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INTRODUCTION 
 

This paper reports the results of assessment modeling conducted as part of the 
research program established by the International Dolphin Conservation Program Act 
(IDCPA) of 1997. A primary goal of the research program is to collect, interpret and 
evaluate data on dolphin populations in the eastern tropical Pacific (ETP) that have been 
depleted by exploitation in the tuna purse seine fishery.  The role of the research program 
within the larger NMFS effort is to provide scientific advice to the Secretary of 
Commerce, to contribute to a determination of whether or not the tuna purse seine fishery 
continues to have a significant adverse impact on the depleted dolphin stocks. The 
analyses reported here examined existing data for trends in population sizes, estimated 
average and maximum possible growth rates, compared current abundance levels to 
estimates of pre-exploitation abundance, and tested for possible changes in growth rates 
and carrying capacity during the period since the onset of the fishery. Also examined 
were the effects of including potential proxy measures of unobserved or unreported 
mortality from the tuna fishery as a covariate of survival. Population abundances from 
some model runs were projected 200 yrs into the future, given population parameters 
estimated from the data, to estimate how many years it might take for these depleted 
stocks to recover, defined as a return to Optimum Sustainable Population levels (between 
the maximum net productivity level (e.g, 60% of K, the pre-exploitation level) and 100% 
of K).  

 
Three dolphin stocks are classified as depleted under the terms of the US Marine 

Mammal Protection Act: the northern offshore spotted dolphin (Stenella attenuata), the 
eastern spinner dolphin (S. longirostris orientalis) and the coastal spotted dolphin (S. 
attenuata graffmani).  However, there is insufficient information on the historical levels 
of kill by the fishery,  historical abundance, and the stock structure of this sub-species. 
Consequently, this report addresses only the two other stocks, which are the primary 
dolphins involved in the industry’s capture of tunas in the ETP. 

 
 

MODELING APPROACH: BACKGROUND 
 

The overall framework of the assessments is to estimate the growth rate of the two 
depleted populations for which we have sufficient data, the northeastern offshore spotted 
dolphin and the eastern spinner dolphin. Growth rates are estimated by fitting a 
population model to available estimates of abundance. Estimates from research vessel 
surveys using line transect methods are available for three periods: 1979-83 (four 
estimates), 1986-90 (five estimates), and 1998-2000 (three estimates), for a total of 
twelve estimates over twenty-one years. Two types of population growth rate will be 
estimated: (1) the productivity of the population from 1979-2000 and (2) the maximum 
population growth rate (Rmax or λmax) under the assumption of a density-dependent model 
where pre-exploitation population size in 1958 is considered carrying-capacity. Both a 
simple (aggregated) population model and an age-structured model are used.  

 
The methods used here are similar to other previous analyses (Wade, 1993, 1994; 

1999).  Following the assessment methodology of Smith (1983), a revised assessment of 
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the depletion level of eastern spinner dolphin was carried out after the completion of 
abundance surveys from 1986-90. A generalized logistic model was fit to the abundance 
data, under the assumption that pre-exploitation size was equal to carrying capacity.  A 
bootstrap procedure was used to quantify uncertainty in the estimated depletion level 
(Wade 1993). A similar analysis was performed for northeast offshore spotted dolphins. 
Both analyses suggested that each population was depleted, or below its Maximum Net 
Productivity Level (MNPL). These analyses, combined with other research, led to both 
populations being designated as “depleted” under the U.S. Marine Mammal Protection 
Act in 1993. 
 

Subsequently, a method was developed to fit an age-structured population model 
to abundance data, using Bayesian methods, to estimate the depletion level of both 
northeastern offshore spotted dolphins and eastern spinner dolphins (Wade 1994). Similar 
methods have been used to assess the eastern North Pacific Pacific gray whale population 
(Wade 2002, Punt and Butterworth 2002). These assessments using an age-structured 
model again suggested both populations were depleted. Many papers have used similar 
age-structured methods to assess the Beaufort –Chukchi-Bering Sea stock of bowhead 
whales (Givens 1999, Poole et al. 1999, Punt and Butterworth 1997, Punt and 
Butterworth 1999, Raftery et al. 1995. Wade (2002) also introduced the use of the Bayes 
Factor for model selection and comparison. 
 

Additionally, a similar analysis of northeastern offshore spotted dolphins, but with 
a non-age-structured model, was done in order to compare and contrast statistical 
methods for fitting population models to data. A generalized logistic model was fit to the 
data using (1) maximum likelihood estimation with a non-parametric bootstrap, (2) 
likelihood inference methods using likelihood profiles, and (3) Bayesian methods using 
SIR numerical integration (Wade 1999). 

 
 

MODELING APPROACH: DESCRIPTION 
 

 
Statistical analyses are performed to assess the populations and the uncertainty in 

the results. Bayesian statistics, using the SIR numerical integration method, are used to 
estimate a probability distribution for the quantities of interest, such as the population 
growth rates. Three main families of population models are used: (1) exponential models 
to estimate productivity from 1979-2000, (2) generalized logistic models to estimate Rmax 
and depletion level (N2002/K), and (3) a density-dependent age-structured model to 
estimate λmax and depletion level. 
 

Within each family of model, comparisons are made between different varieties of 
the models using the Bayes Factor (Kass and Raftery 1995). The Bayes Factor is the ratio 
of the probability of the data under one model to the probability of the data under a 
second model (assuming equal prior probability of each model, which is the case here). It 
provides a measure of the probability of one model versus another, and can therefore be 
used for model selection or model averaging of a parameter of interest.  
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A simple exponential model is compared to an exponential model with 2 slopes 

(growth rates), with a breakpoint. This latter model has 2 additional parameters to 
estimate; the second slope and the year in which the population growth rate changes. This 
comparison is used to assess whether there has been a change in the growth rate of the 
population through time. 
 

A generalized logistic model is compared to 2 variants of the generalized logistic 
model: (1) a generalized logistic with 2 Rmaxs (maximum population growth rates), and 
(2) a generalized logistic with 2 Ks (carrying capacities). These latter 2 models have 2 
additional parameters to estimate; the second Rmax or K and the year in which the 
parameter changes. This comparison is used to assess whether there has been a change in 
the growth rate of the population or a change in the carrying capacity. 
 

A density dependent age-structured model is used to incorporate life history data 
and the observed age distribution of the fisheries mortality. A second version of this 
model is used which makes survival rates a function of a covariate based on the number 
of sets on dolphins each year divided by the estimated number of dolphins in each year. 
This comparison investigates whether the population dynamics can be better explained by 
changes in the number of dolphin sets per dolphin in the population, which is a proxy for 
the potential affect the fishery may be having on either population above and beyond the 
observed direct kill. 
 

Finally, analyses using the exponential model were repeated incorporating Tuna 
Vessel Observer Data (TVOD) estimates of relative abundance. Wade (1994) performed 
analyses both with and without the TOVD estimates. The TVOD estimates were assumed 
to be biased, and were therefore treated as relative estimates, but the bias was hoped to be 
constant through time. Recently, caution has been expressed about the use of the 
estimates because of indications of time-varying biases that affect the estimates (Lennert 
et al. 2001). Trends in the index could be trends in abundance or trends in biases. 
McAllister (2002) suggested incorporating a linear trend in the bias of the TVOD 
estimates, based on a roughly linear-looking relationship between TVOD estimates and 
research vessel abundance estimates. This linear trend in bias of the TVOD estimates was 
incorporated into all the TVOD analyses presented here. 

 
An independent scientific peer review of this work was administered by the 

Center for Independent Experts located at the University of Miami.  Responses to 
reviewers’ comments can be found in Appendix A. 
 
 

METHODS 
 
Data 

Abundance estimates are available from research vessel surveys in twelve years 
from 1979 to 2000. Fisheries mortality estimates are available for every year from 1959 
to 2000.  For both stocks, estimates for 1959-72 were from Wade (1995).  For the 
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northeastern offshore spotted dolphin, estimates for 1973-2000 were from the IATTC.  
For the eastern spinner dolphin, estimates for 1973-1978 were from Wahlen (1986), as 
modified in Wade (1993).  Estimates for 1979-2000 were from the IATTC.  Estimates of 
fisheries mortality for 2001 and 2002 are not yet available; therefore, mortality in 2001 
and 2002 was assumed to be equal to mortality in 2000. The sampling errors of the 
mortality estimates were assumed to be log-normal.  Additionally, the sampling errors of 
the mortality estimates from 1959-72 were assumed to be perfectly correlated, because 
mortality-per-set rates were pooled across that time period (Wade 1995). 
 
 
Models: overview 
 All of the models include one of two related measures of population growth: 
productivity (r), defined as the average exponential growth rate during the period for 
which abundance data are available, or the maximum or intrinsic growth rate of the stock 
(Rmax), which is the population growth rate that would take place at a low population size 
where density dependence had no effect on the growth rate.   In both cases, a positive 
value (e.g., 0.02) indicates a net gain of individuals (positive growth), a negative value 
(e.g. -0.02)  indicates a net loss of individuals from the population (negative growth), and 
zero indicates no change in the number of individuals in the stock. In all cases, the 
estimates explicitly accounted for the estimated level of fisheries mortality.  For example, 
an estimate of productivity was not based only on the observed change in abundance over 
time – fisheries mortality was also accounted for (e.g., if the observed change in 
abundance was 0.03 per year, and the fisheries mortality was on average 0.01 of the 
population size, then the estimated productivity would be 0.04). 
 
 
Exponential model 

An exponential model was fit to the data to estimate the productivity of the 
population. Two parameters were estimated: the exponential rate of change of the 
population (r), and the initial population size (Ninit) in 1978. The population was 
projected forwards from 1978 to 2001, subtracting the estimated fishery kills in each 
year. Because the fishery kills were accounted for in the model, the estimate of r 
represents the productivity of the population, not just the observed rate of change.  
 

A 2 slope exponential type model was also fit to the data, with two additional 
parameters, r2 and ychange, the year in which the population growth rate changes. In other 
words, this model allows for a change in r through time, and the year in which the change 
occurs is an estimated parameter. 
 
 
Generalized logistic model 

A generalized logistic model was used with 3 parameters: (1) the maximum 
population growth rate (Rmax), carrying capacity (K), and a shape parameter that controls 
the non-linearity of the density dependent response (z). The shape parameter is what 
differentiates the generalized logistic model from the logistic model, which is sometimes 
referred to as the θ-logistic model (where the shape parameter is referred to as θ instead 
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of z). The population was assumed to be at carrying capacity in 1958, and was projected 
forwards to 2001, subtracting the estimated fishery kills in each year.  
 

Two variants of the generalized logistic model were also fit to the data. A 2-Rmax  
model was used that had two additional parameters, a second population growth rate 
(Rmax2) and the year in which the growth rate changed (ychange). A 2-K generalized logistic 
model was also used that had two additional parameters, a second carrying capacity (K2) 
and ychange, the year in which the carrying capacity changes. 

 
The generalized logistic model was also used to test for effects of possible 

additional mortality as a result of the fishery, in addition to reported numbers. This was 
done by simply multiplying estimated mortality (recorded mortality in the last years) by 
1.5 and 2.0, to examine model results for situations where true mortality was 50% and 
100% higher than reported mortality. This was done with just the base-level model 
(single K, single Rmax). Two periods were examined for these potential extra levels of 
mortality, the full period of the fishery, and just from 1991 on. The latter test was done to 
represent any possible change in levels of reporting that might have occurred at the onset 
of the IDCP, when individual vessel accountability was increased. 

 
The final series of runs done with the generalized logistic model projected 

population growth for 200 yrs beyond the present, using parameters estimated from past 
data. This was done with fishery mortality set to zero, as a contrast with the hypothetical 
case of continued mortality at the 2000 level, which was very low. Runs were made for 
both the single Rmax and two Rmax cases. For all runs, the years were recorded when 
projected abundance reached OSP range (i.e. achieved or exceeded maximum net 
productivity level, with MNPL estimated by the model). Lower and upper 95th percentiles 
of the growth trajectory were tracked as well to indicate upper and lower bounds of time 
to OSP level. 
 
 
Age structured model 

The methods were nearly identical to those in Wade (1994) and the methods used 
in the preliminary assessment. The details of the model are briefly summarized here. 
 

The model used was an age-structured density-dependent model in the form of a 
Leslie matrix (Breiwick et al. 1984).  Parameters of the model were juvenile survival (sj), 
adult survival (sa), maximum fecundity rate (fmax), age of sexual maturity (asm), age of 
transition to adult survival (ia), maximum age (iw), and carrying capacity or equilibrium 
population size (K).  In this model, density-dependence acts on fecundity, and the amount 
of non-linearity in the density dependent response is in the form of the generalized 
logistic, with a shape parameter (z) which determines the maximum net productivity 
level.  The maximum population growth rate (Rmax) was calculated as λmax-1, where λmax 
was the λ associated with the Leslie matrix with fecundity equal to fmax.  The estimate of 
Rmax essentially comes from the realized growth rate estimated from the 1975-2000 
abundance data, in concert with the estimate of where the population was relative to Rmax. 
The population size was assumed to be equal to K in 1958, and to be in the stable age 
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distribution associated with the equilibrium Leslie matrix (where the fecundity rate was 
equal to f0, the fecundity rate at equilibrium or zero population growth).  In each year, (1) 
the population was projected using the model, (2) the fisheries mortality was, and (3) the 
model population size was compared to the abundance data (if available in that year).  
Age-specific selectivities were calculated using an iterative convergence routine, such 
that the age structure of the fisheries mortality in 1984 was equal to the observed age 
distribution of the kill from 1974-1992 (Chivers, unpublished data), calculated from 
fisheries kill data. 
 

A variation of this model was also used where survival was modeled as a function 
of a covariate, the number of sets on dolphins divided by the estimated size of the dolphin 
population. This comparison investigates whether the population dynamics can be better 
explained by changes in the number of dolphin sets per dolphin in the population 
(dolphin sets per capita), which is a proxy for the potential affect the fishery may be 
having on either population above and beyond the observed direct kill. 
 

The mortality rate in each year (My) was modeled as: 
 

My = M0 exp(h * Ey), 
 
where M0 is the natural mortality rate in the absence of the covariate, Ey is the number of 
dolphin sets per capita in each year, calculated as the number of sets divided by the 
model population size, and h scales the effect of the covariate.  Survival in each year (Sy) 
is then calculated as: 
 

Sy = exp(-My) 
 
 
Estimation 

The model parameters were estimated using Bayesian statistical methods.  The 
Bayesian joint posterior distribution was approximated using the SIR routine (Smith and 
Gelfand 1992).  Log-normal likelihoods were used for the abundance estimates. In the 
exponential model, uniform prior distributions were specified for Ninit and r. Similarly, 
uniform prior distributions were specified for all 3 parameters of the generalized logistic 
model. In the age-structure model, prior distributions were specified for the 7 parameters 
K,  sa,  sj,  fmax,  z,  asm, and  a.  The parameters ia and iw were set to fixed values.  
Marginal probability distributions were calculated for all the parameters of interest.  
 

For the analyses using TVOD data, the estimates were scaled as in Wade (1994), 
and a linear bias term was also used as suggested by McAllister (2002). The linear bias 
function was specified as: 
 

By = abias * (y – y0), 
 
where y is the year, y0 is the first year of the projection, and abias is the parameter that 
scales the bias. Then the TVOD estimate was scaled in each year as: 
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TVODSC = q * By * TVOD. 

 
Model comparison  

The Bayes factor is a summary of the evidence provided by the data in favor of 
one model as opposed to a second model (Kass and Raftery 1994). The Bayes factor is 
defined to be the ratio of the probability of the data given by one hypothesis to the 
probability of the data given by a second hypothesis. Here we can consider two models to 
be two hypotheses, and the Bayes factor will thus give the ratio of the probability of the 
data under one model to the probability of the data under the second model. 
 

We assume equal prior probability for each model; we have no reason to favor 
one model versus another before we examine the data. In this case, the Bayes factor is 
identical to the posterior odds ratio. In other words, it is the probability of one model 
divided by the probability of a second model. Notationally, B12 is the probability of 
model 1 divided by the probability of model 2. If B12 =2.0, this means that the data 
indicate model 1 is twice as probable as model 2. If B12 =10.0, this means that model 1 is 
ten times more probable than model 2. Thus, the Bayes factor provides a measure of the 
relative probability of two competing models.  
 

For interpretation, it is standard practice to give verbal descriptions to different 
ranges of values of the Bayes factor. A Bayes factor of from 1 to 3 is considered weak 
evidence,  3-12 is positive evidence, 12-150 is strong evidence, and >150 is considered 
decisive evidence for one model versus another (Kass and Raftery 1994). 
 

As is the case with other model comparison statistics (e.g., AIC), it is not possible 
to compare analyses using different data sets. The Bayes factor comparison is 
conditioned on the relative probability of a common data set under each model. 
Therefore, the Bayes factor cannot be used to compare analyses using the TVOD 
estimates to analyses not using them. 
 

RESULTS 
 
Eastern spinner 
 
Exponential model 

The estimate of the productivity of the population was 0.010 (-0.013, 0.035) 
(Table 1). This can be interpreted as what the population growth rate would have been in 
the absence of the estimated observed fisheries kill. The majority of the posterior 
distribution was below 0.02 (Figure 1B), meaning there was relatively little probability 
the population could have grown at a rate higher than that. Given this estimated 
productivity, the population was not estimated to be at a substantially higher population 
size currently than it was in the late 1970s.   
 

A look at the fit of the population model to the abundance estimates (Fig. 1A) 
shows a bit of a pattern in the residuals, as the first three estimates are all below the 
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estimated model trajectory. This indicates there is somewhat of a lack of fit of the model 
to the data, suggesting an alternative model might be appropriate. 
 
 
2-slope exponential model 

This model gave fairly different results from the 1-slope model. This model 
breaks the time period into two sections, with a high probability that the population was 
increasing during the first period (r1 = 0.040, 95% probability interval from -0.015 to  
0.078), and a high probability the population was declining or stable during the second 
period (r2 = -0.021, 95% probability interval from -0.077 to  0.041) (Table 2). The 
change in slope or population growth rate was estimated to have occurred around 1990. 
The difference in slopes was estimated at 0.066 (-0.047, 0.137), a fairly large change, but 
the distribution overlaps with 0.0. This indicates the data are not sufficient to decisively 
conclude that the population growth rate actually did change, but the data suggest the 
growth rate may have declined substantially. 
 

The population trajectory for this model is in the shape of a flat arc, with the 
population gradually increasing until 1990, followed by a declining trend to the current 
time (Fig. 2A). The fit of the model to the data is better for this model than the 1-slope 
model, in the sense that there is no longer a slight pattern to the residuals; the model goes 
approximately through the middle of the first 3 abundance estimates. Two of these 
estimates were still well below the model. The 2-slope model would have fit these 
estimates even better if it had been allowed to, but the prior distribution did not allow the 
population to grow at greater than 0.08, which is considered an extreme upper limit to the 
potential growth rate of a dolphin with its life history (Reilly and Barlow 1986). 
 

The model comparison using the Bayes factor favored the 2-slope model by a 2 to 
1 ratio, indicating the evidence led to the 2-slope model being twice as probable as the 1-
slope model. This is considered a weak level of evidence, and does not provide 
justification for concluding the 2-slope model was the correct model. The weak result 
could be due to the relative paucity of data, particularly the absence of data throughout 
most of the 1990s, or it could be because the population growth rate did not change, and 
the data only suggest that by random chance. 
 
 
Exponential model additionally fit to the TVOD data 

The exponential model fit to the TVOD data provided nearly identical results  to 
the fit to the research vessel estimates alone, with the point estimate of r the same,  but 
with slightly narrower probability interval (Table 3).  The additional variance parameter 
was estimated to be 0.330, just above the lower bound of the prior distribution for this 
parameter. This value ensures the TVOD estimates have the same weight in the result as 
do the research vessel estimates.  
 

Although it may not be surprising that the two analyses gave consistent results, it 
was expected that the TVOD data might lead to a more precise estimate, and thus a 
narrower posterior distribution for r (Fig. 3B). However, although this was the case, the 
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difference was not large. It appears that the flexibility given the fitting process counter-
balances the additional data, and does not lead to a more precise answer. The ability to 
“tilt” the TVOD trend-series in either direction (using the linear-bias function), the ability 
to scale the trend-series up or down, and correctly reflecting the observed variance in the 
estimates from the model, removes much of its information on the trend in the 
population. In this formulation, it appears that the scaled TVOD data are essentially fit to 
the research vessel data, and therefore by design can be expected to provide similar 
results, unless the fine-scale variability of the TVOD can provide a better fit to the model 
than is the case for the research vessel estimates. 
 

The same lack of model fit is seen with negative residuals in the early years, with 
the TVOD estimates from 1978-1982 all well below the estimated population model 
(Figure 3A).  

 
 
2-slope exponential model additionally fit to the TVOD data 

In this case, the TVOD data do lead to more precise results, and lead to more 
conclusive results that the population was increasing in the early period and declining in 
the later period. This appears to be because the scaled TVOD data from 1978 to 1988 can 
match the increasing trend of the population, and from 1995 to 2000 can match the 
declining trend in the population.  
 

The 2-slope model again can be seen to provide a better fit to the data in terms of 
the residuals, as now the population model goes right through the middle of the estimates 
from 1978-82 (Fig. 4).  
 

The model comparison gives a more conclusive result that did the model 
comparison using only research vessel estimates. Although the gain in precision of the 
parameter estimates from using the TVOD data does not seem substantial, the gain in the 
Bayes factor comparison is substantial, as it moves the result from a weak result to a 
positive result with a Bayes factor of 5.11. Thus, the 2-slope model is estimated to be 5 
times more probable than the one slope model.  Therefore, conditioned on accepting the 
use of the TVOD data, the analysis now leads to a conclusion that the data suggest the 
growth rate of the population did change in the last 1980s or early 1990s, but this result is 
not strong. The decline in the population growth rate (r1-r2) is estimated to have been 
between -.02 and 0.20, with a point estimate of 0.08 (Table 4), meaning there is a high 
probability (i.e., 0.975) that the decline in the population growth rate was by at least 0.02.  
 
 
Generalized logistic model 

The fit of the generalized logistic model to the eastern spinner data results in a 
relatively low estimate of Rmax of 0.014 (Table 5).  This repeats the result seen in the 
exponential model fit, but now puts it in perspective regarding what the expected 
maximum population growth rate would be given the observed rate of change and the 
estimated depletion level of the population. The prior distribution constrained Rmax in this 
analysis to be greater than 0.00, but it can be seen that part of the posterior distribution 
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would have been below 0.00 if it was allowed (Figure 5C). In other words, the lower tail 
of the posterior distribution did not approach zero probalility density at a value of Rmax of 
0.00. 
 

The population trajectory shows the same pattern in the residuals seen in the 
exponential fit, as the first three estimates are all below the estimated model trajectory 
(Fig. 5B). This lack of fit suggests this model does not capture all the dynamics of the 
population. 
 
 
2-K Generalized logistic model 

The generalized logistic model with 2 Ks or carrying capacities does not lead to 
substantially different results from the single K model. The posterior distribution for the 
second carrying capacity (K2) shows that this parameter is not well estimated.  There is a 
small spike at the current population level (~500 thousand), indicating weak support for a 
lack of growth in the population caused by a shift in carrying capacity around 1990, but 
there is not enough information to estimate an upper bound for K2, so otherwise the 
posterior distribution simply reflects the prior distribution (Fig. 6D). 
 

The model comparison indicates that both models are approximately equally 
probable (as the Bayes factor is close to 1), and thus there is no evidence from the 
abundance data for a shift in carrying capacity. 
 
 
2 Rmax Generalized logistic model 

The generalized logistic model with 2 Rmax’s gives analogous results to the 2-
slope exponential model. The population growth rate was estimated to be higher prior to 
about 1990, and then declined (Table 7). The posterior distribution for Rmax1 is now 
centered at about 0.04, which is often used as an expected maximum growth rate for 
dolphins (Fig. 7C). However, it can be seen that the estimate of Rmax1 is not very precise 
(much less than the estimate of the single Rmax in the simple generalized logistic), and 
spans the range of the prior distribution. This is due to splitting the time series in two, 
which makes the estimate of the growth rate in each time period less precise than the 
overall population growth rate. 
 

The model comparison indicates that this model has the highest probability 
relative to the other generalized logistic models, but the difference is not large. Bayes 
factors of 1.38 and 1.25 are too small to be considered a positive result in favor of this 
model. Therefore, all three generalized logistic models are approximately equally 
probable (as the Bayes factors are all close to 1), and thus there is not strong enough 
evidence from the abundance data to be able to conclude that Rmax has changed for this 
population.  
 
 
Additional Fishery Mortality with generalized logistic model 
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  Because the generalized logistic growth model allows fishery mortality estimates 
as one of its inputs, we can explore the response of the stock’s growth rates to 
hypothetical increases fishery mortality.  If reported fishery mortality is increased by 
50% the maximum growth rate estimate actually increases by a small amount, to 0.016 
(up from 0.014) (Table 8). If mortality is increased by 100%, the estimated maximum 
growth rate increases to 0.02 (Table 9). However, the comparison of these models’ results 
to the model we ran with the actual reported fishery mortality resulted in low Bayes 
factor, indicating that the base run of the generalized logistic model described above was 
favored over these models.   
  

To further explore the stock’s potential response to increased mortality, another 
model run was conducted with increased mortality only after 1991, to investigate whether 
mortality reporting might have changed with the inception of the International Dolphin 
Conservation Program1 (IDCP). The resulting maximum population growth estimate 
from this model run was 0.014, the same result obtained from the base run of this 
generalized logistic model (Table 10).  When we compared these two models, the Bayes 
factor of 1.13 indicated that either model was about equally probable.   In summary, none 
of the model runs in which fishery mortality was hypothetically increased as a simple 
multiple of reported mortality performed better than the base model that included actual 
reported fishery mortality. 
 
 

                                                          

Future projections with generalized logistic model 
With the generalized logistic model we can use the maximum growth rate that 

resulted from the base model run to determine when the stock size will be within its OSP 
range.  For the eastern spinner dolphin, the median trajectories of the model indicated that 
this stock reaches OSP range in about 65 years (Table 11, Fig. 8A). Probability intervals 
for this time estimate were computed by tracking the lower and upper 95% limits of this 
growth trajectory. The minimum time for the stock to reach OSP was estimated to be 10 
years. An maximum time could not be estimated because the stock size did not reach 
OSP range within the 200-year period projected by the model.  No change in these long 
term stock size projections arose when we reduced the mortality to zero in the model 
from its most recently published level from the year 2000 (275 animals, IATTC 2002) 
(Table 12).  In other words, no detectable difference in the model results regarding when 
the stock would reach OSP existed between the scenario where annual mortality was set 
at zero for each year in the projection and the scenario where mortality was set at 275 
animals for each year in the projection. 
 

The results are very different when we do the same projection with the 
generalized logistic model that allows for two different maximum growth rates over the 
time period.  The median trajectories of the model show that the stock does not reach 
OSP range within 200 years (Fig. 8B). The minimum time for the stock to reach OSP was 
estimated to be 10 years. An maximum time could not be estimated because the stock 
size did not reach OSP range within the 200-year period projected by the model. As with 
the projection above with a single maximum growth rate, no detectable difference in the 
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model results regarding when the stock would reach OSP existed between the scenario 
where annual mortality was set at zero for each year in the projection and the scenario 
where mortality was set at 275 animals for each year in the projection (Tables 13, 14). 
 
 
Age-structured model 

The age-structured model contains a similar density-dependent function as the 
generalized logistic model, and so results can often be similar to that model.  The 
advantage of the age-structured model is the ability to bring in life history data (estimates 
of pregnancy rates and age of sexual maturity), the observed age distribution of the kill, 
and to correctly model any time lags that might occur in population response due to shifts 
in the age distribution of the population through time. 
 

In this case, the results of the age-structured model, in terms of estimates of Rmax 
(1-λ) and K, are essentially identical to the generalized logistic model (Fig. 9). The 
population is currently estimated to be at about 0.34 of K (Table 15). 
 
 
Age-structured model with survival covariate 

This model changes the estimate of Rmax, because survival is estimated to be a 
function of the per capita number of sets on dolphins in each year. Per capita number of 
sets on dolphins in each year gradually increased over time, with a sharp rise in the mid 
1980s, and then a small decline after 1990 (Fig. 10). Therefore, survival modeled as a 
covariate of this declined from 1958 to 1970, was constant until the mid 1980s, then it 
sharply declined to its lowest point in the late 1980s, then rose slightly in the 1990s. This 
decline in survival since 1958 leads to an estimate of Rmax that is greater than the previous 
age-structured analysis, 0.033 (0.004, 0.069), but this is an estimate of Rmax  in 1958 
(when there were no sets on dolphins), and the effective Rmax was lower during the latter 
half of the population trajectory (Table 16).  
 

Using per capita sets per dolphin leads to different fine-scale dynamics of the 
model population. In particular, it leads to a greater decline in the population in the early 
1980s, which itself leads to an even greater lack of fit to the first 3 abundance estimates 
(Fig. 10B). This lack of fit leads to the covariate model not being favored by the Bayes 
factor analysis. The standard age-structured model is estimated to be 3 times more 
probable than the covariate model, which is just in the range of positive evidence against 
the covariate model. In other words, the fine-scale dynamics provided by the covariate do 
not match the available data better than the age-structured model that has survival 
constant across the time period. 

 
On the other hand, contradictory evidence arose from finding a positive 

relationship between mortality and set frequency (the 95% probability interval did not 
include zero). That is, while the models with the mortality covariate did not fit the data  
as closely as models without the covariate, there still was estimated to be a pattern of 
lower mortality rates in years with fewer sets per individual. This is consistent with the 
idea that the growth rate of the population declined through time (i.e., on average more 
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sets through time leads to lower survival and thus a lower growth rate). It is unclear 
whether this contradictory set of results would have been resolved by inclusion of the 
TVOD abundance indices in these analyses. 

 
 
Northeastern offshore spotted 
 
Exponential model 

The estimate of the productivity of the population was 0.017 (-0.001, 0.036) 
(Table 18). This can be interpreted as what the population growth rate would have been 
in the absence of the estimated observed fisheries kill. Essentially all of the posterior 
distribution was above 0.00, meaning there was high probability the population had a 
positive productivity over the 1979-2000 time period. The underlying population growth 
rate of 0.017 was well below the 0.04 assumed to be a maximum rate for odontocetes, 
and in fact there was essentially zero probability that a growth rate as high as 0.04 was 
occurring. 
 

A look at the fit of the population model to the abundance estimates does show a 
pattern in the residuals, as the first two estimates are high and the next 4 are all below the 
estimated model trajectory, followed by 3 estimates that are above the model trajectory 
(Fig. 11A). This indicates there is somewhat of a lack of fit of the model to the data, 
suggesting an alternative model might be appropriate. 
 
 
2-slope exponential model 

This model gave similar results as the 1-slope model, but with a slight decline in 
the population growth rate in the 1990s. This model breaks the time period into two 
sections, with a growth rate during the first period of 0.026 (-0.066, 0.071), which was 
slightly higher than the 1-slope rate. During the second period, the growth rate was 
estimated to be lower at 0.002 (-0.090, 0.074) (Table 19). However, this is really a 
function of the imprecision of the estimate of r2, as the posterior distribution has a mode 
or peak at about 0.02, which is similar to the distribution for r1. The data are not 
sufficient to bound the lower limit of r2, so the median and lower probability interval are 
partly a function of the prior distribution, which was bounded at -0.10. The change in 
slope was estimated to have occurred in the early 1990s. The difference in slopes (r1-r2) 
was estimated at 0.030 (-0.091, 0.135), a moderate change, but the distribution broadly 
overlaps with 0.0. Given these results, the interpretation is that the data are not sufficient 
to decisively conclude whether the population growth rate actually did change in the 
1990s or not. 
 

The population trajectory for this model is fairly similar to the 1-slope model, but 
shows a flat trend in the 1990s rather than the slightly increasing trend of the 1-slope 
model (Fig. 12). This allows the model trajectory to hit the last 3 abundance estimates 
better. However, this is the only improvement in fit of the model to the data, as there is 
no improvement in the pattern of residuals seen in the 1-slope model in the earlier years.  
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The model comparison using the Bayes factor favors neither model. This is not 
surprising given that the estimates of r1 and r2 had peaks around a similar value. 
Therefore, the research vessel estimates do not provide evidence of a shift in the 
population growth rate. 
 
 
Exponential model additionally fit to the TVOD data 

The exponential model fit to the TVOD data provided nearly identical results to 
the fit to the research vessel estimates alone, with the point estimate of r similar at 0.013, 
but with a slightly narrower probability interval from -0.005 to 0.030 (Table 20).  The 
linear bias parameter abias was estimated to be about 0.003, indicating there was no 
substantial bias correction applied to the TVOD data. The TVOD scalar parameter q was 
estimated to be 0.700 (0.499, 0.983), indicating the TVOD data were too high and needed 
to be scaled down to the research vessel estimates. The additional variance parameter was 
estimated to be 0.320, just above the lower bound of the prior distribution for this 
parameter. This value ensures the TVOD estimates have similar weight in the result as do 
the research vessel estimates.  
 

As in the eastern spinner analysis, the TVOD data improve the precision of the 
estimate, but not dramatically. Again, the flexibility in the scaling of the TVOD 
apparently down-weights the influence of the TVOD when the finer scale dynamics of 
the model cannot match the finer scale dynamics of the TVOD. This is the case here, as 
the model is going slightly up while the TVOD index declines, and is going down when 
the TVOD index is increasing (Fig. 13). 
 

The same lack of model fit is seen with negative residuals in the early years. Here, 
this includes the TVOD estimates, as well, which show a similar pattern in residuals as 
do the research vessel estimates. Estimates from 1981-1983 are all well below the 
estimated population model, then estimates from 1985-1997 are above the model, and 
then the estimates from 1998-2000 are well below the model. All in all, the 1-slope 
exponential model does not fit the TVOD data very well. 
 
 
2-slope exponential model additionally fit to the TVOD data 

In this case, the TVOD data do lead to more precise results, and lead to more 
conclusive results that the population was increasing in the early period and declining in 
the later period. The population growth rate in the early period was estimated at 0.046, 
with a probability interval from 0.011 to 0.077 (Table 21). The estimated growth rate 
matches more closely what is assumed to be a maximum growth rate of a spotted dolphin. 
The rate of change in the latter period (r2) has a high probability of being negative, 
indicating the population was declining. The difference in slopes (r1-r2) does not overlap 
with 0.0. Therefore, conditioned on accepting this as an adequate model, the data would 
lead to the conclusion that the population growth rate changed in the early 1990s. 
 

The TVOD scalar parameter q was estimated to be 0.649 (0.471, 0.928), 
indicating the TVOD data were too high and needed to be scaled down to the research 
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vessel estimates. The linear bias parameter abias was estimated to be 0.015 (-0.012, 0.046), 
indicating there was some change in the data over time. Positive values of this parameter 
increase the TVOD data in later years relative to earlier years, indicating the TVOD data, 
after scaling, were too high in the early years. 
 

The reason the TVOD data lead to more precise results for this model appears to 
be because the model can match well the relatively stable trend of the scaled TVOD data 
from 1985 to 1996, and can match the declining trend of the scaled TVOD from 1997 to 
2000 (Fig. 14). The model does not match the earlier data as well; it captures the overall 
increasing trend from 1977 to 1992, but cannot match the dip in the early 1980s. 
 

The 2-slope model can be seen to provide a better fit to the TVOD data in terms 
of the residuals, as now the population model goes right through the middle of the 
estimates from 1985-2000. However, a careful look indicates the 2-slope model provides 
a slightly poorer fit to the research vessel estimates, as the model can no longer come 
close to any of the first 4 research vessel estimates (1979-83) and is farther away from the 
low estimates in 1986-87 (which is penalized more with the assumed log-normal error 
structure). 
 

The improved fit the 2-slope model provides to the TVOD data makes this model 
have a higher probability. The Bayes factor of 5.92 means the 2-slope model has a 
probability 6 times higher than the 1-slope model. This is considered positive evidence 
for the 2-slope model over the 1-slope model. This model also provides a substantially 
better fit to the data than the 1-slope model, with only the early years now showing a 
slight pattern in the residuals. Conditioned upon acceptance of the use of the TVOD data, 
this leads to the conclusion that these data indicate the population growth rate changed 
substantially in the early 1990s, declining from what appears to be an expected maximum 
rate for a spotted dolphin (0.046) to a declining rate (-0.042). 
 
 
Generalized logistic model 

The fit of the generalized logistic model to the northeastern spotted dolphin data 
results in a relatively low estimate of Rmax of 0.017 (0.002, 0.036) (Table 22).  This 
repeats the result seen in the exponential model fit, but now puts it in perspective 
regarding what the expected maximum population growth rate would be given the 
observed rate of change and the estimated depletion level of the population. The prior 
distribution constrained Rmax in this analysis to be greater than 0.00, but it can be seen 
that only a small part of the posterior distribution would have been below 0.00 if it was 
allowed. 
 

The population trajectory shows the same pattern in the residuals seen in the 
exponential fit, as the four estimates from 1982-1987 are all below the estimated model 
trajectory. This lack of fit suggests this model does not capture all the dynamics of the 
population (Figure 15). 
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2-K Generalized logistic model 
The generalized logistic model with 2 Ks or carrying capacities does not lead to 

substantially different results from the single K model, and is similar to the eastern 
spinner results (Table 23). The posterior distribution for the second carrying capacity 
(K2) shows that this parameter is not well estimated, There is a small spike at the current 
population level (~650 thousand), indicating weak support for a lack of growth in the 
population caused by a shift in carrying capacity around 1990, but there is not enough 
information to estimate an upper bound for K2, so otherwise the posterior distribution 
simply reflects the prior distribution.  The year of the shift is also poorly estimated (Fig. 
16).  
 

The model comparison indicates that both models are approximately equally 
probable (as the Bayes factor is close to 1), and thus there is no evidence from the 
abundance data for a shift in carrying capacity. 
 
 
2 Rmax Generalized logistic model 

The generalized logistic model with 2 Rmax’s gives analogous results to the 2-
slope exponential model (Table 24). The population growth rate was estimated to be 
higher prior to about 1990, and then declined. The posterior distribution for Rmax1 is now 
centered at a higher value of 0.026, which is a more expected rate for a maximum growth 
rate for dolphins. The estimate of Rmax1 is not as precise as the estimate of the single Rmax 
in the simple generalized logistic. Rmax2 is estimated less precisely than Rmax1, but has a 
similar mode centered at about 0.02. The shift in Rmax was estimated to have occurred in 
the early 1990s (Fig. 17). 
 

The model comparison indicates that this model has the highest probability 
relative to the other generalized logistic models, but the difference is not large. Bayes 
factors of 1.38 and 1.25 are too small to be considered a positive result in favor of this 
model. Therefore, all three generalized logistic models are approximately equally 
probable (as the Bayes factors are all close to 1), and thus there is not strong enough 
evidence from the research vessel abundance data to be able to conclude that Rmax has 
changed for this population.  
 
 
Additional Fishery Mortality with generalized logistic model 

Because the generalized logistic growth model allows fishery mortality estimates 
as one of its inputs, we can explore the response of the stock’s growth rates to 
hypothetical increases  fishery mortality.  If reported fishery mortality is increased by 
50% the estimate of Rmax actually increases by a substantial amount to 0.025 (up from 
0.017) (Table 25). If mortality is increased by 100%, the estimate of Rmax  increases to 
0.035 (Table 26). However, the comparison of these models’ results to the model we ran 
with the actual reported fishery mortality resulted in low Bayes factor, indicating that the 
base run of the generalized logistic model described above was strongly favored over 
these models (Bayes factor is 2.43 for the 50% increase in fishery mortality scenario and 
7.43 for the 100% increase scenario).  
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 To further explore the stock’s potential response to increased mortality, another 
model run was conducted with increased mortality only after 1991, to investigate whether 
mortality reporting might have changed with the inception of the IDCP. The resulting 
maximum population growth estimate from this model run was 0.018, nearly the same 
result obtained from the base run of this generalized logistic model (Table 27).  When we 
compared these two models, the Bayes factor of 1.05 indicated that either model was 
about equally probable.   In summary, none of the model runs in which fishery mortality 
was hypothetically increased as a simple multiple of reported mortality performed better 
than the base model which included actual reported fishery mortality.  
 
 
Future projections with generalized logistic model 

With the generalized logistic model we can use the maximum growth rate that 
resulted from the base model run to determine when the stock size will be within its OSP 
range.  For the northeastern offshore spotted dolphin, the median trajectories of the model 
indicated that this stock will reach OSP range in about 78 years (Table 29, Fig. 18A). 
Confidence limits for this time estimate were computed by tracking the lower and upper 
95% limits of this growth trajectory. The minimum time for the stock to reach OSP was 
estimated to be 28 years. A maximum time could not be estimated because the stock size 
did not reach OSP range within the 200-year period projected by the model.  No change 
in these long term stock size projections arose when we reduced the mortality to zero in 
the model from its most recently published level from the year 2000 (295 animals, 
IATTC 2002) (Table 28).  In other words, no detectable difference in the model results 
regarding when the stock would reach OSP existed between the scenario where annual 
mortality was set at zero for each year in the projection and the scenario where mortality 
was set at 295 animals for each year in the projection. 

 
 The results are very different when we do the same projection with the 
generalized logistic model that allows for two different maximum growth rates over the 
time period.  The median trajectories of the model show that the stock does not reach 
OSP range within 200 years (Fig. 18B). The minimum time for the stock to reach OSP 
was estimated to be 19 years. A maximum time could not be estimated because the stock 
size did not reach OSP range within the 200-year period projected by the model. As with 
the projection above with a single maximum growth rate, no detectable difference in the 
model results regarding when the stock would reach OSP existed between the scenario 
where annual mortality was set at zero for each year in the projection and the scenario 
where mortality was set at 295 animals for each year in the projection (Tables 30, 31). 
 
 
Age-structured model 

The results of the age-structured model, in terms of estimates of Rmax (which is 
actually λmax-1.0) and K, are essentially identical to the generalized logistic model. Rmax is 
estimated to be 0.017 (0.002, 0.035), which is very similar to the estimate from the 
logistic model (Table 32). The population is currently estimated to be at about 0.214 of 
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K, with a probability interval from 0.124 to 0.378. The population is thus estimated to be 
well below Maximum Net Productivity Level (MNPL).  
 

The fit of the population trajectory is essentially identical to that of the logistic 
model, which was expected given the similar estimates of Rmax and K (Fig. 19).  Given 
the similar results to the logistic model, it can be concluded that the limited age-specific 
information in the analysis to not contradict the results seen for the non-age-structured 
model. 
 
Age-structured model with survival covariate 

This model changes the estimate of Rmax, because survival is estimated to be a 
function of the per capita number of sets on dolphins in each year. The model assumes 
that the population growth rate was higher initially prior to the start of sets on dolphins, 
but has declined due to the influence of the per capita number of sets on dolphins in each 
year.  The results are similar to the eastern spinner dolphin analyses. This decline in 
survival since 1958 leads to an estimate of Rmax that is greater than the previous age-
structured analysis, 0.027 (0.006, 0.053), but this is an estimate of Rmax for when there are 
no sets on dolphins, as in 1958 (Table 33).   
 

During the last 20 years, the effect on the finer scale dynamics of the population is 
that this model estimates the population to be increasing slightly more than the standard 
model in the early 1980s, and to be declining slightly more during the latter 1980s (Fig. 
20). However, this does not provide a substantially better fit to the data. 
 

This lack of fit leads to the covariate model not being favored by the Bayes factor 
analysis. The standard age-structured model is estimated to be 4.6 times more probable 
than the covariate model, which is well within the range of positive evidence against the 
covariate model. In other words, the fine-scale dynamics provided by the covariate of per 
capita sets on dolphins does not match the available data better than the age-structured 
model that has survival constant across the time period. 
 

 
DISCUSSION AND SUMMARY 

 
The main focus of these analyses has been to estimate growth rates for these two 

populations of tropical dolphins. There are few estimates of dolphin or even odontocete 
population growth rates in the literature (Wade 1998). A dolphin with a life history where 
sexual maturity does not occur until 10 or more years, and where females gives birth 
approximately every 3 years, cannot be expected to sustain very high population growth 
rates. Reilly and Barlow (1986) estimate that dolphins with these life history 
characteristics might be able to grow at a rate of 0.04 at a sensible maximum, and values 
as high 0.08 are possible but unlikely. However, these are theoretical calculations for 
which little observed data are available. Some of the best observed rates of increase for a 
dolphin are the published estimates for killer whales, which are in the range of 0.025-
0.028 (Olesiuk et al. 1990, Brault and Caswell 1994).  Given the lack of observed rates of 
increase available for most species, NMFS uses a default value for odontocetes of 0.04 in 
PBR calculations if no species-specific estimate is available (Wade and Angliss 1997). 
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Eastern spinner 

For the eastern spinner dolphin population, the overall population growth rate was 
estimated to be fairly low, around 0.01, but the estimate was not precise enough to 
exclude lower values such as 0.0, or higher values such as 0.035. However, it was clear 
that the overall rate was not as high as the assumed expected value of 0.04 for 
odontocetes. Note that the exponential models included the estimated fisheries kill, so the 
estimates of r are strictly estimates of productivity, and not the actual observed trend in 
the population. These estimates represent what the population growth rate would have 
been in the absence of the estimated fisheries kill. 
 

The 2-slope exponential model appears to fit the data better, and suggests the 
population was increasing at a rate similar to the expected 0.04 rate from 1979 to about 
1990, but then stopped increasing. However, the improvement of this model was not 
large enough to lead to any conclusion that this model is a more accurate portrayal of the 
true population. In other words, these results may be from chance alone, and so cannot 
lead to any firm conclusion regarding these two models.  
 

When the model is additionally fit to the TVOD estimates, the results do lead to 
the conclusion that the 2-slope model is better. Additionally, this model improves the 
patterns of residuals, meaning this model fits the data better than the 1-slope exponential. 
In other words, conditioned on the acceptance of the use of the TVOD data, the 
conclusion is that there is positive evidence the growth rate of the eastern spinner 
population changed in the early to mid 1990s. The population growth rate prior to that 
time was at a rate close to the expected rate for a dolphin (~0.04). However, the 
population was estimated to have declined over the 1990s.  
 

The fits of the generalized logistic models to the eastern spinner data gave similar 
results. The maximum population growth rate (Rmax) was estimated to be fairly low 
(0.014). The data did not provide any evidence that carrying capacity had changed, as the 
2-K generalized logistic model did not have a higher probability. As seen with the 
exponential models, the data did slightly suggest that Rmax had changed, and might have 
been at an expected rate for a dolphin prior to the early 1990s, then declined, but the 
result was not strong enough to be able to draw any conclusion from. Runs with fishery 
mortality increased by 50% and 100% produced fits to the abundance estimates that 
generally were worse than when the reported levels of mortality were included. That is, 
the modeling conducted here does not provide support for the possibility that unobserved 
or unreported mortality is occurring at those levels. 
 

The age-structured model analysis led to very similar results to the generalized 
logistic model. This is not a surprising result, given that the most important data (the 
abundance estimates) are not age-structured. The main reason for looking at an age-
structured model was the ability to incorporate the age-structure of the kill, and some 
additional life history data on pregnancy rates and age of sexual maturity. Incorporating 
this kind of age-specific information could potentially lead to differences in the 
population dynamics, from the effects of a selective age-structure of the kill, or from lags 
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in response of the population caused by delayed sexual maturity. That the results were so 
similar to the logistic model indicates none of these incorporated factors had a strong 
influence on the results. 
 

The age-structured model incorporating per capita sets on dolphins as a covariate 
for survival could have potentially picked up whether any of the finer-scale dynamics of 
the abundance data could be better explained by changes in survival as a function of 
changes in the number of sets on dolphins. However, the standard age-structured model 
with constant survival provided a better fit to the data.  The standard model was estimated 
to have a probability 5 times greater than the covariate model, which is strong enough to 
be considered a positive result in favor of the standard model. 
 
 
Northeastern offshore spotted 

The results for the northeastern offshore spotted dolphin population were fairly 
similar to those for the eastern spinner. The overall population growth rate was estimated 
to be somewhat low, around 0.017, but the estimate was precise enough to be able to 
conclude that the population growth rate was positive. The overall rate was not as high as 
the assumed expected value of 0.04 for odontocetes, but was not quite as low as the 
eastern spinner estimate.  
 

The 2-slope exponential model appears to fit the data better, and suggests the 
population was increasing at a rate more like 0.026 from 1979 to about 1992, but then 
stopped increasing. However, the improvement of this model was not large enough to 
lead to any conclusion that this model is a more accurate portrayal of the true population. 
In other words, these results may be from chance alone, and so cannot lead to any firm 
conclusion regarding these two models.  
 

When the exponential models were additionally fit to the TVOD estimates, the 
results did lead to the conclusion that the population growth rate had changed. 
Additionally, the 2-slope model improved the patterns of the residuals, meaning this 
model fits the data better than the 1-slope exponential. In other words, conditioned on the 
acceptance of the use of the TVOD data, the conclusion is that there is positive evidence 
the growth rate of the northeastern offshore spotted dolphin population changed in the 
early to mid 1990s. The population growth rate prior to that time was at a rate close to the 
expected rate for a dolphin (0.046). After 1992, the population was estimated to have 
declined, with a point estimate of -0.04. 
 

The fits of the generalized logistic models to the northeastern offshore spotted 
data led to an estimate of the maximum population growth rate (Rmax) of  0.017. This was 
the same as the estimated growth rate from the exponential model, which happened 
because this population was also estimated to be at such a low level relative to carrying 
capacity that it would be expected to be increasing at essentially its maximum rate.  The 
data did not provide any evidence that carrying capacity had changed, as the 2-K 
generalized logistic model did not have a higher probability. However, the data are likely 
insufficient to be able to resolve a change in carrying capacity. As seen with the 
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exponential models, the data did slightly suggest that Rmax had changed, and might have 
been at a rate (0.026) closer to the expected rate for a dolphin prior to the early 1990s, 
then declined, but the result was not strong enough to be able to draw any conclusion 
from. Runs with fishery mortality increased by 50% and 100% produced fits to the 
abundance estimates that generally were worse than when the reported levels of mortality 
were included. That is, the modeling conducted here does not provide support for the 
possibility that unobserved or unreported mortality is occurring at those levels. 

 
 

As with the spinner dolphin analysis, the age-structured model analysis led to 
very similar results to the generalized logistic model. That the results were so similar to 
the logistic model indicates none of the incorporated age-specific factors had a strong 
influence on the results. 
 

The standard age-structured model with constant survival provided a better fit to 
the data than did the age-structured model incorporating per capita sets on dolphins as a 
covariate for survival. The standard model was estimated to have a probability nearly 5 
times greater than the covariate model, which is strong enough to be considered a 
positive result in favor of the standard model. 
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Table 1.  Eastern spinner, exponential model. 
 Median L 0.95 U 0.95 
Ninit 480 341 671
r 0.010 -0.013 0.035
N2002 492 364 660

 
  
Table 2. Eastern spinner, 2-slope exponential model. 
 Median L 0.95 U 0.95 
Ninit 400 281 624
r1 0.040 -0.015 0.078
r2 -0.021 -0.077 0.041
ychange 1990 1981 1998
N2002 427 303 617
r1-r2 0.066 -0.047 0.137
(r1-r2)*N2002 27 -26 53

 
 
Table 3. Eastern spinner, exponential model, TVOD fit. 
 Median L 0.95 U 0.95 
Ninit 475 334 670
r 0.010 -0.011 0.032
ychange 6975 6975 6975
q 1.391 0.896 1.895
abias -0.005 -0.019 0.032
TVOD CVadd 0.330 0.301 0.439
N2002 495 376 658

 
 
Table 4. Eastern spinner, 2-slope exponential model, TVOD fit. 
  Median L 0.95 U 0.95 
Ninit 355 246 581
r1 0.047 -0.007 0.078
r2 -0.033 -0.142 0.020
ychange 1991 1980 1996
q 1.355 0.854 1.885
abias 0.001 -0.018 0.043
TVOD CVadd 0.327 0.301 0.433
N2002 401 264 582
r1-r2 0.084 -0.021 0.197
(r1-r2)* N2002 34 -11 63

 25



 
Table 5. Eastern spinner, generalized logistic model.                    
 Median L 0.95 U 0.95 
K 1566 835 2757
Rmax 0.014 0.001 0.052
MNPL 0.630 0.505 0.791
N2002 508 404 668

 
  
Table 6. Eastern spinner, 2-K generalized logistic model. 
 Median L 0.95 U 0.95 
K 1566 898 2878
Rmax 0.016 0.001 0.070
K2 2028 325 4858
ychange 1987 1974 1999
N2002 497 383 650

 
  
Table 7. Eastern spinner, 2-Rmax generalized logistic model. 
 Median L 0.95 U 0.95 
K 1370 717 2528
Rmax1 0.039 0.003 0.078
Rmax2 -0.016 -0.076 0.045
ychange 1991 1975 1999
N2002 442 312 625

 
 
Table 8.  Eastern spinner, generalized logistic model with additional 50% fishery  
mortality for 1958-2001. 
 Median L 0.95 U 0.95 
K 2293 1919 2604
Rmax 0.016 0.001 0.043
N2002 504 393 675
N/K 0.219 0.158 0.337
N/MNPL 0.347 0.225 0.564
 
 
Table 9.  Eastern spinner, generalized logistic model with additional 100% fishery  
mortality for 1958-2001. 
 Median L 0.95 U 0.95 
K 2883 2432 3298
Rmax 0.02 0.002 0.047
N2002 509 394 684
N/K 0.176 0.125 0.271
N/MNPL 0.281 0.178 0.449
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Table 10.  Eastern spinner, generalized logistic model with additional 100% fishery  
mortality for 1992-2001. 
 Median L 0.95 U 0.95 
K 1670 1364 1913
Rmax 0.014 0.001 0.042
N2002 501 396 657
N/K 0.299 0.22 0.463
N/MNPL 0.478 0.312 0.778
 
 
Table 11.  Eastern spinner, generalized logistic model with future projections,  
no mortality added to future years. 
 Median L 0.95 U 0.95 
K 1677 1384 1908
Rmax 0.014 0.001 0.040
N2002 506 403 663
N/K 0.300 0.225 0.459
N/MNPL 0.479 0.318 0.777
NPro 1541 524 1727
N/KPro 0.995 0.279 1.000
N/MNPLPro 1.430 0.438 1.938
YMNPL 65 10 DNR
 
 
Table 12.  Eastern spinner, generalized logistic model with future projections,  
2002 mortality added to future years. 
 Median L 0.95 U 0.95 
K 1679 1385 1909
Rmax 0.014 0.001 0.040
N2002 506 402 668
N/K 0.299 0.224 0.462
N/MNPL 0.480 0.317 0.778
NPro 1544 518 1724
N/KPro 0.994 0.274 1.000
N/MNPLPro 1.430 0.416 1.943
YMNPL 64 10 DNR
 
 
Table 13.  Eastern spinner, 2-Rmax generalized logistic model with future projections,  
no mortality added to future years. 
 Median L 0.95 U 0.95 
K 1450 1095 1865
Rmax1 0.038 0.003 0.077
Rmax2 -0.015 -0.076 0.044
ychange 1991 1975 1999
N2002 439 310 629
NPro 21 0 1751
N/KPro 0.014 0.000 1.000
N/MNPLPro 0.022 0.000 1.887
YMNPL DNR 12 DNR
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Table 14.  Eastern spinner, 2-Rmax generalized logistic model with future projections,  
2002 mortality added to future years. 
 Median L 0.95 U 0.95 
K 1451 1093 1868
Rmax1 0.037 0.003 0.077
Rmax2 -0.016 -0.076 0.044
ychange 1991 1975 1999
N2002 439 312 628
N/K 0.302 0.196 0.468
N/MNPL 0.486 0.292 0.764
NPro 19 0 1755
N/KPro 0.013 0.000 1.000
N/MNPLPro 0.021 0.000 1.874
YMNPL DNR 12 DNR
 
 
Table 15. Eastern spinner, age-structured model. 
 Median L 0.95 U 0.95 
K 1500 716 2451
sa 0.975 0.943 0.996
sj 0.880 0.821 0.953
fmax 0.253 0.172 0.326
asm 11 10 13
Rmax 0.014 0.001 0.051
MNPL 0.719 0.518 0.798
N2002 521 409 682
N/K 0.342 0.197 0.897
N/MNPL 0.498 0.272 1.266

 
 
Table 16. Eastern spinner, age-structured model with survival covariate. 
 Median L 0.95 U 0.95 
K 1411 787 2384
sa 0.978 0.949 0.996
sj 0.918 0.838 0.973
fmax 0.253 0.172 0.326
asm 11 10 13
Rmax 0.033 0.004 0.069
MNPL 0.723 0.521 0.798
N2002 497 353 676
N/K 0.349 0.181 0.755
N/MNPL 0.502 0.257 1.106
h 0.019 0.001 0.070
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Table 17. Bayes factors for eastern spinner dolphin model comparisons. The Bayes factor represents the 
ratio of the probability of one model to the probability of a second model. The Bayes factor is reported on 
the line of the model with the higher probability in the pair. 

 
Bayes 
factor 

Exponential  
2-slope Exponential 2.12
  
Exponential additionally fit to TVOD  
2-slope Exponential additionally fit to 
TVOD 5.11
  
Generalized logistic  
2-K Generalized logistic 1.11
  
Generalized logistic  
2-Rmax Generalized logistic 1.38
  
2-K Generalized logistic  
2-Rmax Generalized logistic 1.25
 
Generalized logistic 1.43
150% fishery mortality 
 
Generalized logistic 2.12
200% fishery mortality 
 
Generalized logistic 
200% fishery mortality, 1991 forward 1.13
 
Age-structured 3.12
Age-structured with survival covariate  

 

 29



Table 18. Northeastern offshore spotted, exponential model. 
 Median L 0.95 U 0.95 
Ninit 683 535 877
r 0.017 -0.001 0.036
N2002 695 559 867

 
 
Table 19. Northeastern offshore spotted, 2-slope exponential model. 
 Median L 0.95 U 0.95 
Ninit 648 463 977
r1 0.026 -0.066 0.071
r2 0.002 -0.090 0.059
ychange 1992 1981 1998
N2002 646 449 874
r1-r2 0.030 -0.091 0.135
(r1-r2)* N2002 19 -68 68

 
 
Table 20. Northeastern offshore spotted, exponential model, TVOD fit. 
 Median L 0.95 U 0.95 
Ninit 708 547 921
r 0.013 -0.005 0.030
ychange 6975 6975 6975
q 0.700 0.499 0.983
abias 0.003 -0.017 0.034
TVOD CVadd 0.321 0.301 0.411
N2002 678 549 835

 
  
Table 21. Northeastern offshore spotted, 2-slope exponential model, TVOD fit.  
 Median L 0.95 U 0.95 
Ninit 536 396 772
r1 0.046 0.011 0.077
r2 -0.042 -0.138 0.014
ychange 1992 1986 1996
q 0.649 0.471 0.928
abias 0.015 -0.012 0.046
TVOD CVadd 0.315 0.301 0.388
N2002 538 368 736
r1-r2 0.092 0.009 0.193
(r1-r2)* N2002 50 6 81
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Table 22. Northeastern offshore spotted, generalized logistic model. 
 Median L 0.95 U 0.95 
K 3479 2831 4281
Rmax 0.017 0.002 0.036
MNPL 0.635 0.506 0.791
N2002 691 568 855

 
 
Table 23. Northeastern offshore spotted, 2-K generalized logistic model. 
 Median L 0.95 U 0.95 
K 3434 2703 4259
Rmax 0.018 0.002 0.052
K2 2664 508 5349
ychange 1990 1981 1999
N2002 684 553 849

 
 
Table 24. Northeastern offshore spotted, 2-Rmax generalized logistic model. 
 Median L 0.95 U 0.95 
K 3146 2116 5005
Rmax1 0.026 0.002 0.068
Rmax2 0.001 -0.074 0.062
ychange 1993 1982 1999
N2002 646 474 866

  
 
Table 25. Northeastern offshore spotted, generalized logistic model with additional 50% fishery  
mortality added for 1958-2001. 
 Median L 0.95 U 0.95 
K 4783 4187 5386
Rmax 0.025 0.007 0.045
N2002 710 576 890
N/K 0.149 0.11 0.205
N/MNPL 0.235 0.159 0.341

  
 
Table 26. Northeastern offshore spotted, generalized logistic model with additional 100% fishery  
mortality added for 1958-2001. 
 Median L 0.95 U 0.95 
K 5941 5207 6449
Rmax 0.035 0.019 0.055
N2002 744 607 917
N/K 0.126 0.097 0.17
N/MNPL 0.199 0.136 0.28
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Table 27. Northeastern offshore spotted, generalized logistic model with additional 100% fishery  
mortality added for 1992-2001. 
 Median L 0.95 U 0.95 
K 3457 3072 3908
Rmax 0.018 0.003 0.036
N2002 690 564 844
N/K 0.2 0.149 0.265
N/MNPL 0.317 0.215 0.463

 
  
Table 28. Northeastern offshore spotted, generalized logistic model with future projections,  
no mortality added to future years. 
 Median L 0.95 U 0.95 
K 3488 3036 3911
Rmax 0.017 0.002 0.036
N2002 692 567 859
N/K 0.198 0.150 0.275
N/MNPL 0.314 0.212 0.460
NPro 3312 904 3558
N/KPro 0.997 0.231 1.000
N/MNPLPro 1.443 0.360 1.929
YMNPL 78 28 DNR
 
 
Table 29. Northeastern offshore spotted, generalized logistic model with future projections,  
2002 mortality added to future years. 
 Median L 0.95 U 0.95 
K 3492 3046 3917
Rmax 0.017 0.002 0.037
N2002 693 569 854
N/K 0.198 0.150 0.272
N/MNPL 0.314 0.213 0.461
NPro 3311 875 3558
N/KPro 0.997 0.224 1.000
N/MNPLPro 1.449 0.345 1.928
YMNPL 78 28 DNR
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Table 30. Northeastern offshore spotted, 2-Rmax generalized logistic model with future projections,  
no mortality added to future years. 
 Median L 0.95 U 0.95 
K 3288 2583 3861
Rmax1 0.027 0.002 0.070
Rmax2 0.001 -0.072 0.063
ychange 1993 1982 1999
N2002 645 473 866
N/K 0.198 0.139 0.277
N/MNPL 0.314 0.206 0.464
rMNPL 0.001 -0.055 0.046
NPro 807 0 3798
N/KPro 0.246 0.000 1.000
N/MNPLPro 0.385 0.000 1.904
YMNPL DNR 19 DNR
 
 
Table 31. Northeastern offshore spotted, 2-Rmax generalized logistic model with future projections,  
2002 mortality added to future years. 
 Median L 0.95 U 0.95 
K 3303 2592 3857
Rmax1 0.026 0.002 0.069
Rmax2 0.001 -0.073 0.061
ychange 1993 1981 1999
N2002 645 466 865
N/K 0.196 0.138 0.278
N/MNPL 0.312 0.204 0.465
rMNPL 0.001 -0.056 0.045
NPro 826 0 3798
N/KPro 0.253 0.000 1.000
N/MNPLPro 0.402 0.000 1.911
YMNPL DNR 19 DNR
 
 
Table 32. Northeastern offshore spotted, age-structured model. 
 Median L 0.95 U 0.95 
K 3220 2023 5214
sa 0.982 0.949 0.997
sj 0.874 0.818 0.937
fmax 0.248 0.171 0.325
asm 12 10 13
Rmax 0.016 0.002 0.035
MNPL 0.720 0.518 0.797
N2002 691 568 859
N/K 0.214 0.124 0.378
N/MNPL 0.308 0.171 0.568
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Table 33. Northeastern offshore spotted, age-structured model with survival covariate. 
 Median L 0.95 U 0.95 
K 3504 2164 5517
sa 0.984 0.955 0.997
sj 0.901 0.834 0.962
fmax 0.237 0.170 0.325
asm 12 10 13
Rmax 0.027 0.006 0.053
MNPL 0.717 0.519 0.798
N2002 691 552 858
N/K 0.196 0.114 0.352
N/MNPL 0.286 0.158 0.523
h 0.013 0.001 0.059
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Table 34. Bayes factors for northeastern offshore spotted dolphin model comparisons. The Bayes factor 
represents the ratio of the probability of one model to the probability of a second model. The Bayes factor 
is reported on the line of the model with the higher probability in the pair. 

 
Bayes 
factor 

Exponential 1.02
2-slope Exponential  

Exponential additionally fit to TVOD  
2-slope Exponential additionally fit to 
TVOD 5.92
  
Generalized logistic  
2-K Generalized logistic 1.03
  
Generalized logistic 1.34
2-Rmax Generalized logistic  

2-K Generalized logistic 1.38
2-Rmax Generalized logistic  

Generalized logistic 2.44
150% fishery mortality 
 
Generalized logistic 7.43
200% fishery mortality 
 
Generalized logistic 
200% fishery mortality, 1991 forward 1.05
  
Age-structured 4.59
Age-structured with survival covariate  
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Figure 1.  Eastern spinner, exponential model.  (A) Estimated population trend (lines), 
with the median population size in each year from the posterior distribution, and the 0.95 
probability interval for the population size in each year, with abundance estimates 
(squares) that the model was fit to. (B) Posterior probability distribution (blue line) for r, 
the population growth rate.  The prior distribution (red straight line) is also shown. 
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Figure 2.  Eastern spinner, 2-slope exponential model. (A) Estimated population trend 
(lines), with the median population size in each year from the posterior distribution, and 
the 0.95 probability interval for the population size in each year, with abundance 
estimates (squares) that the model was fit to. (B) Posterior probability distribution (blue 
line) for r1, the first population growth rate.  The prior distribution (red straight line) is 
also shown. (C) Posterior probability distribution (blue line) for r2, the second population 
growth rate.  The prior distribution (red straight line) is also shown. (D) Posterior 
probability distribution (blue line) for ychange, the year in which the population growth rate 
changes.  The prior distribution (red straight line) is also shown.  
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Figure 3. Eastern spinner, exponential fit to TVOD estimates. (A) Estimated population 
trend (lines), with the median population size in each year from the posterior distribution, 
and the 0.95 probability interval for the population size in each year, with abundance 
estimates (squares) that the model was fit to. (B) Posterior probability distribution (blue 
line) for r, the population growth rate.   
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Figure 4. Eastern spinner, 2-slope exponential fit to TVOD estimates. (A) Estimated 
population trend (lines), with the median population size in each year from the posterior 
distribution, and the 0.95 probability interval for the population size in each year, with 
abundance estimates (squares) that the model was fit to. (B) Posterior probability 
distribution (blue line) for r1, the first population growth rate.  The prior distribution (red 
straight line) is also shown. (C) Posterior probability distribution (blue line) for r2, the 
second population growth rate.  The prior distribution (red straight line) is also shown. 
(D) Posterior probability distribution (blue line) for ychange, the year in which the 
population growth rate changes.  The prior distribution (red straight line) is also shown.    
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Figure 5. Eastern spinner, generalized logistic model.  (A) Estimated population trend for 
the entire time series (lines), with the median population size in each year from the 
posterior distribution, and the 0.95 probability interval for the population size in each 
year, with abundance estimates (squares) that the model was fit to. (B) Estimated 
population trend for the period of 1975-2002 (lines), with the median population size in 
each year from the posterior distribution, and the 0.95 probability interval for the 
population size in each year, with abundance estimates (squares) that the model was fit 
to.  (C) Posterior probability distribution (blue line) for Rmax, the maximum population 
growth rate. The prior distribution (red straight line) is also shown. (D) Posterior 
probability distribution (blue line) for K, the carrying capacity. The prior distribution (red 
straight line) is also shown.       
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Figure 6. Eastern spinner, 2-K generalized logistic model. (A) Estimated population trend 
for the entire time series (lines), and (B) for the period of 1975-2002 (lines), with the 
median population size in each year from the posterior distribution, and the 0.95 
probability interval for the population size in each year, with abundance estimates 
(squares) that the model was fit to.  (C) Posterior probability distribution (blue line) for 
K, the initial carrying capacity, (D) K2, the second carrying capacity, (E) ychange, the year 
in which the population growth rate changes, and (F) Rmax, the maximum growth rate of 
the population. The prior distribution (red straight line) is also shown.  
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Figure 7. Eastern spinner, 2-Rmax generalized logistic model. (A) Estimated population 
trend for the entire time series (lines), and (B) for the period of 1975-2002 (lines), with 
the median population size in each year from the posterior distribution, and the 0.95 
probability interval for the population size in each year, with abundance estimates 
(squares) that the model was fit to.  (C) Posterior probability distribution (blue line) for  
Rmax1, the first maximum growth rate of the population, (D) Rmax2, the second maximum 
growth rate of the population, (E) K, the carrying capacity, and (F) ychange, the year in 
which the population growth rate changes.  The prior distribution (red straight line) is 
also shown. 
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Figure 8. Eastern spinner. Future projection using two variants of the generalized logistic 
model. (A) Standard generalized logistic model with the median population size in each 
year from the posterior distribution (blue line), and the 0.95 probability interval for the 
population size in each year (purple line), with abundance estimates (squares) that the 
model was fit to. (B) 2-Rmax generalized logistic model with the median population size in 
each year from the posterior distribution, and the 0.95 probability interval for the 
population size in each year, with abundance estimates that the model was fit to. 
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Figure 9. Eastern spinner, age-structured model. 
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Figure 10. Eastern spinner, age-structured model with survival covariate. 
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Figure 11. Northeastern offshore spotted. Exponential model. (A) Estimated population 
trend (lines), with the median population size in each year from the posterior distribution, 
and the 0.95 probability interval for the population size in each year, with abundance 
estimates (squares) that the model was fit to. (B) Posterior probability distribution (blue 
line) for r, the population growth rate.  The prior distribution (red straight line) is also 
shown. 
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Figure 12. Northeastern offshore spotted. 2-slope exponential model. 
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Figure 13. Northeastern offshore spotted. Exponential model fit to TVOD estimates. 
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Figure 14. Northeastern offshore spotted. 2-slope exponential model fit to TVOD 
estimates. 
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Figure 15. Northeastern offshore spotted. Generalized logistic model. 
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Figure 16. Northeastern offshore spotted. 2-K Generalized logistic model. 
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Figure 17. Northeastern offshore spotted. 2-Rmax Generalized logistic model. 
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Figure 18. Northeastern offshore spotted. Future projection using two variants of the 
generalized logistic model. (A) Standard generalized logistic model with the median 
population size in each year from the posterior distribution (blue line), and the 0.95 
probability interval for the population size in each year (purple line), with abundance 
estimates (squares) that the model was fit to. (B) 2-Rmax generalized logistic model with 
the median population size in each year from the posterior distribution, and the 0.95 
probability interval for the population size in each year, with abundance estimates that the 
model was fit to. 
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Figure 19. Northeastern offshore spotted.  Age-structured model. 
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Figure 20. Northeastern offshore spotted. Age-structured model with survival covariate. 
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Appendix A.  Responses to comments by reviewers from the Center for Independent 
Experts.  References to page numbers refer to the documents produced by each reviewer. 
 
Comments from reviewer, Dr. Malcolm Haddon 
 
Conclusions and recommendations (from p. 21): 
 

1. The limited number of data points available to which to fit the models.  This will limit the number 
of parameters that can be estimated with confidence. 

 
Response: We agree that the main data for fitting a population model, twelve 
abundance estimates over twenty-two years, are limited. For this reason, we 
performed the majority of the analyses using simple models that require less 
parameters. A more complicated age-structured model was used to investigate 
possible effects of age-structured information, such as the age-structure of the kill. 

 
2. The inability of the data to provide information concerning any expected density dependent 

effects.  This makes the density dependent terms effectively redundant at current population sizes. 
 

Response: We agree there is little contrast in the abundance data, meaning we do 
not have the population growth rate measured at two fairly different population 
levels. That would be the kind of data that would provide information about 
density dependent responses. Lacking this knowledge, we chose to integrate over 
a fairly broad prior distribution for the shape of the density dependent function. 

 
3. That the dynamics of the different models be considered as they are expressed at current 

population densities, and whether each type is telling the same things for each species being 
considered. 

 
Response: We do compare two different density dependent models (aggregate and 
age-structured) in order to see if they lead to different dynamics. For each species, 
the different models did not lead to appreciably different results. The 
age-structured effects are not large enough to make the age-structured model 
depart substantially from the aggregate model's dynamics. 

 
4. That the uncertainty around the estimates of unfinished equilibrium dolphin population abundance 

and the related estimates of current depletion rates is poorly determined when only one model is 
included in the analysis.  The different density dependent models need to be compared or both 
included in a single Bayesian analysis so as to include model uncertainty into the estimates. 

 
Response: We present results for equilibrium population size and depletion level 
for the two different models, and they give fairly similar results. We do include an 
analysis using the TVOD index estimates, but we agree with the reviewer that we 
are concerned about the basic validity of the index, based on concerns of 
Lennert-Cody (2001), Perkins (2000), and work of Ward and Goodman (in 
progress, under contract from NMFS). 

 
5. That calf mortality has not been taken into account in the modelling nor in the estimates of total 

mortality.  Both of these things (combined with the actual number of sets on dolphins) will have a 
marked effect on the modeling outcomes. 
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Response: Unobserved calf mortality has been taken into account by including the 
mean per capita set rate as a covariate acting on the survival of the juvenile age 
class.  This is an approximation of a mortality effect only on dolphins of age 1, 
but should be sufficeint if the effect is strong. A related effect was tested for by 
scaling up recorded mortality by 50% and 100% in a subset of model runs. 

 
6. That the TVOD data be reconsidered to determine whether there are any sub-sets that could be 

taken from it and included in the model.  These would need to be more homogenous in how the 
estimates were made than in the complete data set. 

 
Response: If such an investigation could show there was a homogeneous data set, 
it could be used, but no convincing argument has yet been made regarding what 
constitutes a homogeneously estimated series within the TVOD index series. 

 
7. That the comparisons between the 1-slope and 2-slope models be treated with great caution 

because of the lack of data and lack of a mechanism for the regime shift (other than a correlation 
with oceanography). 
 
Response: There are other mechanisms that could be responsible for a change in 

population dynamics as implied by a 2-slope model.  In particular, in the early 1990s a 
new management structure for dealing with the dolphin bycatch was put into place. 
  
 
Comments from reviewer, Dr. Murdoch McAllister 
 
Recommendations for immediate implementation (from p. 2): 
 

1. That within the stock assessment model, the annual rate of change of bias in the fd indices of 
abundance be estimated using a linear model for trend-bias while assuming no trend-bias in fi 
indices.  However, this should be done applying the constraint that the fd indices are given no 
more weight in the estimation than the fi indices. 
 
Response: This has been done. 

 
2. That an additional age-structured model be developed that models incidental mortality rates on 

one-year-old calves as a function of the annual per capita index of exposure to dolphin purse-seine 
sets, the latter measured by the number of dolphin sets on the species x the annual average number 
of animals caught or chased per set divided by the population abundance. 
 
Response: This has been done, modeling mortality rates as a function of the 
annual per capita index of exposure to dolphin sets, calculated as number of sets 
on dolphins divided by population size. 

 
3. When different population dynamics model structures were compared, the criterion for choice was 

AIC.  Although AIC is widely accepted and considered a rigorous and objective criterion, it is 
difficult to interpret and leads to only one model being selected.  It is recommended that Bayes’ 
marginal posterior probabilities be computed instead for each alternative model considered. 

 
Response: This has been done. 

   
4. That a scenario-based approach be applied to evaluate the plausibility of various factors that might 

have been impeding population recovery over the last few decades since the reported kills in 
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dolphin sets were substantially decreased.  Bayes’ marginal posterior probabilities should be 
computed and presented with each alternative population dynamics model to indicate the relative 
credibility/plausibility of each given both the fi and fd data. 

 
Response: We have explored several scenarios, including change in the 
environment (2-K models) as well as 50% and 100% greater mortality than 
reported. 

 
5. That particular attention be given to evaluating the plausibility of the fishery-induced calf-

mortality model (Recommendation 2) against that of other models that do not implicate the tuna-
purse seine fishery as the chief cause for impeding ETPD recovery. 

 
Response: This was done, using the Bayes factor for comparison of different 
models. 

 
Recommendations to be considered in the near future: 
 

1. That the estimation performance of alternative estimators be evaluated by repeatedly simulating 
data with known model structures and values for model parameters, applying each estimator to 
estimate the parameters and then computing the bias and precision in each alternative estimator.  
This should be applied to evaluate the relative improvement in estimation performance of 
estimators that use both the fi and fd indices of abundance versus only the fi indices of abundance. 

 
2. That the fishery independent indices of abundance be treated as relative instead of absolute indices 

of abundance and that an informative prior probability distribution be constructed for the constant 
of proportionality that relates the true abundance to the relative abundance indices. 
 

 
3. That the “mu-model” which is a perfectly sensible and useful model to apply, be renamed and not 

discarded but still applied as an explanatory and predictive model for ETPD population dynamics, 
along with the various other models recommended and already applies. 

 
4. That a formal Chi-square statistical measure of model deviance be computed for each estimation 

as a diagnostic of the goodness of fit of the model to the data. 
 

5. That both the spotted and spinner stocks be modeled simultaneously as separate stocks in the same 
population dynamics model to estimate parameters that could be considered to be similar or the 
same between the two populations.  
 
Response to all five recommendations for future work: We agree that all these 
ideas are worthy of consideration, and plan to pursue them as soon as possible. 
This may not be in time for inclusion in our final science report from the IDCPA 
research program, but we will view these directions as potential improvements to 
our longer-term efforts regarding the tuna-dolphin problem. Thank you both for 
your very helpful and constructive reviews. 
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