Simulations of Cold Electroweak Baryogenesis

Anders Tranberg
(Sussex and Cambridge) with
Jan Smit (Amsterdam)
Mark Hindmarsh (Sussex).

Strong and Electroweak Matter 2006, BNL, 10.-13./5, 2006

The baryon asymmetry of the Universe
The Universe contains unequal amounts of matter and anti-matter. Some process (Baryogenesis) in the early Universe produced the asymmetry. From WMAP [Spergel et al.:2006]:

$$
\eta=\frac{n_{B}}{n_{\gamma}}=6.1 \times 10^{-10}
$$

n_{B}, n_{γ} are number densities of baryons, photons.
One such mechanism is Electroweak Baryogenesis, baryogenesis at the electroweak scale [Kuzmin, Rubakov, Shaposhnikov:1985].

Cold Electroweak Baryogenesis

Simulations of Baryogenesis, taking place after Electroweak-scale small-field Hybrid Inflation, during an inflaton-triggered, zero-temperature, Electroweak Symmetry Breaking transition.

- After inflation, Universe is cold; $T=0$.
- Symmetry breaking transition is the reheating mechanism.
- Reheating temperature below electroweak scale: No sphaleron wash-out.
- Embedded in extension of Standard Model including an inflaton: Keep extension minimal.

Baryogenesis during electroweak symmetry breaking has been studied in: [Krauss \& Trodden:1999, Garcia-Bellido et al.:1999,2003,2004, Copeland et al.:2001, Smit et al(AT).: 2002,2003,2004,2006].

Realisation
A baryon asymmetry can only be generated in the presence of baryon number violating, CP violating processes out of thermal equilibrium [Sakharov:1967].
$\mathcal{L}=\mathcal{L}_{\text {inflaton }}+\mathcal{L}_{U(1)}+\mathcal{L}_{S U(2)}+\mathcal{L}_{S U(3)}+\mathcal{L}_{\text {Higgs }}+\mathcal{L}_{\text {fermions }}+\ldots$
Restrict to minimal realisation of the scenario

$$
S=-\int d^{4} x\left[\frac{1}{2 g^{2}} \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}+\left(D_{\mu} \phi\right)^{\dagger} D^{\mu} \phi+\mu_{\mathrm{eff}}^{2}(t) \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}+\mathcal{L}_{C P}\right]
$$

CP-violation

Include generic, lowest order CP-violating term of ϕ and A_{μ},

$$
\begin{gathered}
\mathcal{L}_{C P}=\kappa \phi^{\dagger} \phi \operatorname{Tr} F^{\mu \nu} \tilde{F}_{\mu \nu}=\left(\frac{6 \delta_{\mathrm{cp}}}{g^{2}}\right)\left(\frac{\phi^{\dagger} \phi}{v^{2} / 2}\right) \quad \dot{n}_{\mathrm{cs}} \\
N_{\mathrm{cs}}=\int d^{3} x d t \dot{n}_{\mathrm{cs}}, \quad \dot{n}_{\mathrm{cs}}=\frac{1}{16 \pi^{2}} \operatorname{Tr} F^{\mu \nu} \tilde{F}_{\mu \nu}
\end{gathered}
$$

Symmetry breaking is triggered by the rolling inflaton, through the replacement

$$
\mu_{\mathrm{eff}}^{2}(t)=\mu^{2}-\lambda_{\sigma \phi} \sigma^{2} \phi^{\dagger} \phi=\mu^{2}\left(1-\frac{2 t}{t_{Q}}\right)
$$

Parameter space
Leaves 3 free parameters:

$$
\delta_{\mathrm{cp}}, \quad\left(\frac{m_{H}}{m_{W}}\right)^{2}=\frac{8 \lambda}{g^{2}}, \quad m_{H} t_{Q}
$$

Ideally, the dependence is separable (the real world ideal? Ha!):

$$
\begin{aligned}
\frac{n_{B}}{n_{\gamma}} & =f\left(\delta_{\mathrm{cp}}, m_{H} t_{Q}, m_{H} / m_{W}\right) \\
& =f_{1}\left(\delta_{\mathrm{cp}}\right) \times f_{2}\left(m_{H} t_{Q}\right) \times f_{3}\left(\frac{m_{H}}{m_{W}}\right) .
\end{aligned}
$$

Baryon number non-conservation

- Baryon number is not conserved in the SM.
- A quantum anomaly relates changes in the baryon and lepton numbers B, L of fermions coupled axially to a background $(S U(2))$ gauge field to changes in the Chern-Simons number $N_{\text {cs }}$ of that gauge field ['t Hooft:1976]:

$$
\begin{aligned}
\langle B(t)-B(0)\rangle & =3\left\langle\left[N_{\mathrm{cs}}(t)-N_{\mathrm{cs}}(0)\right]\right\rangle \\
& =\frac{3}{16 \pi^{2}} \int_{0}^{t} d t \int d^{3} x\left\langle\operatorname{Tr}\left[F_{\mu \nu} \tilde{F}^{\mu \nu}\right]\right\rangle
\end{aligned}
$$

- The vacua of the $\mathrm{SU}(2)$-Higgs model have integer Chern-Simons number. Higgs winding number N_{w} is integer and in the vacua $N_{\mathrm{w}}=N_{\mathrm{cs}} . N_{\mathrm{w}}$ settles first (in the simulations), and it is useful to use:

$$
\langle B(t)-B(0)\rangle \quad=\quad 3\left\langle\left[N_{\mathrm{w}}(t)-N_{\mathrm{w}}(0)\right]\right\rangle .
$$

Stage 1: Chern-Simons number chemical potential
Think of the CP-violation as a chemical potential for Chern-Simons number,

$$
\begin{aligned}
& \int d t \mathcal{L}_{C P}=\int d t\left(\frac{6 \delta_{\mathrm{cp}}}{g^{2}}\right)\left(\frac{\phi^{\dagger} \phi}{v^{2} / 2}\right) \dot{n}_{\mathrm{cs}} \\
& \simeq \int d t \mu_{\mathrm{ch}} n_{\mathrm{cs}}, \quad \mu_{\mathrm{ch}}(t)=-\frac{6 \delta_{\mathrm{cp}}}{g^{2}} \frac{d}{d t} \frac{\phi^{\dagger} \phi}{v^{2} / 2} .
\end{aligned}
$$

A linear treatment, using the Chern-Simons number diffusion rate gives [Khlebnikov \& Shaposhnikov:1988],
$\Gamma(t)=\frac{d\left(\left\langle N_{\mathrm{cs}}^{2}\right\rangle-\left\langle N_{\mathrm{cs}}\right\rangle^{2}\right)}{d t}, \quad\left\langle N_{\mathrm{cs}}(t)\right\rangle=\frac{1}{T_{\mathrm{eff}}} \int_{0}^{t} d t^{\prime} \Gamma\left(t^{\prime}\right) \mu_{\mathrm{ch}}\left(t^{\prime}\right)$,
and reproduces early behaviour well.

Stage 2: Relaxation of winding number
The minimal gradient energy configurations are pure gauge (vacuum),

$$
\begin{gathered}
\Phi=\frac{v}{\sqrt{2}} U, \quad A_{j}=-i \partial_{j} U U^{\dagger} \\
N_{\mathrm{w}}=\frac{1}{24 \pi^{2}} \int d^{3} x \epsilon_{i j k} \operatorname{Tr}\left[\left(\partial_{i} U\right) U^{\dagger}\left(\partial_{j} U\right) U^{\dagger}\left(\partial_{k} U\right) U^{\dagger}\right]
\end{gathered}
$$

Then $N_{\mathrm{w}}=N_{\mathrm{cs}}$. Relaxing from $N_{\mathrm{w}} \neq N_{\mathrm{cs}}$ requires change of N_{cs} or N_{w}. Change of N_{w} can only take place through a zero of the Higgs field. The process is local, depending on size of "blobs" [Turok \& Zadrozny:1990,1991] and availability of Higgs zeros [van der Meulen et al(AT):2006].

Mass dependence at zero quench time

Final asymmetry

$$
\begin{aligned}
\langle B(t)- & B(0)\rangle=3\left\langle N_{\mathrm{cs}}(t)-N_{\mathrm{cs}}(0)\right\rangle, n_{B}=\frac{\langle B(t)-B(0)\rangle}{V} \\
\frac{n_{B}}{n_{\gamma}} & =7.04 \frac{n_{B}}{s}, s=\frac{2 \pi^{2}}{45} g^{*} T^{3}, \frac{\pi^{2}}{30} g^{*} T^{4}=V_{0}=\frac{m_{H}^{4}}{16 \lambda} \\
\frac{n_{B}}{n_{\gamma}} & =-(0.46 \pm 0.08) \times 10^{-4} \delta_{\mathrm{cp}}, \quad\left(m_{H}=2 m_{W}, t_{Q}=0\right) \\
& =(0.40 \pm 0.03) \times 10^{-4} \delta_{\mathrm{cp}}, \quad\left(m_{H}=\sqrt{2} m_{W}, t_{Q}=0\right)
\end{aligned}
$$

To reproduce the observed asymmetry, we require

$$
\begin{aligned}
\delta_{\mathrm{cp}} & \simeq-1.5 \times 10^{-5}, \quad\left(m_{H}=2 m_{W}, t_{Q}=0\right) \\
& \simeq 1.6 \times 10^{-5}, \quad\left(m_{H}=\sqrt{2} m_{W}, t_{Q}=0\right)
\end{aligned}
$$

Conclusion

- Including CP-violation in the gauge-Higgs equations of motion results in a net asymmetry in Chern-Simons number.
- δ_{cp}-dependence is linear for small enough δ_{cp}. $f_{1}\left(\delta_{\mathrm{cp}}\right)$ ok!
- The dependence on quench time is not monotonic but qualitatively understood(?) Dependence does not separate from...
- ...the dependence on the Higgs mass. Is also not monotonic; the overall sign depends on it.
- Viable CEB requires fast quenches; $t_{Q}<18 m_{H}^{-1}$.
- Necessary $\delta_{\mathrm{cp}} \simeq 10^{-5}$ can be amply accomodated in generic SUSY (or just add a second Higgs field). But probably not SM [Shaposhnikov:1987] (lepton sector?).
- Sensitiveness to Higgs mass and quench time means corrections from including all SM fields and dynamical inflaton may be crucial.

Workshop on

Classical Field Theory and Solitons,
Center for Mathematical Sciences, University of Cambridge,
3.-6. July, 2006
www.damtp.cam.ac.uk/raid/gr/CFT

