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The baryon asymmetry of the Universe

The Universe contains unequal amounts of matter and anti-matter.
Some process (Baryogenesis) in the early Universe produced the
asymmetry. From WMAP [Spergel et al.:2006]:

η =
nB

nγ
= 6.1 × 10−10.

nB , nγ are number densities of baryons, photons.

One such mechanism is Electroweak Baryogenesis, baryogenesis at
the electroweak scale [Kuzmin, Rubakov, Shaposhnikov:1985].



Cold Electroweak Baryogenesis

Simulations of Baryogenesis, taking place after Electroweak-scale
small-field Hybrid Inflation, during an inflaton-triggered,

zero-temperature, Electroweak Symmetry Breaking transition.

• After inflation, Universe is cold; T = 0.

• Symmetry breaking transition is the reheating mechanism.

• Reheating temperature below electroweak scale: No sphaleron
wash-out.

• Embedded in extension of Standard Model including an
inflaton: Keep extension minimal.

Baryogenesis during electroweak symmetry breaking has been
studied in: [Krauss & Trodden:1999,Garcia-Bellido et
al.:1999,2003,2004, Copeland et al.:2001, Smit et al(AT).:
2002,2003,2004,2006].



Realisation

A baryon asymmetry can only be generated in the presence of
baryon number violating, CP violating processes out of thermal
equilibrium [Sakharov:1967].

L = Linflaton + LU(1) + LSU(2) + LSU(3) + LHiggs + Lfermions + . . .

Restrict to minimal realisation of the scenario

S = −
∫

d4x

[
1

2g2
Tr FµνFµν + (Dµφ)†Dµφ + µ2

eff(t)φ†φ + λ(φ†φ)2 + LCP

]
.



CP-violation

Include generic, lowest order CP-violating term of φ and Aµ,

LCP = κ φ†φTrFµνF̃µν =
(

6δcp

g2

) (
φ†φ
v2/2

)
ṅcs,

Ncs =
∫

d3x dt ṅcs, ṅcs =
1

16π2
TrFµνF̃µν .

Symmetry breaking is triggered by the rolling inflaton, through
the replacement

µ2
eff(t) = µ2 − λσφσ2φ†φ = µ2

(
1 − 2t

tQ

)
.



Parameter space

Leaves 3 free parameters:

δcp,

(
mH

mW

)2

=
8λ

g2
, mHtQ,

Ideally, the dependence is separable (the real world ideal? Ha!):

nB

nγ
= f (δcp, mHtQ, mH/mW )

= f1 (δcp) × f2 (mHtQ) × f3

(
mH

mW

)
.



Baryon number non-conservation

• Baryon number is not conserved in the SM.

• A quantum anomaly relates changes in the baryon and lepton
numbers B, L of fermions coupled axially to a background
(SU(2)) gauge field to changes in the Chern-Simons number
Ncs of that gauge field [’t Hooft:1976]:

〈B(t) − B(0)〉 = 3〈[Ncs(t) − Ncs(0)]〉

=
3

16π2

∫ t

0

dt

∫
d3x〈Tr

[
FµνF̃µν

]
〉.

• The vacua of the SU(2)-Higgs model have integer
Chern-Simons number. Higgs winding number Nw is integer
and in the vacua Nw = Ncs. Nw settles first (in the
simulations), and it is useful to use:

〈B(t) − B(0)〉 = 3〈[Nw(t) − Nw(0)]〉.



Instantaneous quench. δcp = 1, mH = 2mW
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Stage 1: Chern-Simons number chemical potential

Think of the CP-violation as a chemical potential for Chern-Simons
number,

∫
dtLCP =

∫
dt

(
6δcp

g2

) (
φ†φ
v2/2

)
ṅcs,

�
∫

dt µchncs, µch(t) = −6δcp

g2

d

dt

φ†φ
v2/2

.

A linear treatment, using the Chern-Simons number diffusion rate
gives [Khlebnikov & Shaposhnikov:1988],

Γ(t) =
d

(〈N2
cs〉 − 〈Ncs〉2

)
dt

, 〈Ncs(t)〉 =
1

Teff

∫ t

0

dt′ Γ(t′)µch(t′),

and reproduces early behaviour well.



Linear treatment
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Stage 2: Relaxation of winding number

The minimal gradient energy configurations are pure gauge
(vacuum),

Φ =
v√
2
U, Aj = −i∂jUU †.

Nw =
1

24π2

∫
d3x εijkTr

[
(∂iU)U †(∂jU)U †(∂kU)U †] ,

Then Nw = Ncs. Relaxing from Nw �= Ncs requires change of Ncs or
Nw. Change of Nw can only take place through a zero of the Higgs
field. The process is local, depending on size of “blobs” [Turok &
Zadrozny:1990,1991] and availability of Higgs zeros [van der Meulen
et al(AT):2006].



δcp = 1, mH = 2mW .
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Dependence on δcp, mH = 2mW
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Dependence on δcp, mH =
√

2mW
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mH =
√

2mW
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Mass dependence at zero quench time
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Dependence on quench time, mH = 2mW
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Dependence on quench time, mH =
√

2mW
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Factorisation

f
1

f
2 f

3

f
1 f

23

m/m=2
f
23

m/m=1.41



Final asymmetry

〈B(t) − B(0)〉 = 3〈Ncs(t) − Ncs(0)〉, nB =
〈B(t) − B(0)〉

V
.

nB

nγ
= 7.04

nB

s
, s =

2π2

45
g∗T 3,

π2

30
g∗T 4 = V0 =

m4
H

16λ
.

nB

nγ
= −(0.46 ± 0.08) × 10−4 δcp, (mH = 2mW , tQ = 0),

= (0.40 ± 0.03) × 10−4 δcp, (mH =
√

2mW , tQ = 0).

To reproduce the observed asymmetry, we require

δcp � −1.5 × 10−5, (mH = 2mW , tQ = 0),

� 1.6 × 10−5, (mH =
√

2mW , tQ = 0).



Conclusion

• Including CP-violation in the gauge-Higgs equations of motion
results in a net asymmetry in Chern-Simons number.

• δcp-dependence is linear for small enough δcp. f1(δcp) ok!

• The dependence on quench time is not monotonic but
qualitatively understood(?) Dependence does not separate
from...

• ...the dependence on the Higgs mass. Is also not monotonic;
the overall sign depends on it.

• Viable CEB requires fast quenches; tQ < 18 m−1
H .

• Necessary δcp � 10−5 can be amply accomodated in generic
SUSY (or just add a second Higgs field). But probably not SM
[Shaposhnikov:1987] (lepton sector?).
• Sensitiveness to Higgs mass and quench time means corrections
from including all SM fields and dynamical inflaton may be crucial.
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