normal.

Synoptic Type schematic

A POTENT LOW-LEVEL JET IS PRESENT

EPS data to Forecast these events

Data: NCEP GEFS data

Focus on key features

- Anomalies of key predictants
- Probabilities of QPF over discrete time intervals and values
- SREF and GEFS have history of success with this event type!

Salient points:

- Uncertainty and probabilities are the strengths of ensemble system,
- The future of forecasting is linked to the strengths of the EPS,
- Ensembles add the most value in cases of high uncertainty,
- Never try to chose a member in a high uncertainty event,
- In quiescent weather or areas of high confidence, the ensemble has minimal value*.

Heavy rain we need probabilities of key threshold values!

*Derived from Jun Du-NOAA/NCEP 08 November 2007

EPS Forecasts

Plumes showed period of heavy rains

Patterns were well forecast too

Probabilities with patterns gave some measure of confidence

7 August GEFS Plume for Central N. Korea....

Prolonged high PW forecast

One Day Closer

Classic Heavy Rain Pattern persisting for 2 days!

a.00Z08AUG2007 GEFS Valid 00Z13AUG2007 (Mon) 850hPa uardpre Ensemble 48N Components: MODEL INIT TIME 451 4 00Z0BAUG gep01 00Z0BAUG 3 00Z0BAUG aep02 OOZOBAUG 1 OOZOBAUG 36h an Off 00Z0BAU(00Z0BAUG ieb01 00Z0BAUG C3Ok 00Z0BAUG ep11 00Z0BAUG '≩7N 00Z0BAUG qep12 gep13 00Z0BAUG 00Z0BAUG dep14 00Z0BAUG dep15 dep16 00Z0BAUG **OOZOBAUG** gep17 100E 105E 110E 115E 120E 125E 130E 135E 140E 145E 00Z0BAUG gep18 gep19 gep20 nsem01208AUG b.00Z08AUG2007 GEFS Valid 00Z13AUG2007 (Mon) 850hPa vgrdprs Component 48N Weighting: NODEL WEIGHT (%) 451 9.090 aec00 gep01 4.545 49 3 gep02 4.545 gep03 4.545 qep04 4.545 gep05 4.545 gep08 4.545 gep07 4.545 gep08 4.545 gep09 4.545 gep10 4.545 4.545 gep11 4.545 gep12 ₹ 27N gep13 4.545 4.545 gep14 gep15 4.545 4.545 gep 16 gep 17 4.545 100E 105E 110E 115E 120E 125E 130E 135E 140E 145E gep18 4.545 gep19 4.545 aen20 4 5 4 5

-20

4 5 4 5

Ensemble

9.090 00Z084U

4.545 00Z08AU0

4.545 00Z08AU0

4.545 00Z08AU

4.545 00Z08AUG

4.545 00708411

4.545 00708414

4.545 00Z084I

4.545 00708410

4 545 00708416 4.545

4.545 00Z08AU

4.545 00708410

4.545 00Z08AU

4.545 007084U

4.545 00Z08AUG

4.545 0020

4.545

100E	105E	11DE	115E	120E	125E	130	E 135E 1	140E	145E
Ens	embles:	=Colo	red Lines j	/ Cor	ns=Black	< Lin	e / Var (1 :	SD)=5	Shading
DOOHP	a GEF	'S Co	onsensus	s For	ecast	80 N	Vormalized	l And	omalv

PROB 100mm 48 hrs

0000 UTC 9 August

GEFS showed a strong signal

- We can see the overall pattern of heavy rainfall
- PW and v-wind anomalies

There was some uncertainty

- Timing and amounts of QPF
- location and intensity of key features

Useful data in the probabilities of QPF values

- Big rain look at 25 mm, 50mm, and 100mm
- We need a good feel for model/EPS climo → what is an historic event in the model atmosphere?

9 August→ shorter forecasts more rainfall

Strong Low-level winds

48-hour heavy rainfall

24-hour heavy rainfall

0000 UTC 10 August

GEFS showed a strong signal

- We can see the overall pattern of heavy rainfall
- PW and v-wind anomalies

There was some uncertainty

- Timing and amounts of QPF
- location and intensity of key features

Useful data in the probabilities of QPF values

- Big rain look at 25 mm, 50mm, and 100mm
- We need a good feel for model/EPS climo → what is an historic event in the model atmosphere?

Plume Diagram

High PW N-S frontal Zone

Low-level winds

Heavy rain over 24 hour periods

48-hour QPF

11 August already raining.... Same signal as earlier forecasts

Review

We examined a major Flood event over North Korea

- Devastated crops in mid-August
- Did it have other implications?

This historic case was used to

- Examine aspects of a major flood events and
- Issues related to both the analysis and forecast of such significant events
 - We do not really know the ground truth and each analysis gives us a different answere
 - The forecasts were quite good

It was an Ideal application of ensembles

- Precipitation amounts (Probabilities) and timing
- Meteorological setting \rightarrow Features associated with significant flood events.

■ The event seemed to put the features in a context → Climate anomalies of key features associated with heavy rainfall.

Acknowledgements

NCEP for the data GEFS and GEFS bias corrected

CPC for the CMOPRH data

Robert Hart and Jeremy Ross of climatic anomalies and anomalies data base.

Wet Reference

- Doswell, C.A. III, H. E. Brooks and R.A. Maddox, 1996: Flash Flood forecasting: An ingredients-based methodology. *Wea. Forecasting*, **11**, 560-581.
- Harneck, R. P., Apffel, K., and Cermak, J. R., 1999. Heavy precipitation events in New Jersey: Attendant upper air conditions. Wea. Forecasting, 14: 933-954.
- Heideman, K. F., and Fritsch, J. M., 1988. Forcing mechanisms and other characteristics of significant summertime precipitation. *Wea.Forecasting*, **3**: 115-30.
- Konrad, C. E., 1997. Synoptic-scale features associated with warm season heavy rainfall over the interior southeastern United States. *Wea. Forecasting*, **12**: 557-571.
- Konrad, C. E., 2001. The heaviest precipitation events over the eastern United States: Considerations of scale. *Journal of Hydrometeorology* **2**: 309-325.
- Konrad, C. E., Perry, B. and Smith, A. B., 2005. Regional Variations in the Synoptic patterns
- Associated with Warm Season Heavy Rainfall Across the Eastern United States. Intl. J. Climatol.
- Received for review.
- Maddox, R. A., C. F. Chappell, and Hoxit, L. R., 1979. Synoptic and meso-scale aspects of flash flood
- events. Bull. Amer. Meteor. Soc., 60: 115-123.
- Smith, A, B., 2005. The Location of Heaviest Rainfall Relative to Frontal Boundaries during the Warm
- Season. Master's Thesis, University of North Carolina at Chapel Hill.
- Winkler, J. A., 1988. Climatological characteristics of summer-time extreme rainstorms in Minnesota.
- Ann. Assoc. Am. Geogr., 78: 57-73.