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Summary Inflammation and the genes, molecules, and biological pathways that lead to inflammatory processes
influence many important and disparate biological processes and disease states that are quite often not generally
considered classical inflammatory or autoimmune disorders. These include development, reproduction, aging, tumor
development and tumor rejection, cardiovascular pathologies, metabolic disorders, as well as neurological and
psychiatric disorders. This paper compares parallel aspects of autism and inflammatory disorders with an emphasis on
asthma. These comparisons include epidemiological, morphometric, molecular, and genetic aspects of both disease
types, contributing to a hypothesis of autism in the context of the immune based hygiene hypothesis. This hypothesis is
meant to address the apparent rise in the prevalence of autism in the population.

�c 2007 Elsevier Ltd. All rights reserved.
Introduction

Autism is an enigmatic childhood disorder of un-
known origin. It is characterized by developmental,
language, and social deficits, ranging in severity
from patients with profound deficits to individuals
that are high functioning. Although the underlying
etiological basis of autism has eluded researchers,
the genetic heritability of autism is quite strong
[1]. Specifically what genes are involved and how
they contribute to the disease phenotype is
unclear.

Many theories regarding the biological basis of
autism have been suggested, including neurodevel-
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opmental, exposure to environmental toxins, par-
ticularly to mercury [2], and immune [3]
hypotheses. More recently, theories of hyper-sys-
temizing and assortative mating [4,5] and hyper-
dopamine [6] have been proposed. At this time
there is little definitive evidence to support any
single theory of the fundamental biological nature
of autism.

Numerous reports have described imbalances in
immune and inflammatory processes in autistic pa-
tients, including aberrations in antibody levels,
cytokines, and cellular subsets [7–12]. Addition-
ally, recent reports have described an increased
frequency of HLA-A2 [13] and HLA-DR4 [14] anti-
gens in autism. Interestingly, epidemiological stud-
ies have provided evidence for the association of
asthma and allergies [15] or autoimmune disorders
in families with autistic children [16–19]. The ex-
rved.
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act significance of immune abnormalities and the
relationship of infections, immunizations, aller-
gies, inflammation, or other aspects of immune re-
sponse to disease etiology are unclear and
controversial. Alterations of immune and inflam-
matory processes in autism have recently been re-
viewed [3,20–24].

One of the challenges in the early study of the
molecular basis of classical autoimmune disorders
was the attempt to establish the relevance of
highly variable and fluctuating immune serum pro-
teins and cell populations to disease etiology. That
is, are fluctuations in any set of cytokines, im-
mune mediators, or T cell populations, causative
or are they epiphenomena due to peripheral ef-
fects of target tissue destruction, transient com-
mon infections, or more importantly, are they
echoes of long ago infections. There is an ever
present ‘‘which came first, the chicken or the
egg’’ nature in the study of highly variable im-
mune mediators. Are oligoclonal antibody bands
found in the CSF of multiple sclerosis patients
[25] related to the etiology of the disease or are
they end stage phenomena? Do alterations in cyto-
kines from a patient with systemic lupus erythe-
matosus have a role in disease etiology or are
they late stage responses to tissue destruction
brought on by other mechanisms? Similarly, are
immune aberrations in autism disease causing or
are they epiphenomena?
Other comparisons of autism to asthma
and autoimmune/inflammatory disorders

In addition to imbalances in immune molecular
mediators, there are other seemingly unrelated
parallels in the study of immune and inflammatory
disorders as compared to autism that, when viewed
collectively, may provide additional support for
shared aspects of disease etiology between im-
mune and inflammatory disorders and autism.
These include; sex bias, birth order, age-of-onset,
neonatal head circumference, increasing preva-
lence in the population, rural versus urban disease
comparisons, and shared molecular and genetic
markers.
Disease onset and sex bias

In asthma and in autism presentation is in early
childhood. Both disease types have an age of onset
in early childhood; 2–4 years for children with
autistic disorder [26] and 3–6 for wheeze and asth-
ma [27]. In addition, both autism and asthma display
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a skewed sex bias toward boys. This bias is approx-
imately 4:1 boys to girls in autism [1] and approxi-
mately 2:1 in asthma [28,29]. It is well known that
in most adult autoimmune and inflammatory disor-
ders, including asthma, there is a predominance of
adult women with the diagnosis. However, less well
known is that prior to puberty this skewing is to-
ward boys [30] . This male bias prior to puberty
may be true in other immune mediated disorders
as well such as multiple sclerosis [31], Type 1 dia-
betes, and thyroiditis.
Birth order

Some studies have shown birth order to be rele-
vant in atopic disorders as well as autism. In both
cases, being first born may carry a greater risk for
disease than later births. In a large study of 11,
371 Italian young men those with no siblings had
the highest level of serum IgE sensitization. An in-
verse association was observed between number
of siblings at time of testing and prevalence of
high atopy P < 0.0001 [32]. Similar findings have
been shown in for atopic disease in Crete [33],
asthma, eczema-urticaria and hay fever in Scot-
land [34], asthma with allergic rhinitis in Denmark
[35] and asthma, allergy, and eczema in the Neth-
erlands [36]. These observations are thought to be
related to increased transmission of childhood
infections due to a growing family size in the con-
text of the hygiene hypothesis (see below). Simi-
larly, the risk of autism has been shown in some
cases to be related to birth order in the same
direction as asthma and atopic disorders, with risk
decreasing with a greater number of older siblings
in the United States [37–39], Western Australia
[40] and England [41].
Increased neonatal head circumference

Increased neonatal head circumference has been
found in both autism and asthma. Increases in neo-
natal head circumference have been associated
with asthma and atopy. In particular, head circum-
ference has been associated with elevated serum
IgE levels and hay fever disorders [42–45]. In-
creased neonatal head circumference or macro-
cephaly is a robust finding in autism with the
largest effect between the ages of 2–5 [46–51].
This brain size difference is largely back to normal
by adolescence. The biological basis for this in-
crease is unknown although genetic, infectious,
and inflammatory mechanisms have been proposed
[50] (see PTEN below).
, inflammation, and the hygiene hypothesis, Med Hypoth-
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Increase in prevalence in the population:
parallel ‘‘epidemics’’

Both autism and asthma have had reports of appar-
ent increases in the population over the last 30
years. Numerous studies show general increases
in prevalence in both asthma [52,53] and autism
[54–58], at roughly similar rates over the last 30
years. In both disease types this has been often re-
ferred to as an ‘‘epidemic’’ [54,59]. In both dis-
ease types this apparent increase is controversial.
Changes in diagnostic classifications and access to
health care resources have confounded the inter-
pretation of prevalence estimates in the study of
asthma and autism. Significant increases in disease
prevalence over a short time in evolutionary terms
suggest that purely genetic mechanisms may not be
solely responsible [60]. Given the strong heritabil-
ity of autism, changing environmental modifiers in
the context of the background genetics of autism
may be important over the past 30 years. There
have been similar increases in the prevalence in
classical autoimmune diseases over the same time
span as well, including Type 1 diabetes [61,60,62].
Rural vs urban disease distribution

Both autism and asthma appear to show uneven
geographical distributions in disease prevalence.
Differential susceptibility or resistance to asthma
and allergies is found in urban environments versus
rural or farm environments [63–65]. Although the
exact mechanistic basis of the difference is not
known, this distribution pattern of disease is
thought to have an inverse relationship to infection
and is central to the hygiene hypothesis (see
below).

The geographical distribution of autism is less
clear although there is evidence that there may
be an urban versus rural distribution. This has been
found in epidemiological studies from multiple
countries including Denmark [66], the United States
[67], England [55,68] and Japan [69]. Interestingly,
in studies of autism that analyzed numerous famil-
ial risk factors, a major risk factor for autism was
increasing degree of urbanization [55,68]. In a study
from the US, the urban versus rural distribution was
attributable to mercury exposure in the environ-
ment, however this may reflect an industrialized
versus rural pattern as well [67].

The Inuit of northern Canada may provide an
interesting population case study. This isolated rur-
al population exists in crowded living conditions,
with high levels of mercury and other environmen-
tal toxins in the diet [70]. However, autism is
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essentially non-existent in the Inuit. In a recent re-
port Fombonne et al. state; No case of autism has
ever been reported in an Inuit child in the past 15
years [71] . In parallel, asthma and atopic disorders
are uncommon in Inuit children, even with very
high rates of lower respiratory infections prior to
age 2 and particularly high rates of childhood smok-
ing (31.9%) [72].

Molecular and genetic markers shared with
inflammatory/autoimmune diseases

Like many common human disorders, autism, asth-
ma, and autoimmune disorders have been studied
using genetic linkage and genetic association ap-
proaches. The chromosomal regions identified in
linkage studies and the specific variants of genes
identified in genetic association studies are quite
often not unique to any one disorder. Many, if not
most, genes in the human genome have broad
based effects influencing different cells and tissues
at different times of development under the influ-
ence of different environmental modifiers. In the
context of common human disease, important reg-
ulatory genes may effect disease susceptibility dif-
ferently when found in combination with different
disease associated alleles [73].

ADRB2, beta(2)-adrenergic receptor

The gene for the beta(2)-adrenergic receptor en-
codes a member of the G protein-coupled receptor
superfamily and is expressed on epithelial and
endothelial cells of the lung, mast cells, as well
as airway smooth muscle cells. ADRB2 activation
is thought to work through increased intracellular
cAMP levels [74]. Polymorphisms in ADRB2, includ-
ing the Glu27 allele, have been studied in multiple
disease states including hypertension [75], atopic
dermatitis [76], Graves disease [77], rheumatoid
arthritis [78,79], obesity [80] and in particular,
asthma [81]. ADRB2 is of major interest in asthma
as it may be involved in lung function as well as re-
sponse to beta(2)-adrenergic agonists [82,83].
ADRB2 polymorphisms may not influence asthma
incidence or prevalence but may influence persis-
tence of asthmatic symptoms [84].

Importantly, the Glu27 allele of ADRB2 has re-
cently been associated with autism in twins [85]
as well as in the AGRE autism cohort [86].
PTEN-phosphatase and tensin homolog

PTEN, phosphatase and tensin homolog, is central
to phosphoinositide metabolism as an important
, inflammation, and the hygiene hypothesis, Med Hypoth-
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regulatory checkpoint in the PI3K/ATK signaling
pathway, effecting multiple downstream processes
including immune function, cell growth, cell sur-
vival, and differentiation [87–89]. PTEN has been
shown to play a role in lymphocyte proliferation,
systemic autoimmunity, and autoimmune disease
[87,88], as well as in benign tumors of the gastroin-
testinal tract. In relation to disease, PTEN has been
implicated in bronchial asthma and allergic inflam-
mation [90].

Interestingly, PTEN has been implicated in mac-
rocephaly (OMIM # #153480) and Cowden disease
(OMIM #158350). PTEN has been implicated in aut-
ism as well, in particular, within a subset of autistic
individuals with macrocephaly [91,92]. A recent re-
port described a patient with a PTEN mutation hav-
ing autistic features, macrocephaly as well as
nodular lymphoid hyperplasia of the small and
large intestinal mucosa [93]. Moreover, a mouse
model with specific deletions of PTEN in selected
neuronal cell types resulted in macrocephaly,
changes in social interactions, and increased re-
sponses to sensory stimuli, suggesting a model for
autistic spectrum disorder [94].

MET – met proto-oncogene
The proto-oncogene MET, also known as hepato-
cyte growth factor receptor, encodes a tyrosine-
kinase receptor which has been shown to have
pleiotropic effects, in myocardial infarction, ische-
mia, angiogenesis, and importantly in cancer pro-
gression. Recently, polymorphic variants that
result in reduced expression of MET has been
genetically associated with autism [95]. MET also
has been shown to effect the immune system
[96], in particular it suppresses immune dendritic
cell function [97]. In addition, c-MET and its ligand
HGF have been shown to be involved in multiple
neuronal processes including synaptic plasticity in
the hippocampus [98], development of cortical
pyramidal dendrites [99] and synaptic organization
[100].
Genome wide scans

Genome wide scans are genetic linkage studies that
use evenly spaced polymorphic markers that span
the entire human genome in an attempt to link dis-
ease phenotypes to specific regions in the human
genome. In a comparison of genome wide linkage
studies between autoimmune and inflammatory
disorders and similar studies in autism and Tou-
rette syndrome, overlap of polymorphic markers
were found to be statistically significant (P = 0.01)
in chromosomal regions originally independently
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identified in autism and Tourette’s, or in autoim-
mune and inflammatory disorders.http://www.
grc.nia.nih.gov/branches/rrb/dna/pubs/cgoatad.
pdf This comparison was performed using the ap-
proach originally taken for autoimmune disorders
[101]. Fig. 1 shows sixteen selected regions of
the genome where this marker overlap occurs. A
more comprehensive listing of marker overlap
between autoimmune/inflammatory disorders and
autism and Tourette syndrome can be found
here: http://www.grc.nia.nih.gov/branches/rrb/
dna/atsmap.htm Moreover, a subset of these mark-
ers found to be statistically significant in both dis-
ease classes is not due to simple coincidental
overlap of genetic regions, but includes 144 identi-
cal polymorphic markers originally found to be sta-
tistically significant in both autism and
autoimmune or inflammatory disorders, including
asthma. For example, in the chromosomal region
17q25.3, the polymorphic marker D17S784 has
been independently linked to psoriasis [102],
Crohn’s disease [103], Tourette syndrome [104],
and autism [105]. A listing of markers indepen-
dently found in both disease classes can be found
here: https://www.quickbase.com/db/8qsiujvy.
Summary of disease comparisons

The epidemiological, morphometric, molecular,
and genetic comparisons between autism and
inflammatory disorders stated above highlight mul-
tiple lines of evidence in addition to humoral and
cellular immune abnormalities with the goal to
strengthen an etiological relationship between aut-
ism and autoimmune and inflammatory disorders.
It is not suggested that these comparisons support
any direct link between these disorders. However,
these shared observations between autism and
inflammatory disorders are used in support of the
development of a hypothesis for the apparent rise
in the prevalence of autism using the framework
of the immune hygiene hypotheses.
The hygiene hypothesis

The hygiene hypothesis is a widely held theory of
the etiology of asthma and atopic disorders which
builds on observations of rural versus urban distri-
bution of disease. It suggests that cleaner environ-
mental conditions in westernized countries, as
compared to developing countries, play a role in
the increase of the prevalence of these disorders
in western countries [106]. Moreover, low levels
, inflammation, and the hygiene hypothesis, Med Hypoth-
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Figure 1 Selected clusters of linkage data from Autism, Tourette syndrome, and Autoimmune/Inflammatory
disorders. All polymorphic markers come from independent genetic linkage whole genome scans. Each marker is
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of asthma and allergies are found with early expo-
sure to cats [107,108], being raised in a farm envi-
ronment [109] larger family size [110,35] day-care
attendance [111] and birth order [32–36].

Risk for asthma and atopy may be due to a lack
of early immune challenge of the post-natal im-
mune system by microbial or parasitic infection
possibly including environmental saprophytes and
gut commensal organisms, relative to the develop-
ing innate immune system [112]. Alteration in the
immune repertoire early in thymic development
may lead to the establishment of immune hyper-
Please cite this article in press as: Becker KG, Autism, asthma
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sensitivity ultimately leading to inflammatory
pathology.

In certain ways, the hygiene hypothesis is
counterintuitive, in that less clean polluted
environments were once thought to cause asth-
ma. Moreover, it is common practice in western
society to ‘‘protect’’ children from bacteria and
microorganisms through isolation indoors and
through overuse of antibacterial soaps. This
practice may be harmful in not allowing
robust immune challenge in early neo-natal
development.
, inflammation, and the hygiene hypothesis, Med Hypoth-
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The hygiene hypothesis is not without criticism.
The changes in the prevalence of atopic disorders
may have more complex etiologies with regard to
overall microbial load or helminth infection in the
general population [113–116] rather than with sim-
ple notions of personal or community hygiene
practices.
Autism and the hygiene hypothesis

As compared above, similarities between autism,
asthma, and inflammatory disorders raise the pos-
sibilities of shared mechanisms between these dis-
ease types. These include altered immune function
in both types of disorders, a similar sex bias at
diagnosis, similar birth order relationships, unex-
plained increased neonatal head circumference, a
similar increase in prevalence rates during the last
quarter century, a possible rural–urban distribu-
tion of the diagnosis with disease being more pre-
valent in urban environments, and shared
molecular and genetic factors between autism
and asthma. This adds multiple lines of evidence
that mechanisms important in the etiology of im-
mune and inflammatory processes may contribute
to the etiology of autism.

It is proposed here that the hygiene hypothesis,
a viable theory in the etiology of asthma, should be
considered in the etiology of autism. Underlying
factors important in the hygiene hypothesis,
whether they are truly related to hygiene practices
or to overall microbial or parasitic load, thought to
be relevant to the increase in asthma and atopy,
may contribute to the rise in the incidence of aut-
ism as well. Altered patterns of infant immune
stimulation may hypersensitize the early immune
system not toward allergic sensitivity and bronchial
hypersensitivity but to inflammatory or cytokine
responses affecting brain structure and function
leading to autism. It is well documented that im-
mune cytokines play an important role in normal
brain development as well as pathological injury
in early brain development [117,118]. It is hypoth-
esized that immune pathways altered by hygiene
practices in western society may effect brain struc-
ture or function contributing to the development of
autism.
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