Additive Effects on Si₃N₄ Oxidation/Volatilization in Combustion Environments

Elizabeth Opila, Cleveland State University Dennis Fox, NASA Glenn Research Center Craig Robinson, Dynacs Engineering Co.

Richard Wenglarz, South Carolina Institute for Energy Studies Matt Ferber, Oak Ridge National Laboratory

> DOE EBC Workshop November 6, 2002 Nashville, TN

Paralinear oxidation/volatilization of Si₃N₄ in water vapor

- Parabolic oxidation reaction to form silica scale
 Si₃N₄ + 6H₂O(g) = 3SiO₂ + 2N₂(g) + 6H₂(g)
- Linear volatilization reaction to remove silica scale
 SiO₂ + 2H₂O(g) = Si(OH)₄(g)

Additives in Si₃N₄

- Rare earth oxides added as sintering aids
- Additives present in grain boundary phase

AS800, AlliedSignal

- La₂O₃, Y₂O₃, SrO additives
- 7RE₂O₃•9SiO₂ grain boundary phase

SN282, Kyocera

- Lu_2O_3 additive
- Lu₂Si₂O₇ and Lu₂SiO₅ grain boundary phase

Oxidation of Si₃N₄ with additives

In dry oxygen:

• Silica scale forms

- High aspect ratio RE₂Si₂O₇ grains form on surface of scale
- Outward diffusion of RE cations control oxidation rate Cubicciotti and Lau, JECS, 126 [10] 1723 (1979).

How does surface RE₂Si₂O₇ formation affect volatility and recession in water vapor ?

Effects of surface RE₂Si₂O₇ formation on volatility

- Preferential volatilization of silica
- Surface enrichment of RE₂Si₂O₇

1300°C, 1 atm O₂, 100h, 0.4 cm/s

1300°C, 6 atm, 0.6 atm H₂O, 50h, 20 m/s

Do sintering additives offer an in situ opportunity for oxide surface modification that may lower volatility rate?

Experimental

- Si₃N₄ exposures, 1066-1400°C
 - TGA, 1 atm dry oxygen, 0.4 cm/s,
 - TGA, 1 atm, 0.5 atm H₂O, 4 cm/s,
 - HPBR, 6 atm, 0.6 atm H_2O , 20 m/s,
 - Turbine, 8.7 atm, 0.9 atm H₂O, 160-572 m/s
 Exxon, Mobile, AL Rolls Royce DOE Advanced
 Turbine Systems Program

Increasing SiO_2 volatility

• Weight change/recession, XRD, SEM, EDS

Si₃N₄ exposed in TGA

1300°C, 1 atm, dry oxygen, 0.4 cm/s, 100h

Oxidation, no volatilization AS800 $k_p = 3 \times 10^{-4} \text{ mg}^2/\text{cm}^4 \text{ h}$ cristobalite, La₂Si₂O₇

SN282 $k_p = 6 \times 10^{-5} \text{ mg}^2/\text{cm}^4 \text{ h}$ cristobalite, $Lu_2Si_2O_7$, Lu_2SiO_5

AS800 exposed in TGA 1300°C,1 atm, 0.5 atm H₂O, 4.4 cm/s, 100h

Si₃N₄ exposed in TGA 1300°C,1 atm, 0.5 atm H₂O, 4.4 cm/s, 100h

Paralinear oxidation/volatilization

AS800 $k_p = 9 \times 10^{-4} \text{ mg}^2/\text{cm}^4 \text{ h}$ $k_1 = 4 \times 10^{-3} \text{ mg}/\text{cm}^2 \text{ h}$ cristobalite, $\text{La}_2\text{Si}_2\text{O}_7$

SN282 $k_p = 4 \times 10^{-4} \text{ mg}^2/\text{cm}^4 \text{ h}$ $k_l = 2 \times 10^{-3} \text{ mg}/\text{cm}^2 \text{ h}$ cristobalite, $Lu_2Si_2O_7$

Si₃N₄ exposed in HPBR 6 atm, 0.6 atm H₂O, 20 m/s

AS800 exposed in HPBR 1300°C, 6 atm, 0.6 atm H₂O, 20 m/s, 50h

SN282 exposed in HPBR 1225°C, 6 atm, 0.6 atm H₂O, 20 m/s, 102h

Comparison of AS800 and SN282 exposed in HPBR 6 atm, 0.6 atm H_2O , 20 m/s

•AS800

- •1170°C: spalling of La₂Si₂O₇, sub-surface damage
- •1330°C: low melting phase, does not protect SiO₂

•SN282

•1225°C: "stalks" of SiO₂ with $Lu_2Si_2O_7$ on top

Si_3N_4 turbine vanes,

1066-1260°C, 8.7 atm, 0.9 atm H₂O, 160-570 m/s

Comparison of trailing edge thickness values for uncoated AS800 \diamondsuit and uncoated SN282 \triangle . Courtesy Matt Ferber, ORNL - Rolls Royce ceramic vane program – DOE ATS Program.

AS800 turbine vane 1066-1260°C, 8.7 atm, 0.9 atm H₂O, 160-570 m/s

No oxide found on surface by SEM. XRD indicates $La_2O_3 + Si_3N_4$. No $La_2Si_2O_7$ found.

This vane was in a position where less oxidation and lower velocities were expected than elsewhere in turbine.

 $La_2Si_2O_7$ or accumulated intergranular phase found on surface. Subsurface damage.

Photo courtesy of Matt Ferber, ORNL

SN282 turbine vane 1066-1260°C, 8.7 atm, 0.9 atm H₂O, 160-570 m/s, 1148h

Photo courtesy Matt Ferber, ORNL

Accumulation of $Lu_2Si_2O_7$ at vane surface

Summary

- AS800
 - Weight loss and recession rates same as pure Si₃N₄
 - T< 1300°C: poorly adherent surface acicular grains of (La,Y)₂Si₂O₇ formed
 - T>1300°C: low melting phase also formed
 - High velocity: surface oxide generally missing, La_2O_3 detected
 - Subsurface grain boundary damage occurred
- SN282
 - Weight loss and recession rates about half that of pure $\mathrm{Si}_3\mathrm{N}_4$ and AS800
 - Small, spherical Lu₂Si₂O₇ particles found on surface
 - $Lu_2Si_2O_7$ particles may be more adherent than $(La,Y)_2Si_2O_7$ grains on AS800
 - Subsurface grain boundary damage not observed

Factors which affect in situ surface modification of Si_3N_4 by RE additions

- Cation mobility effects
- CTE match between RE silicate, silica and Si₃N₄
- Phase stability of RE₂Si₂O₇
- Silica activity of RE₂Si₂O₇

Cation mobility effects on in situ surface modification of Si₃N₄ by RE additions

- Cation diffusivity increases relative to silica growth rate as temperature increases.
 - Larger RE₂Si₂O₇ grains on oxide surface as temperature increases. Demonstrated for Yb in SN362, Kyocera (Lee and Readey, J Am Cer Soc. 85 [6] 1435-1440, 2002)
- Cation mobility for Lu < La. Due to different grain boundary phases in AS800 and SN282?
 - Si_3N_4 oxidation rates lower for Lu_2O_3 additions than for La_2O_3 additions
 - Less $RE_2Si_2O_7$ found on surface in SN282 than on AS800
 - Depletion of RE from grain boundary phase leads to subsurface damage, cracking in AS800 but not in SN282 (Ferber)

Balance desired formation of surface $RE_2Si_2O_7$ with undesirable subsurface grain boundary depletion.

CTE effects on in situ surface modification of Si_3N_4 by RE additions

- Possible CTE mismatch between La₂Si₂O₇, SiO₂, and Si₃N₄
- No cracks observed for Lu₂Si₂O₇
- Unable to find CTE values for RE₂Si₂O₇ in open literature

AS800, HPBR, 1330°C, 196h

Phase stability effects on in situ surface modification of Si₃N₄ by RE additions

Reconstructive phase transformations of RE₂Si₂O₇ occur between 1200-1500°C
 (J. Felsche, Structure and Bonding 13, Rare Earths, 1973.)

Silica activity effects on in situ surface modification of Si₃N₄ by RE additions

Silica activity in this system nearly ideal. A factor of two reduction in silica volatility expected for $RE_2Si_2O_7$.

Summary

- AS800 in combustion environments
 - Weight loss/recession at least as great as CVD Si₃N₄
 - T<1300°C
 - La₂Si₂O₇ spalls off
 - Subsurface damage
 - T>1300°C
 - Low melting phase forms
 - Melt phase does not protect SiO₂
 - High velocity
 - La₂Si₂O₇ decomposes to La₂O₃
 - Bare Si₃N₄ observed

Summary

- SN282 in combustion environments
 - Volatility/recession reduced by a factor of two relative to CVD Si_3N_4 and AS800
 - Partial surface coverage by Lu₂Si₂O₇
 - Lu₂Si₂O₇ may offer slight protection from volatility to underlying silica at moderate to high velocities

Conclusions

- In combustion environments preferential volatilization of silica and surface enrichment of RE₂Si₂O₇ has been observed for Si₃N₄ containing RE additives.
- Factor of two reduction in weight loss and recession rates observed for SN282 in combustion environments may be due to reduction in silica volatility by enrichment of Lu₂Si₂O₇ surface phase.

Conclusions

- Factors which affect in situ formation of an adherent RE₂Si₂O₇ phase have been identified.
 - RE mobility: balance RE₂Si₂O₇ surface coverage with grain boundary depletion. Dependent on temperature, RE cation, and grain boundary phase.
 - CTE match of $RE_2Si_2O_7$ with SiO_2 and Si_3N_4
 - RE₂Si₂O₇ phase stability: Yb-, Lu-disilicates most stable
 - Ideal silica activity limits protective capability of in situ formed RE₂Si₂O₇ surfaces.
- EBC's needed for long-term application of additivecontaining Si₃N₄ in combustion environments.

Acknowledgments

- Ralph Garlick, XRD
- TGA
 Don Humphrey
 Susan Lewton
 QuynhGiao Nguyen