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Introduction 
 Congenital metabolic disorders refer to inherited defects producing metabolic 
abnormalities in the human body. Disorders that disrupt the central nervous system 
(CNS) are of great importance. These disorders produce a paradoxical situation for 
neuroradiologists and imaging scientists investigating them. One would hypothesize that 
an error in metabolism would produce either an excess or deficit of a given metabolite. 
Magnetic resonance spectroscopy (MRS) should be ideally suited for recognizing such 
errors of metabolism. In a few conditions, proton MRS offers a narrow diagnostic 
differential. However, for the majority of congenital metabolic disorders, non-distinct 
imaging and proton spectroscopic presentations, such as volume loss, abnormal T2 
signal and reduced N-acetyl aspartate (NAA), are found in the brains of children and 
adults. The ability to observe metabolic alterations and to recognize them as distinct 
disorders remains difficult. In principal, two factors limit the application: 1) diminished 
sensitivity in metabolite detection due to inherently low proton signal and/or 
concentrations, and 2) poor specificity with common features for distinct metabolic 
disorders. For pediatrics, additional disadvantages include developmental maturation 
coupled with progression of disease with multiple primary and secondary features. 
Regardless a primary or secondary metabolic defect, metabolic disorders should impact 
cellular function, disrupt at least one of the commonly observed metabolites NAA, 
creatine and phosphocreatine (Cr & PCr), cholines (Cho)) or demonstrate a pathological 
metabolite, such as lactate or alanine. The practical usefulness of MRS exists in offering 
information on staging pathologic processes such as ischemia, altered myelination, 
gliosis, and neurodegeneration.  

This presentation will review the spectroscopic features associated with 
mitochondrial disorders, peroxisomal disorders, amino acid disorders, lysosomal 
disorders, primary white matter disorders and a few novel disorders. Spectroscopic 
appearances can differ due to technical factors and change with the age of onset and 
stage in disease progression. Recent texts [1,2] offer reviews of select metabolic 
entities from an imaging perspective. In select conditions, MRS will provide the only 
diagnostic feature found with any imaging examination (i.e. creatine deficiency 
syndromes). In many situations, MRS will provide only confirmatory diagnostic 
information to the imaging examination. However, recent studies using MRS indicate 
potentially a more beneficial role in therapeutic monitoring.  
 
Mitochondrial Disorders 
 Mitochondrial disorders encompass a heterogeneous, polysymptomatic and often, 
multisystemic group of disorders, caused by defects of intracellular energy metabolism 
and result in diminished adenosine triphosphate (ATP) production. Proton MRS has 
been employed to detect lactic acidosis for the diagnosis of mitochondrial disorders. 
While in some mitochondrial pathologies detection of elevated brain lactate is 
anticipated, elevated lactate alone does not necessarily signify a mitochondrial disorder. 
Conversely, the absence of lactate does not exclude a mitochondrial defect. 
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Mitochondrial disorders often manifest in an intermittent fashion and causing temporal 
fluctuation of lactate levels, which can be observed during periods of decompensation 
and fall below the level of detection during remission [3]. 
 Since the 1990’s, children clinically diagnosed with Leigh syndrome (however, 
genetically diverse, i.e. pyruvate dehydrogenase deficiency, cytochrome oxidase 
deficiency, Complex I deficiency) have been evaluated with proton MRS [4-10]. Spectra 
obtained from the basal ganglia, occipital cortex, and brainstem reveal lactate 
elevations coinciding with regions demonstrating T2 signal abnormalities. Proton MRS 
also demonstrated a decrease in the N-acetylaspartate/creatine and an increase in the 
choline/creatine, representing neuronal loss and breakdown of membrane 
phospholipids. There is some evidence that a reduction of lactate levels may correlate 
with response to therapy, as seen in treatment trials with dichloroacetate (DCA) and Co-
enzyme Q10 [11-13]. 
 Dinopoulos reviewed clinical MRI/MRS examinations in 49 children (ages neonate 
to 15 years) with biochemical evidence of a respiratory chain defect [14]. Using the 
Modified Adult Criteria for group classification (definite, probable and possible), 81% of 
patients classified as “definite” demonstrated the presence of lactate, with 31% for the 
“probable” group and 0% for the “possible” group of patients. All patients with 
subcortical white matter involvement in the “definite” and “probable” groups had lactate 
elevation observed on proton MRS in regions with abnormal T2 signal.  
 Imaging and spectroscopy of patients with MELAS can demonstrate variable 
results as stroke-like lesions emerge and evolve. With proton MRS, lactate elevation in 
the acute and sub-acute stages is often observed. Subsequently, declines in NAA and 
Cr, consistent with neuroaxonal injury, which may or may not be reversible, are 
appreciated. Proton MRS indicates energy failure with increased lactate and decreased 
creatine. [15-28]. Kaufmann investigated 91 individuals meeting partial or full criteria for 
MELAS who underwent standardized neurologic examination, neuropsychological 
testing, MRS, and leukocyte DNA analysis. There was a significant correlation between 
degree of neuropsychological and neurologic impairment and cerebral lactic acidosis as 
estimated from ventricular MRS lactate levels [29]. 
   
Peroxisomal Disorders 

Peroxisomes are organelles within a cell that contain enzymes responsible for 
critical cellular processes, including biosynthesis of membrane phospholipids 
(plasmalogens), cholesterol, and bile acids, conversion of amino acids into glucose, 
reduction of hydrogen peroxide, oxidation of fatty acids, and prevention of excess 
oxalate synthesis. Peroxisomal disorders are subdivided into two major categories: 1) 
biogenesis disorders (PBDs) arising from a failure to form viable peroxisomes, resulting 
in multiple metabolic abnormalities, and 2) disorders resulting from the deficiency of a 
single peroxisomal enzyme.  

Four different disorders comprise the genetically heterogeneous PBD group: 
Zellweger syndrome (ZS), infantile Refsum’s disease (IRD), neonatal 
adrenoleukodystrophy (NALD) and rhizomelic chondrodysplasia punctata (RCDP). 
Zellweger syndrome presents with cortical dysplasia and neuronal heterotopia on 
imaging. Proton MRS illustrates the neuropathologic aspects of Zellweger syndrome, 
which include neuronal degeneration, abnormal myelination, and compromised liver 
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function. Bruhn et al. reported MRS of infants (N=4) with impaired peroxisomal function 
classified as variants of Zellweger syndrome revealed a marked decrease of N-
acetylaspartate in white and gray matter, thalamus, and cerebellum with two patients 
also demonstrating an increase of cerebral glutamine and a decrease of the cytosolic 
polyol myo-inositol (mI) in gray matter and striatum reflecting impaired hepatic function 
[30]. Two subjects in the Bruhn study exhibited a notable elevation of mobile lipids 
and/or cholesterol in white matter. For rhizomelic chondrodysplasia punctata, two 
studies report elevations of mobile lipids, myo-inositol-glycine, acetate and reduced 
choline levels as consistent with a deficiency in plasmalogen biosynthesis [31,32]. In 
contrast to ZS, IRD and NALD, rhizomelic chondrodysplasia punctata does not feature 
liver disease which is significant when accounting for the mI differences.  
 X-linked adrenoleukodystrophy patients evaluated with proton MRS demonstrate 
abnormal spectra within regions of abnormal signal as well as normal appearing white 
matter (NAWM). The spectral profile for NAWM of neurologically asymptomatic patients 
is characterized by slightly elevated concentrations of composite choline compounds at 
3.2 ppm, with an increase of both Cho and mI reflecting the onset of demyelination. 
Markedly elevated concentrations of Cho, mI, and glutamine in affected white matter 
suggest active demyelination and glial proliferation. A simultaneous reduction of the 
concentrations of NAA and glutamate is consistent with neuronal loss and injury. 
Elevated lactate is consistent with inflammation and/or macrophage infiltration. The 
more severe metabolic disturbances in ALD correspond to progressive demyelination, 
neuroaxonal loss and gliosis leading to clinical deterioration and eventually death. The 
detection of MRS abnormalities before the onset of neurological symptoms may help in 
the selection of patients for bone marrow transplantation (BMT) and stem cell 
transplant. Stabilization and partial reversal of metabolic abnormalities is demonstrated 
in some patients after therapies. The spectral profiles can be used to monitor disease 
evolution and the effects of therapies [33-47]. 
 
Disorders of Amino and Organic Acid Metabolism 

A large number of imaging and spectroscopy studies have investigated patients 
with phenylketonuria (PKU) [48-77].  White matter alterations revealed by imaging in 
patients with phenylketonuria (PKU) correlated to blood phenylalanine (Phe) 
concentrations as well as to brain Phe concentrations measured by proton MRS. The 
clinical significance of the white matter changes is uncertain. MRI alone has limited 
impact on therapeutic recommendations for adolescents and adults with PKU. However, 
kinetic investigations of patients performed using proton MRS revealed individual 
differences in brain Phe concentrations despite similar blood Phe levels. Interindividual 
variations of blood-brain barrier Phe transport constants and Phe consumption rate are 
responsible for differences and thus, seem to be causative factors for the individual 
outcome in PKU [48-77]. 

In patients with non-ketotic hyperglycinemia, elevated cerebral glycine can be 
measured with proton MRS [78-83]. Using long echo times, such as 288 ms, MRS 
reveals predominately glycine at 3.5 ppm.  Employing short echo times, the resonance 
at 3.5 is a composite of myo-inositol and glycine. Ratios comparing glycine with creatine 
correlate with patient course. 

 3



Neurological proton MRS appears to be useful for examining patients suffering 
from maple syrup urine disease in different metabolic states [84-87]. The accumulation 
of abnormal branched-chain amino acids (BCAA) and branched-chain alpha-keto acids 
(BCKA) peak at 0.9 ppm accompanied by elevated lactate are manifested in patients. 
The presence of cytotoxic or intramyelinic edema as evidenced by restricted water 
diffusion on DWI, with the presence of lactate on spectroscopy, could imply cell death. 
However, in the context of metabolic decompensation in MSUD, it appears that changes 
in cell osmolarity and metabolism can reverse completely after metabolic correction 
[84]. 
 A triad of hyperammonemia, encephalopathy, and respiratory alkalosis 
characterizes urea cycle disorders. Five disorders involving different defects in the 
biosynthesis of the enzymes of the urea cycle have been described: ornithine 
transcarbamylase deficiency, carbamyl phosphate synthetase deficiency, 
argininosuccinate synthetase deficiency or citrullinemia, argininosuccinate lyase 
deficiency, and arginase deficiency. The key feature for proton MRS of the brain is the 
elevation of glutamine. In the clinical setting, distinguishing urea cycle disorders from 
hypoxic ischemic encephalopathy in the neonate can employ a combination of 
laboratory abnormalities (elevated ammonia) and pattern of injury as described by 
Barkovich [1] with urea cycle disorders having predominant injury within the putamen 
and globus pallidus, bilaterally. The regions sampled with MRS should include the basal 
ganglia, however, other regions should also reveal the key abnormalities. The 
hyperammonemia found in the urea cycle defects converts glutamate to glutamine in 
the brain. As cerebral edema develops, declines in myo-inositol may be appreciated 
along with elevated lactate levels. 
 The first application of proton MRS studies in patients with methylmalonic 
aciduria and propionic aciduria utilized in vitro methods for discriminating the respective 
acids and therapeutic monitoring of metabolic perturbations in urine [88-91]. These 
disorders are defects in the conversion of isoleucine, valine, methionine and threonine 
to propionic acid, methylmalonic acid and succinic acid. In vivo brain proton MRS of the 
acidurias revealed reduced mI and NAA with elevated glutamate, glutamine and 
possibly lactate [92-97]. These findings correspond to hyperammonemia, ketoacidosis 
and mitochondrial dysfunction. 

Proton MRS in the striatum and white matter revealed decreased NAA/Cr, 
increased Cho/Cr, and increased mI/Cr for glutaric aciduria I. These changes represent 
neuroaxonal damage, demyelination, and astrocytosis in these areas [98]. No dedicated 
studies of glutaric aciduria II have been performed using MRS [99]. Hanefeld 
demonstrated in a patient with L-hydroxyglutaric aciduria a decrease in NAA and Cho 
with an elevation of mI in white matter [100]. Two case reports indicated recognition of 
an elevated resonance at 2.5 ppm, which could be attributed to glutamate, glutamine or 
hydroxyglutaric acid [101]. 
 
Lysosomal Disorders 

The lysosomes are intracellular organelles responsible for degrading lipids, 
proteins and complex carbohydrates. A genetic mutation resulting in the absence or 
partial deficiency of an enzyme or protein leads to the accumulation of undigested 
compounds which can disrupt the normal functioning of cells. When cellular division is 
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impaired from the accumulation of undegraded material, secondary changes to the 
spectral markers, NAA, Cho and mI are expected. Proton MRS of lysosomal disorders, 
such as metachromatic leukodystrophy, globoid cell leukodystrophy (Krabbe’s disease), 
neuronal ceroid lipofuscinosis and Sandhoff’s disease, have demonstrated reduced 
NAA expected with neuroaxonal loss but have also revealed disturbances in glial cell 
metabolism associated with demyelination [102-110].In Salla disease, a free sialic acid 
storage disorder, an accumulation of N-acetylneuraminic acid in the lysosomes of brain 
parenchyma produces an elevation of the N-acetyl methyl group resonance at 2.0 ppm, 
usually attributed to N-acetyl aspartate [111]. Depending upon on its composition, the 
often complex, undegraded material may contribute to the lipid (0.8-1.3 ppm) and 
macromolecular resonances (0.8-2.6 ppm) observed on proton MRS, as reported in 
Sjogren-Larsson’s syndrome [112-114] and neuronal ceroid lipofuscinosis (infantile 
CLN1) [109,115]. However, it is important not to confuse pathologic lipid resonances 
with susceptibility and chemical shift artifact. 

MRS may be useful in monitoring therapeutic interventions of these disorders. 
DeStefano used proton magnetic resonance spectroscopic imaging (MRSI) to 
investigate patients with cerebrotendinous xanthomatosis (CTX), a defect in the 
metabolic pathway of cholesterol [116]. The findings suggested widespread axonal 
damage revealed by a decrease in NAA and diffuse brain mitochondrial dysfunction with 
an increase in lactate. A correlation between levels of the putative axonal marker NAA 
and patients' disability scores suggests that proton MRS can provide a useful measure 
of disease outcome in CTX. In Niemann-Pick type C (NPC), a storage disorder with 
defective cholesterol esterification, reduction of an abnormal lipid resonance on proton 
MRS correlated with the short-term improvement in an infant patient treated with 
cholesterol-lowering agents [117]. Using proton MRSI in NPC, Tedeschi reports 
changes in regional metabolite ratios (NAA/Cr and Cho/Cr) correlating with clinical 
stage scoring [118]. Takahashi found for the mucopolysaccharidoses, proton MRS 
reveals a broad resonance at 3.7 ppm attributed to mucopolysaccharide molecules. 
After bone marrow transplant, the resonance at 3.7 ppm decreases in the brain of some 
patients, which may aid in determining the efficacy of the therapy [119].  
 
White Matter Disorders 
 White matter disorders can present as hypomyelinating, dysmyelinating and 
demyelinating superimposed on a background of normal maturation of myelination. 
Here, we discuss a few prominent disorders of white matter encountered in children. 
 Brockmann et al. [120] used localized proton MRS to assess metabolic 
abnormalities in grey and white matter, basal ganglia, and cerebellum of four patients 
with infantile Alexander’s disease (AD) identified with heterozygous de novo mutations 
in the gene encoding glial fibrillary acidic protein (GFAP). Elevated concentrations of mI 
combined with normal or increased choline compounds in grey and white matter, basal 
ganglia, and cerebellum implicate astrocytosis and demyelination. Neuroaxonal 
degeneration, as reflected by a reduction of NAA, was most pronounced in cerebral and 
cerebellar white matter. The accumulation of lactate in affected white matter is 
consistent with infiltrating macrophages. Metabolic alterations revealed by in vivo proton 
MRS are in excellent agreement with known neuropathological features of AD 
[121,122].  
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 In Canavan’s disease, the lack of a functional enzyme, aspartoacylase (ASPA), 
leads to an increase in the central nervous system of the substrate molecule, N-acetyl-
aspartate, which impairs normal myelination and results in spongiform degeneration of 
the brain. Detection of this disorder within the brain, CSF and urine is available with in 
vivo and in vitro methods. Urinary NAA levels are also increased because of the 
deficiency of aspartoacylase (N-acyl-L-aspartate aminohydrolase). MRS employed with 
mouse models of Canavan’s disease provide a means evaluating gene therapy [123-
137]. 
 A new leukodystrophy with a distinct magnetic resonance imaging pattern of 
inhomogeneous cerebral white matter abnormalities and selective involvement of 
brainstem and spinal tracts has been described [138]. Leukoencephalopathy with brain 
stem and spinal cord involvement and high lactate (LBSL) demonstrates significant 
elevation of lactic acid, cholines and mI with reduction of NAA within the white matter 
suggesting axonal damage and gliosis. 
 Childhood ataxia with diffuse CNS hypomyelination (CACH), also known as 
vanishing white matter disease, is currently regarded as a primary axonopathy rather 
than a primary demyelinating process with marked decrease in NAA, Cr, Cho and lipids 
in white matter [139-141]. In the advanced stage, a virtual absence of all parenchymal 
metabolites with the presence of CSF metabolites, lactate and glucose has been 
reported. In contrast, proton MRS in hypomyelination with atrophy of the basal ganglia 
and cerebellum (H-ABC) reveals normal levels of NAA and Cho with elevated Cr and mI 
in white matter [142]. 
 Plecko et al. [143] found heterogeneous cerebral metabolite patterns in patients 
with Pelizaeus Merzbacher disease (PMD) and Pelizaeus Merzbacher-like disease 
(PMLD) indicating a mixture of unspecific changes due to primary hypomyelination and 
secondary gliosis and demyelination. However, neither MRI nor MRS provided unique 
patterns to allow differentiation between PMD and PMLD patients. 

A deficiency of ribose 5-phosphate isomerase was identified in a patient who 
presented with leukoencephalopathy and peripheral neuropathy after proton MRS of the 
brain and urine revealed a highly elevated level of the polyols - ribitol and D-arabitol 
[144,145]. 
 Proton MRS studies in patients with vacuolating megaencephalic leukodystrophy 
with subcortical cysts (MLC) demonstrate variability with the vacuolizing myelinopathy 
and diffuse swelling of cerebral white matter [146,147].  The spectra pattern 
demonstrates reduced parenchymal signal with vacuolization. The residual pattern can 
appear as reduced NAA, elevated Cho and mI. 
  
 Miscellaneous Disorders 
 Treated Wilson’s disease, an inborn error of copper metabolism, reveals no 
significant differences from healthy controls when studied by proton MRS. However, in 
patients with acute hepatic disease and subclinical hepatic encephalopathy, decreases 
in Cho/Cr and mI/Cr can be observed [148-150]. Changes in glutamine would also be 
expected with impaired hepatic function. 
 Brain edema may occur in infants with galactosemia and has been associated with 
accumulation of galactitol [151,152]. In a newborn infant with galactose-1-phosphate 
uridyltransferase deficiency and encephalopathy, MRI revealed cytotoxic edema in 
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white matter. Using in vivo proton MRS, Berry detected approximately 8 mmol galactitol 
per kilogram of brain tissue, an amount potentially relevant to the pathogenesis of brain 
edema [152].  Wang used proton MRS to study 12 patients (four newly diagnosed 
neonates and eight patients on galactose-restricted diets, age range 1.7-47 years) and 
control subjects to measure brain galactitol levels in vivo and correlate them with urinary 
galactitol excretion [151]. The results demonstrated that a markedly elevated brain 
galactitol level is present only in newborn infants with galactosemia who exhibit massive 
urinary galactitol excretion. 
 An unusual source of mental retardation has been revealed with proton MRS. 
Inborn errors of creatine metabolism, specifically defects in creatine synthesis and 
transport, have recently been reported [153-161]. Several patients with markedly 
diminished or absent creatine signal have been found with proton MRS. Genetic 
analysis has revealed novel mutuations in the creatine transporter located at Xq28 
[154,156,162]. Other autosomal recessive disorders of creatine metabolism involve 
defects in the hepatic enzymes guanidinoacetate methyltransferase (GAMT) and 
arginine glycine amidinotransferase (AGAT) [157,159-161]. These disorders manifest 
with developmental delay, seizures and absence or retardation of language skills, and 
MR imaging can remain unremarkable. If proton MRS reveals absent brain creatine, 
serum and urine creatine assessments may give preliminary indication whether there is 
a synthesis defect (diminished Cr) or a transport defect (elevated Cr). In patients with 
synthesis defects, proton MRS can monitor increasing brain creatine concentrations 
afforded with oral supplementation. While there is some motor improvement, 
neurological damage persists with supplementation in persons with creatine synthesis 
defects.  At this time, there are no treatment options available for persons with creatine 
transporter defects. A recent study investigated the prevalence of creatine transporter 
deficiency by DNA sequence analysis in a panel of 290 patients with nonsyndromic X-
linked mental retardation (XLMR) archived by the European XLMR Consortium [163]. 
Six pathogenic mutations, of which five were novel, were identified in a total of 288 
patients with XLMR, showing a prevalence of at least 2.1% (6/288).  They report the 
frequency of SLC6A8 mutations in the XLMR population is close to that of CGG 
expansions in FMR1, the gene responsible for fragile-X syndrome. 
 
Conclusions 
 The implementation of magnetic resonance spectroscopy in the study of 
congenital metabolic disorders offers additional insight by providing a method to analyze 
cellular processes altered by the presence of metabolic abnormalities. While many 
conditions have a similar presentation, MRS offers valuable information for the 
individual patient in diagnosis and therapy when fully integrated into the clinical 
environment. Neurological proton MRS provides markers of axonal swelling, axonal 
stretching, axonal and neuronal dysfunction and loss with NAA; gliosis, astrocytosis, 
and osmolytic function with mI; myelin integrity, membrane metabolism and injury with 
Cho and lipids; and cellular energetics with creatine and lactate. The continued 
development and application of this technique offers enormous potential in the study of 
inborn errors of metabolism. 
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