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Abstract: The forecast evaluation literature has traditionally focused on methods for assessing
point-forecasts.  However, in the context of risk models, interest centers on more than just a
single point of the forecast distribution.  For example, value-at-risk (VaR) models which are
currently in extremely wide use form interval forecasts.  Many other important financial
calculations also involve estimates not summarized by a point-forecast. Although some techniques
are currently available for assessing  interval and density forecasts, none are suitable for sample
sizes typically available.  This paper suggests an new approach to evaluating such forecasts.  It
requires evaluation of the entire forecast distribution, rather than a value-at-risk quantity.  The
information content of forecast distributions combined with ex post loss realizations is enough to
construct a powerful test even with sample sizes as small as 100.
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See, Jorion (1997) for a recent survey and Risk Publications’ VAR: Understanding and1

Applying Value-at-Risk for a compendium of research papers.

In addition to the CME, the Chicago Board of Trade, the London Futures and Options2

exchange and at least a dozen other exchanges currently use SPAN.  See Kupiec (1993) for a
detailed description.
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1. Introduction

The forecast evaluation literature has traditionally focused on methods for assessing point-

forecasts.  However, in the context of risk models interest centers on more than just a single point

of the forecast distribution.  For example, the widely used value-at-risk (VaR) approach to

quantifying portfolio risk delivers interval forecasts.   VaR is used to assess corporate risk1

exposures and has received the official imprimatur of central banks and other regulatory

authorities.  In 1997, a Market Risk Amendment to the Basle Accord permitted banks to use VaR

estimates for setting bank capital requirements related to trading activity.  

Many other important financial calculations involve estimates not summarized by a point-

forecast.  For example, the Standard Portfolio Analysis of Risk (SPAN) system, first implemented

by the Chicago Mercantile Exchange in 1988, has become a very widely used approach to

calculating margin requirements for customers and clearinghouse members.   SPAN is essentially2

a combination of stress tests performed on each underlying instrument in the relevant portfolio. 

In practice, risk managers and financial institutions are primarily concerned with two types

of model failure.  The most familiar model inadequacy is that predicted values-at-risk understate

(or overstate) the true amount of risk, given a particular confidence level.  In other words, the

model provides an inaccurate unconditional interval forecast.  A second concern is that, even if

the model delivers the correct average VaR, it may not do so at every point in time given

available information.  For example, in markets with persistent volatility VaR forecasts should be

larger than average when volatility is above its long-run average and vice-versa.

In response, Chatfield (1993) and Christoffersen (1998) have proposed methods for

evaluating interval forecasts.   Unfortunately, these approaches are ill-suited to sample sizes

typically available.  Indeed, there is an inherent difficulty in assessing the performance of VaR



Lopez (1997) extends Kupiec’s critique to some more recent backtesting methods.3

Credit Risk Models at Major U.S. Banking Institutions: Current State of the Art and4

Implications for Assessments of Capital Adequacy (1998), available on the world-wide web at
http://www.bog.frb.fed.us/boarddocs/creditrisk/

For regulatory purposes, this approach would extend reporting requirements of banks5

from one point on the forecast distribution to many points.  However, this would not be an
onerous extension of current regulations.  VaR estimates are generally obtained through
simulation or variance-covariance methods (assuming normality), so that many points of the
distribution are already available internally.
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models, as stressed by Kupiec (1996).   Kupiec argues that in order to verify the accuracy of VaR3

models very large data sets are required.  Intuitively, this is because users typically set the VaR

level deep in the tail of the distribution (the Accord stipulates a 99% level).  Violations are thus

expected to occur only once every 100 days.  

Data limitations are likely to be all the more relevant to credit risk models. 

Implementation of VaR-like credit models is an area of active research and has recently caught the

attention of regulators.  In 1998, the Federal Reserve System Task Force on Internal Credit Risk

Models summarized the advantages and shortcomings of such an approach.  4

Yet, at most banking institutions, internal credit risk models have not been in use long

enough to generate long historical performance data.  Moreover, assets in the banking book are

typically not valued at nearly the frequency of trading book instruments (which are marked-to-

market daily).  Finally, credit risk models are generally designed for much longer horizons than

trading risk models.  The Federal Reserve’s report indicates that risk horizons are typically one-

year.  As a result, there are very few non-overlapping observations with which to evaluate model

performance.

If risk models, of any kind, are to be evaluated with such small samples, a more general

perspective on model performance is required.  The current practice of restricting attention to a

single quantile, the VaR, must be broadened.  In particular, risk models can be accurately tested

by examining the sequence of forecasted distributions implied by the model.  Kupiec (1996) is

quite right that testing VaR models requires unrealistically large samples.  The solution is not to

abandon evaluation, but to require more from the model than just a VaR.   5
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yt f(yt)

F(yt)'m
yt

&4

f(u)du

4

(1)

In this way, the time series information contained in realized profits and losses is

augmented by the cross-sectional information in ex ante forecasted distributions.  The additional

information content is then readily converted into testable propositions.

Some tools for evaluating distribution (or density) forecasts are described in Crnkovic and

Drachman (1997) and Diebold, Gunther and Tay (1998).  Unfortunately, none of these methods

provide formal tests of forecast adequacy which can be applied in practice.  The Crnkovic and

Drachman test requires at least 1000 observations before it becomes reliable.  The Diebold et al.

approach is primarily qualitative (graphical) in nature and therefore not appropriate for testing.

The approach developed in the present paper extends the results of Rosenblatt (1952). 

Rosenblatt’s transformation is used in both Crnkovic and Drachman (1996) and Diebold, Gunther

and Tay (1998).  Since the tests associated with the Rosenblatt-transform are inadequate in

realistic sample sizes, a modified transformation and new testing framework are introduced.  The

proposed testing framework is then compared to existing methods in a set of simulations.

The remainder of the paper is organized as follows.  Section 2 briefly discusses the

existing approaches to assessing risk models.  Section 3 presents a new framework for testing

model output.  Section 4 discusses extensions of the basic framework to finding the source of

model failures.  Section 5 reports the results of Monte Carlo experiments.  Section 6 concludes.

2. Existing Approaches

It is useful to begin by defining the value-at-risk approach to quantifying portfolio risk. 

Let  be the change in the value of the portfolio of interest at time t.   For a given horizon T and

confidence level, , the VaR is a threshold such that losses greater than VaR occur with

probability 1- .  For example,  a 99% two-week VaR is the quantity, , such that . 

More formally, let the probability density of  be , and the associated distribution function 

.  We can write the  level VaR as a percentile by using the inverse distribution

function,
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Basle Committee on Banking Supervision (1996), “Supervisory Framework for the use of6

‘backtesting’ in conjuction with the internal models approach to market risk capital
requirements,” available at http://www.bis.org
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(2)

Statistical evaluation of the model has traditionally proceeded by checking the number of

observed violations -- the number of times losses exceed the VaR .  What makes this such a

daunting task is that datasets spanning a year or two yield at most a handful of violations.  For

example, the “backtesting” requirements set by the Basle Supervisory Committee (BSC) are based

on the number of times the observed losses violate the reported bound, , in one year (250

trading days).  In the 1996 report, the BSC directed that 4 observed violations be considered

within normal tolerance, whereas 5 violations warranted penalties.   Not surprisingly, Lucas6

(1998) finds that such an ad hoc approach is not likely to be an optimal monitoring system.

Rather than confining attention to a very small number of violations, it is possible to

transform ex ante forecast distributions into a series of independent and identically distributed 

(iid) random variables.  Specifically, Rosenblatt (1952) defines the transformation,

where  is the ex post portfolio profit/loss realization and  is the ex ante forecasted loss

density.   Rosenblatt shows that   is iid and distributed uniformly on (0,1).   Therefore, if banks

are required to regularly report forecast distributions, , regulators can use the Rosenblatt-

transformation and then test for violations of independence and/or of uniformity.  Moreover, this

result holds regardless of the underlying distribution of the portfolio returns, , and even if the

forecast model  changes over time.

A wide variety of tests would then be available both for independence and for uniformity. 

Crnkovic and Drachman (1997) suggest using the Kuiper statistic for uniformity which belongs to

the family of statistics considered in Durlauf (1991) and Berkowitz (1998).  Unfortunately,

nothing appears to be gained from their approach since it requires sample sizes on the order of

1000 (as the authors themselves note).  It is easy to see why this is so.  The Kuiper and related
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not explicitly modeled.
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statistics are based on the distance between the observed density of  and the theoretical density

(a straight line).  The distance between two functions,  and , of course requires a large

number of points.  Moreover, since the Kuiper statistic is , distance is indexed by

a maximum.  The maximum is a statistic not well suited to small samples.

Alternatively, Diebold, Gunther and Tay (1998) suggest the CUSUM and CUSUM-

squared statistics as well as some qualitative, graphical assessment approaches.  The CUSUM test

is an application of the Central Limit Theorem: normalized sums of independent U(0,1) are

asymptotically normal, N(.5,1/12).  It is therefore straightforward to construct confidence

intervals at any desired confidence level.  Unfortunately, it is easy to show that the CUSUM test

will have no power against some plausible alternatives.  That is, the probability of rejecting the

null will be zero even when the null is false.

Consider, for example, a series of portfolio returns, , which are generated from any

symmetric distribution.  Suppose that the forecaster’s model matches the true mean of   and is

symmetric but can be in any other respects wrong.  In particular, consider a risk model which fails

to capture fat-tails in the data.    Then we have the following result.7

Proposition 1  The CUSUM test has asymptotically zero power to reject the model for any fixed

confidence level.

Proof

See appendix.

Intuitively, this proposition arises because the CUSUM test checks whether the

Rosenblatt-transformed data is centered at .5 on the interval (0,1).  Even if the model ‘misses’ fat-

tails, the transformed data will indeed be centered on .5 (although not iid).  

It is important to emphasize that such examples are not merely mathematical oddities. 

Financial firms and regulators are in fact very concerned with the possibility that their risk models

do not adequately account for fat-tails.  This failing will become evident in the results of the

Monte Carlo experiments.  
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In fact, Christoffersen notes that violations should be uncorrelated with any variable8

available at the time forecasts are made.

This is the same weakness pointed out by Kupiec (1995) in the context of a different set9

of statistical tests.
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Diebold, Gunther and Tay (1998) also advocate some graphical approaches to forecast

evaluation.  Since the transformed data should be uniformly distributed, histograms should be

close to flat.  Diebold, et al. demonstrate that histograms of transformed forecast data can reveal

useful information about model failures.  Specifically, if the model fails to capture fat-tails, the

histogram of the transformed data will have peaks near zero and one. 

A final approach to validating forecast intervals (and therefore VaR models) is that of

Christoffersen (1998).  Christoffersen notes that risk-model violations should not only occur %

of the time, but should also be uncorrelated across time.   Combining these properties, the8

variable defined as  

should be a Bernoulli sequence with parameter  (if the model is correct).  Since violations occur

so rarely (by design), testing to see whether violations form a Bernoulli requires at least several

hundred observations.    The key problem is that Bernoulli variables take on only 2 values (0 and9

1) and takes on the value 1 very rarely.  We will make use of the full distribution of outcomes --

the goal is to extract as much information as possible from the available sample.

3. The likelihood-ratio testing framework

This section proposes a modification of the Rosenblatt-transformation.  It will deliver as

many iid N(0,1) variables as there are observations. As a result, it will be possible to construct

powerful likelihood-ratio tests.  Let  be the inverse of the standard normal distribution

function.  Then we have the following proposition for any sequence of forecasts, regardless of the

underlying distribution of portfolio profit and loss.
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first-order two-state Markov chain.

8

(3)

Proposition 2.  The statement, , implies that

,

Proof.

See appendix.

Proposition 2 suggests a simple twist on the Rosenblatt-transformation.  We can transform

the observed portfolio returns to create a series, , that should be iid standard

normals.  What makes it so useful is that, under the null, the data follows a normal distribution,

rather than uniform.  This allows us to bring to bear the powerful tools associated with the

Gaussian likelihood.  In particular, likelihood-ratio tests can now be implemented.

3a.  The basic testing framework

Suppose we have generated the sequence  for a given model.  Since 

should be independent across observations and standard normal, a wide variety of tests can be

constructed. In particular, the null can be tested against a first-order autoregressive alternative

with mean and variance possibly different than (0,1).   We can write,10

so that the null hypothesis described in proposition 2 is that, , and .  The

exact log-likelihood function associated with equation (3) is well known and is reproduced here

for convenience:

where  is the variance of .  For brevity, we write the likelihood as a function only of the
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(5)

unknown parameters of the model, .  

A likelihood-ratio test of independence across observations can be formulated as,

where the hats denote estimated values.  This test statistic is a measure of the degree to which the

data support a nonzero persistence parameter.  Under the null hypothesis, the test statistic is

distributed , chi-square with 1 degree of freedom,  so that inference can be conducted in the

usual way.  

Of course, the null hypothesis is not just that the observations are independent but that

they have mean and variance equal to (0,1).  In order to jointly test these hypotheses, define the

combined statistic as,

Under the null hypothesis, the test statistic is distributed .  Since the LR test explicitly

accounts for the mean, variance and autocorrelation of the transformed data, it should have power

against very general alternatives.  

3b. The expected value of large losses 

A type of model failure of particular interest to financial institutions and regulators is the

possibility that the expected loss associated with a violation is not modelled correctly.  Merely

knowing that large losses will occur 1% of the time is not likely to satisfy realistic risk

management needs.  It is also necessary to gauge the size of such losses should they occur. 

Indeed, it is entirely possible for a model to correctly deliver the VaR, so that =, while

the expected loss due to violation, , is completely inaccurate. 

Existing VaR tests cannot capture failures of this nature.  This is the case because

traditional backtesting procedures (including those of Christoffersen (1998)) parse all losses into

violations or non-violations.  They are silent on the size of the violations.

The methods of this paper, however, will have power against such alternatives.  Indeed,
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(6)

the likelihood-ratio framework described above can be extended to test virtually any departure of

model from data.  

To see how, it is useful to proceed in two steps.  First, we show that if the true data

process has fat-tails relative to the model, then the -transformed data will also be fat-tailed. 

Once this is established, straightforward likelihood-ratio tests for fat-tailed alternatives can be

applied to the transformed data.  We begin by defining fat-tailedness of the left tail.

Definition.  The distribution  is fat-tailed relative to a model, , if >  for all <k

where k is some constant.

This definition formalizes the intuitive idea that, beyond some point in the tail, a fat-tailed

distribution has relatively more mass.  Armed with this definition, the next step is to establish that

fat tails in the profit/loss data will show up in the transformed data.

Proposition 3.  If the observed data, , is fat-tailed relative to a model, then the 

-transformed data will be fat-tailed relative to the standard normal.

Proof.

Recall that the -transformed data can be written as a compound function,

, where  is the model forecast and  is the inverse normal distribution.  The

distribution of  is:

where  is the true density of the data, .  Rearranging equation (6) gives, , which

makes clear that if the model is correct, so that , then the transformed data is normally

distributed.  It also indicates that all model failures affect the -transformed data in a

straightforward way: the normal density is distorted by the error term, .  If the model fails to

capture fat-tailed data, then (by definition)  for large values of .  This implies that

 has fatter tails than a normal. QED.



L'&
T
2

ln2 %ln 2
&

1

2 2 j
yi<VaR

(yi&µ)2% j
yi<VaR

ln (
VaR&µ

).

LR ' &2 L(0,1,0)&L(µ̂, ˆ2,ˆ) .

&1

µ '0, '0
2
'1 L(0,0,1)

L(µ̂,ˆ, ˆ2)

2(3)

11

(7)

 (8)

It now remains to formulate a test of the tail and apply it to the -transformed data. 

We will again do this within an LR testing framework.  The idea is to focus exclusively on the

behavior of the data within the tail.  Any observations which do not fall in the tail, as defined by

less than the VaR, will be truncated.  Therefore a test statistic can be based on the likelihood of a

truncated normal.  The log-likelihood in this case (see, for example, Johnson and Kotz (1970))

may be written,

This expression contains only observations falling in the tail but they are treated as continuous

variables.  The first two terms in equation (7) represent the usual Gaussian likelihood of losses. 

The third term is a normalization factor arising from the truncation below VaR.

Equation (7) establishes a middle-ground between traditional VaR evaluation and the full

LR model described in section 3a.  VaR models have traditionally been assessed by splitting the

data into violations and non-violations. The number of violations are then compared to the

expected number of violations -- completely ignoring the magnitude of the violations.  The

truncated normal likelihood, on the other hand, uses the actual continuously valued observations

for the violations.  Tests based on equation (7) should therefore be more powerful than traditional

approaches while still allowing users to ignore model failures which may not be of interest --

failures which take place entirely in the interior of the distribution. 

To construct an LR test, note that the null hypothesis again requires that ,

and .  Therefore we can evaluate a restricted likelihood,   and compare it to an

unrestricted likelihood, .  As before, the test statistic is based on the difference between

the constrained and unconstrained values of the likelihood,

Under the null hypothesis, the test statistic is distributed .  This forms an LR test that the

mean and variance of the violations equal those implied by the model.
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4. Finding the Source of Model Failures

In practice, risk models necessarily require a variety of potentially restrictive modelling

assumptions.  Generally the first step is to choose a set of underlying factors, such as interest rates

and exchange rates.  These factors are assumed to drive changes in the prices of assets in the

portfolio of interest.   Distributional assumptions are then imposed on the factors in order to

generate Monte Carlo VaR forecasts or density forecasts.

The next step is to posit a pricing model for assets in the portfolio that may depend in

complicated ways on the factors.  For example, Black-Scholes may be used to relate changes in

interest rates and equities to changes in held options. 

In reality, each of these modelling assumptions is done for expediency and does not

represent a belief that the model is literally correct.  Therefore, simply rejecting the “correctness”

of a particular model is unsatisfying.  Rather, it is important to distinguish among sources of

model failure.  Is it the pricing model or the distributional assumptions for the factors which are

inaccurate?

The LR testing framework can be used to diagnose the source of model rejections.  The

key is to create pseudo-data which is not conditioned on any distributional assumptions.  This is

accomplished by using historical simulation in conjunction with any arbitrary pricing model.  By

comparing historical simulations to Monte Carlo data (both generated under the same pricing

model), it is possible to test the distributional assumptions.

To formalize the procedure, begin by writing the true portfolio price process as ,

where x is some set of factors with distribution, .  We denote the density of portfolio prices

 to emphasize that it depends on the (true) distributions of the factors.

The risk model to be tested is , where  is a pricing model and  is an assumed

distribution.  Both the pricing model and the distribution may not be correct.  The full model

 implies an entire forecast distribution, .  With a series of realized profit/loss data,

, the full model can be tested using the -transform as described in section 3.  

Suppose we do so and the LR test rejects the full model.  We now would like to test

whether the distributional assumptions are responsible for the rejection.  Consider the following

procedure:
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1.  Generate a series of pseudo-data by historical simulation from the pricing model,

, i=1,...,T.  The actual historical realizations of the factor prices are plugged

into the pricing model instead of making any distributional assumptions.

2.  Transform the pseudo-data using the density forecasts of the full risk model,

.  This transform differs from the test of section 3 only by using

historical simulations instead of actual realized portfolio price changes.  If the

distributional assumptions are correct, the  should be distributed iid standard normal.

3.  Apply the LR test (equation 5) to the transformed data, .  We refer to this test as

.

 It is easy to show that when the  test rejects the null, the distributional assumptions

are statistically false whether or not the pricing model is accurate.  The following proposition

formalizes this statement.

Proposition 4.  If , then the transformed data,  will be iid standard

normal, regardless of whether the pricing model is correct.

Proof.

Using the Jacobian of transformation as in the proof of proposition 3, the distribution of  is

, where  is the distribution of .   By construction, .  So in the

event that , = .  Therefore, the distribution of  collapses to ,

the standard normal. QED.

Of course, if we have rejected the full model but the  does not reject, we conclude

that the pricing model is the problem.  One important caveat to this approach should be noted. 

Rejection of both the full model and the distributional assumptions tells us nothing directly about
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If the model fails to include all of the relevant factors,  it will show up as a rejection of11

the pricing model.  It will not show up in a test of the distributional assumptions.

14

the pricing model.  The pricing model may or may not be valid.  To test it, it is first necessary to

have distributional assumptions which match the data.  Once that is done and the  no longer

rejects, the full model LR test can be re-calculated to see if the pricing model is adequate.   The11

suggested testing sequence is shown schematically in Figure 1.

5. Simulation Experiments

In this section, the traditional coverage test investigated by Kupiec (1995), the

Christoffersen (1998) test and the proposed LR test are compared in a set of Monte Carlo

experiments. The risk models will be modeled after techniques that are commonly used by risk

managers at large financial institutions for constructing VaR forecasts.  At the same time, the data

generating processes are necessarily kept fairly simple to allow for a computationally tractable

simulation study.

The first data generating process is consistent with Black-Scholes (1973) option pricing. 

Sequences of equity prices are drawn from a lognormal diffusion model with a drift of 12% and

diffusion coefficient of 10%.  The risk free rate is set to 7% and the process is simulated over a 6

month horizon.  I consider sample sizes 50, 100, 150, 200 and 250 which may be viewed as

corresponding to different observation frequencies since the horizon is kept constant.  The initial

value of the stock is $40. For each observation, I calculate the value of a call option with strike

price $44 using the Black-Scholes formula which is correct in this environment.

It is now possible to consider the performance of some common risk models in forecasting

one-step ahead changes in portfolio value.  Table 1 presents rejection rates of the true model and

two approximate models using various backtesting techniques.  In all cases, the desired

confidence level of the test is fixed at .95.  

The top panel of the Table, labeled size, reports the Monte Carlo rejection rates when the

model coincides with the true model, Black-Scholes.  The first two columns present rejection

rates for the conventional unconditional coverage test.  In the column labeled =.95, the

underlying risk model is a 95% VaR, while in the second column it is a 99% VaR.   Rejection
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rates in the first two columns are uniformly smaller than .05, indicating that the traditional VaR

test is under-sized in small samples.  This is perhaps not surprising -- with so few violations, very

large samples are required to generate rejections.  

Columns 3 and 4 reports coverage rates of the Christoffersen (1998) Bernoulli test.  At a

desired conditional coverage rate of 95%, the Christoffersen test is approximately correctly sized,

although not for the 99% model.

Column 5 displays the coverage of the LR test developed in the present paper.  In this

environment, the LR test appears to reject a bit too frequently.  

Lastly, in the two rightmost columns, the rejections rates of the LR  tests are shown fortail

cutoff point .95 and cutoff point .99.  These test statistics display approximately correct coverage.

The two lower panels show rejection rates when the model is wrong, and are therefore

labeled “power”.   The middle panel indicates that the risk model is a Delta approximation to

Black-Scholes.  That is, the change in portfolio value, , is approximated by a first order Taylor

series expansion of Black-Scholes.  Specifically, .  where is the innovation in the

underlying stock, where  is  and  is  (see, for example, Pritsker (1997)).  To

generate a risk forecast,  are randomly drawn from a lognormal many times.  Each of these

shocks is then converted into a value, , from which a distribution may be tabulated.

The lower panel show rejection rates for a second order Taylor series model.  This differs

from the first only by the addition of the second derivative with respect to .

With a 95% VaR, the traditional test --unconditional coverage -- and the Christoffersen

(1998) Bernoulli test for conditional coverage begin to show some rejections as the sample size

increases beyond about 200.  However, for many realistic situations such as credit risk model

forecasts, available samples will be much closer to 100.  In this range, there is not even a 5%

chance of rejecting a false model.   The situation is of course even worse for a 99% VaR.  On the

other hand, the LR test would detect the fat-tails 88% of the time even with only 100

observations.  Perhaps surprisingly, the LR  statistics do about as well as the full LR test.tail

Table 2 reports coverage rates for the   test statistic of distribution assumptions

described in Section 4.  Because all the models assume lognormality, the coverage rates should be

5% in all three panels.  Nevertheless, only the Christoffersen (1998) Bernoulli test (for a 95%
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VaR) and the LR tests attain correct coverage.  As with the basic framework, the other tests tend

to under-reject the null.

5b. Stochastic Volatility

A well documented source of fat-tailedness in financial returns is stochastic volatility --

autocorrelation in the conditional variance.  Moreover, as recent turbulence in financial markets

has underlined, risk models are particularly vulnerable at times of high volatility.  Closed-form

options pricing formulas valid in this context have recently become available (e.g., Heston (1993)

and Bates (1996).  Yet, they are rarely used in practice largely because of the high computational

cost of evaluating the integrals that appear in such formulae.12

This presents a natural framework for evaluating backtesting techniques.  Can models

which ignore the time-variation in volatility be rejected?  I generate data from Heston’s (1993)

mean-reverting stochastic volatility process,

Following Heston, I set the volatility of volatility, ,  to 10% and the long-run average of

volatility is also 10%.  All other parameters are left as before.  

Given this data, I then generate risk forecasts for a call option with the Black-Scholes

model, the delta method and the delta-gamma approximations.  In addition, I consider two ad hoc

models that feature modifications designed to capture the stochastic volatility.  I take the delta

approximation, , but instead of drawing  from a lognormal, it is drawn from the (correct)

stochastic volatility model.  This is akin to the widespread practice of plugging in time-varying

estimates of volatility into Black-Scholes.  The second model is an analogous modification of the

delta-gamma approximation.

The results are shown in Table 3.  The top panel again shows the probability of rejecting
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the model given that it is true, with a desired coverage of 5%.  These coverage rates are very

similar to those obtained in the Black-Scholes world of Table 1.

The next panel, labeled Black-Scholes, shows the rates at which Black-Scholes risk

forecasts are rejected.  All methods show increasing power as sample sizes increase.  However,

only 95% VaR models can be reasonably backtested by either traditional or Bernoulli tests - 99%

VaR models reject 6% or 7% even with 250 observations.  The LR statistic rejects the model

about 46% of the time in this sample size.  In this case, the LR  tests perform noticeably worsetail

than the full LR statistic.  The loss of information that results from confining attention to the tails

yields lower power.    

The next two panels indicate that even accounting for stochastic volatility, the delta

method is rejected far more often than Black-Scholes.  An unconditional test of VaR coverage

rejects 20% of the time with T=250, while the LR test rejects over 90% of the time.

Interestingly, with a second order approximation (delta-gamma models), the performance

of the LR tests deteriorates noticeably -- the model better fits the data -- yet the unconditional and

Christoffersen (1998) tests do not.

Table 4 shows the LR  test statistics for the distributional assumptions.  In this case, thedist

models which assume lognormal innovations should be rejected while those which assume

stochastic volatility should not -- for all pricing models.  Several interesting results emerge.  First,

power against lognormality is higher when the pricing model is Black-Scholes than when the

pricing model is a linear or quadratic approximation.  Second, the power of backtesting

techniques to reject distributional assumptions is substantially lower than the corresponding

power to reject the full model.  Although this is to be expected, it is perhaps surprising that

lognormality is rejected at 22% rather than 94% with a delta approximation.  It is possible that

these results reflect that relative robustness of linear models.

Tables 5 and 6 explore the Monte Carlo evidence corresponding to the flowchart shown in

Figure 1.  That is, I mimic the sequential testing of full model and then distributional assumptions

using the basic LR test and the LR  test.  For example, the top panel of Table 5 shows thedist

probability of rejecting lognormality, given that the Black-Scholes model has already been

rejected by the basic framework.  Again, the true data has stochastic volatility.  Although both the
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model and the distributional assumptions are false, the sequential procedure correctly rejects the

lognormal in 60% of trials

In addition, Table 5 indicates that sequential testing is correctly sized with a sample of 250

observations -- panels 2 and 4 report rejections of the stochastic volatility assumption.

Table 6 reports the results of three-step sequential tests.  For example, the top panel

reports the probability of rejecting stochastic volatility, given that Black-Scholes has been rejected

and lognormality has been rejected.  The results appear somewhat erratic, perhaps indicating that

1000 Monte Carlo trials is not sufficient to examine three-step testing.

Since Tables 1-6 fixed the confidence level of backtesting techniques at .95, it is of interest

to explore whether the results are sensitive to the confidence level chosen by the risk manager. 

Figure 2 illustrates the tradeoff between confidence level and power for the Black-Scholes

alternative in a sample size is 100.  The horizontal axis is the confidence level of the test, ranging

from .01 to .20.  For both the violation-based approaches (the unconditional coverage test and the

Bernoulli test) and the LR test, the benefit to lowering confidence levels from 95% to 80% is an

increase nearly twofold in power.

Figures 3 and 4 display power curves for the gamma approximation and delta-gamma

approximations, respectively.  The plots appear qualitatively similar to Figure 1, although the

values of the vertical axis are higher.  Figure 4, in particular, indicates that even in sample sizes of

100, the power of the LR test can be boosted from 60% to 70% by reducing the confidence level

from .95 to .9.

6. Conclusion

In recent years, there has been increasing concern among researchers, practitioners and

regulators over how to evaluate risk models.  Several authors have commented that only by

having thousands of observations can value-at-risk models be assessed.  In this paper, we follow

Crnkovic and Drachman (1997) and Diebold, Gunther and Tay (1997) in emphasizing that small

sample problems are exacerbated by looking only at violations of the value-at-risk.   Evaluation of

the entire forecast distribution, on the other hand, allows the user to extract much more

information from model and data.
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A new technique and set of statistical tests are suggested for comparing models to data. 

Through the use of a simple transformation, the forecast distribution is combined with ex post

realizations to produce testable hypotheses.  The testing framework is flexible and intuitive. 

Moreover, in a set of Monte Carlo experiments, the LR testing approach appears to deliver

extremely good power properties.  The probability of rejecting plausible alternatives is not only

higher than existing methods, but approaches 80 to 90% in sample sizes likely to be available in

realistic situations.
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Appendix
 

Proposition 1

Before proceeding to prove proposition 1, we will first need the following lemma.

Lemma

The ratio of two symmetric functions centered around the same mode is itself symmetric.

Proof

Define two functions, f(·) and p(·), both be symmetric about the a mode (and mean) Ex .t

Writing deviations of x  from its mean as y, we have  and , so thatt

 which is the desired result. QED.

Proof of proposition 1

Consider a series of portfolio returns, , which are generated from any symmetric

distribution.  Suppose that the forecaster’s model matches the true mean of   and is symmetric

but can be in any other respects wrong.  In particular, take a risk model which fails to capture fat-

tails in the data.  Then the Rosenblatt-transformed data is , where  is the

forecast density.  The distribution of  is given by the usual Jacobian of transformation

where  is the density of .  But  =   =1/ , which is identically

1/  by the fundamental theorem of integral calculus (see, for example, Courant (1961), p. 111). 

As a result, we can simplify equation (9) to

From the lemma, we have that  is symmetric.  Finally, note that range of  is the

open set (0,1).  Since the function is symmetric, it must be the case that its median and mean are

exactly .5.  The null of the CUSUM test is that  E =.5, so that it will have no power against this

alternative. 
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Therefore, even if the model ‘misses’ fat-tails or important dynamics, the Rosenblatt-

transformation will generate data centered at .5 on the interval (0,1) (although not iid). QED.

Proof of Proposition 2

First note that  by definition of the uniform-(0,1).  The distribution of 

is therefore given by,

Since  is a distribution it cannot take negative values.  This gives,

Straightforward application of the fundamental theorem of integral calculus (see, for example,

Courant (1961, p.111)), implies that 

the standard normal density. QED.



Table 1
Alternative Backtesting Techniques

Size and Power: Data Generated under Black-Scholes

 

Uncondit’l Uncondit’l
Coverage Coverage Bernoulli Bernoulli LR

=.95 =.99 =.95 =.99 =.95 =.99
LR LRtail tail

Size     

T= 50 0.018 0.004 0.032 0.004 0.068 0.068 0.106

T=100 0.014 0.002 0.044 0.012 0.066 0.040 0.060

T=150 0.008 0.000 0.030 0.010 0.110 0.050 0.048

T=200 0.026 0.000 0.058 0.006 0.094 0.044 0.040

T=250 0.022 0.000 0.052 0.006 0.096 0.040 0.036

Power: Delta Monte Carlo (lognormal)

T= 50 0.000 0.000 0.000 0.000 0.836 0.856 0.848

T=100 0.000 0.000 0.008 0.000 0.884 0.900 0.890

T=150 0.006 0.000 0.026 0.006 0.908 0.904 0.916

T=200 0.022 0.000 0.056 0.000 0.918 0.926 0.924

T=250 0.042 0.000 0.058 0.000 0.924 0.910 0.924

Power: Delta-Gamma Monte Carlo (lognormal)

T= 50 0.000 0.000 0.004 0.000 0.490 0.634 0.722

T=100 0.000 0.000 0.046 0.004 0.488 0.590 0.654

T=150 0.000 0.000 0.036 0.006 0.510 0.546 0.596

T=200 0.010 0.000 0.064 0.002 0.550 0.566 0.602

T=250 0.020 0.000 0.066 0.000 0.544 0.546 0.604

Notes: The Table compares the Monte Carlo performance of alternative techniques for validating forecast
models over 1000 simulations.  In each simulation, the portfolio of interest is comprised of three call
options on an underlying geometric Brownian motion.  Size indicates that the forecast model is Black-
Scholes and the null hypothesis is therefore true.  The panels labeled “power” display rejection rates for
approximate forecast models.  For the  unconditional and Bernoulli VaR (interval forecast) and LR  tail

procedures, the underlying VaR has a 95% or 99% confidence level.  For the backtesting procedures, the
desired confidence level is 95% (desired size is 5%).



Table 2
Alternative Backtesting of Distributional Assumptions

Size: Data Generated under Black-Scholes

Uncondit’l Uncondit’l
Coverage Coverage Bernoulli Bernoulli LR LR LR

=.95 =.99 =.95 =.99 =.95 =.99
tail tail

 

 Lrdist Black-Scholes

T=50 0.022 0.004 0.036 0.004 0.046 0.066 0.104

T=100 0.016 0.004 0.046 0.014 0.044 0.026 0.050

T=150 0.016 0.002 0.040 0.028 0.068 0.032 0.040

T=200 0.030 0.000 0.070 0.026 0.056 0.030 0.030

T=250 0.036 0.004 0.072 0.026 0.060 0.024 0.022

LRdist Delta Monte Carlo (lognormal)

T= 50 0.018 0.004 0.032 0.004 0.044 0.062 0.114

T=100 0.016 0.002 0.046 0.012 0.038 0.024 0.050

T=150 0.008 0.000 0.030 0.010 0.062 0.030 0.040

T=200 0.026 0.000 0.060 0.006 0.058 0.034 0.044

T=250 0.024 0.000 0.054 0.006 0.048 0.022 0.024

LRdist Delta-Gamma Monte Carlo (lognormal)

T= 50 0.022 0.000 0.040 0.004 0.040 0.064 0.106

T=100 0.024 0.002 0.064 0.014 0.038 0.034 0.068

T=150 0.010 0.000 0.026 0.010 0.068 0.036 0.050

T=200 0.026 0.002 0.060 0.008 0.056 0.034 0.046

T=250 0.026 0.000 0.050 0.004 0.048 0.018 0.024

Notes: The Table compares the Monte Carlo performance of alternative techniques for validating forecast
models over 1000 simulations.  In each simulation, the portfolio of interest is comprised of three call
options on an underlying geometric Brownian motion.  Size indicates that the forecast model is Black-
Scholes and the null hypothesis is therefore true.  The panels labeled “power” display rejection rates for
approximate forecast models.  For the  unconditional and Bernoulli VaR (interval forecast) and LR  tail

procedures, the underlying VaR has a 95% or 99% confidence level.  For the backtesting procedures, the
desired confidence level is 95% (desired size is 5%).



Table 3: Alternative Backtesting Techniques
Size and Power: Data Generated under Stochastic Volatility Process

Uncondit’l Uncondit’l
Coverage Coverage Bernoulli Bernoulli LR LR LR

=.95 =.99 =.95 =.99 =.95 =.99
tail tail

Size      

T= 50 0.014 0.002 0.034 0.002 0.078 0.072 0.118

T=100 0.006 0.000 0.044 0.012 0.068 0.050 0.062

T=150 0.006 0.000 0.036 0.008 0.114 0.066 0.072

T=200 0.018 0.002 0.054 0.004 0.090 0.046 0.042

T=250 0.032 0.002 0.062 0.012 0.108 0.060 0.048

Power: Black-Scholes

T= 50 0.080 0.024 0.088 0.032 0.180 0.128 0.130

T=100 0.156 0.024 0.204 0.036 0.284 0.202 0.148

T=150 0.192 0.030 0.236 0.058 0.420 0.330 0.270

T=200 0.240 0.050 0.272 0.072 0.446 0.358 0.334

T=250 0.264 0.056 0.298 0.070 0.462 0.384 0.358

Power: Modified delta Monte Carlo (sotch. vol. distribution)

T= 50 0.046 0.054 0.070 0.056 0.848 0.842 0.812

T=100 0.104 0.108 0.188 0.156 0.898 0.886 0.880

T=150 0.126 0.180 0.240 0.208 0.932 0.922 0.918

T=200 0.184 0.206 0.304 0.242 0.924 0.926 0.922

T=250 0.200 0.200 0.306 0.234 0.940 0.914 0.904

Power: delta Monte Carlo (lognormal) 

T= 50 0.050 0.066 0.080 0.070 0.828 0.828 0.824

T=100 0.120 0.126 0.204 0.164 0.892 0.878 0.866

T=150 0.160 0.192 0.276 0.228 0.928 0.924 0.914

T=200 0.204 0.234 0.312 0.264 0.918 0.922 0.920

T=250 0.246 0.224 0.344 0.258 0.946 0.940 0.936

Power: Modified delta-gamma Monte Carlo (stoch.vol. distribution) 

T= 50 0.122 0.182 0.156 0.188 0.456 0.472 0.486

T=100 0.204 0.230 0.270 0.270 0.602 0.558 0.552

T=150 0.238 0.292 0.318 0.334 0.670 0.610 0.602

T=200 0.266 0.322 0.346 0.338 0.722 0.672 0.656

T=250 0.288 0.318 0.380 0.356 0.760 0.684 0.676

Power: Delta-gamma Monte Carlo (lognormal) 

T= 50 0.122 0.180 0.152 0.188 0.462 0.470 0.494

T=100 0.202 0.240 0.274 0.276 0.614 0.594 0.604

T=150 0.244 0.310 0.330 0.354 0.712 0.646 0.632

T=200 0.290 0.334 0.372 0.354 0.742 0.680 0.676

T=250 0.320 0.342 0.420 0.376 0.772 0.722 0.714

Notes: The Table compares the Monte Carlo performance of alternative techniques for validating forecast models
over 1000 simulations.  In each simulation, the portfolio of interest is comprised of three call options on an
underlying stochastic volatility process taken from Heston (1993) which provides closed-form option prices.  The
panels labeled “power” display rejection rates for approximate forecast models.  For the  unconditional and
Bernoulli VaR (interval forecast) and LR   procedures, the underlying VaR has a 95% or 99% confidence level. tail

For the backtesting procedures, the desired confidence level is 95% (desired size is 5%).



Table 4
Alternative Backtesting of Distributional Assumptions

Size and Power: Data Generated under Stochastic Volatility Process

Uncondit’l Uncondit’l
Coverage Coverage Bernoulli Bernoulli LR LR LR

=.95 =.99 =.99 =.99 =.95 =.99
tail tail

Power: Black-Scholes

T= 50 0.146 0.136 0.168 0.140 0.212 0.160 0.194

T=100 0.142 0.146 0.234 0.214 0.246 0.176 0.164

T=150 0.118 0.148 0.198 0.216 0.282 0.202 0.214

T=200 0.152 0.186 0.268 0.256 0.330 0.250 0.236

T=250 0.162 0.168 0.298 0.268 0.346 0.236 0.214

Size: Modified delta Monte Carlo

T= 50 0.018 0.004 0.032 0.004 0.044 0.062 0.114

T=100 0.016 0.002 0.046 0.012 0.038 0.024 0.050

T=150 0.008 0.000 0.030 0.010 0.062 0.030 0.040

T=200 0.026 0.000 0.060 0.006 0.058 0.034 0.044

T=250 0.024 0.000 0.054 0.006 0.048 0.022 0.024

Power: Delta Monte Carlo (lognormal)

T= 50 0.030 0.006 0.038 0.006 0.072 0.088 0.172

T=100 0.024 0.002 0.072 0.012 0.120 0.110 0.140

T=150 0.020 0.004 0.044 0.018 0.152 0.122 0.148

T=200 0.040 0.008 0.080 0.018 0.192 0.168 0.198

T=250 0.048 0.002 0.100 0.014 0.222 0.178 0.180

Size: Modified delta-Gamma Monte Carlo

T= 50 0.018 0.000 0.030 0.004 0.046 0.068 0.100

T=100 0.022 0.004 0.066 0.014 0.046 0.032 0.058

T=150 0.014 0.000 0.026 0.006 0.068 0.038 0.052

T=200 0.026 0.000 0.060 0.006 0.060 0.034 0.042

T=250 0.032 0.000 0.054 0.006 0.042 0.016 0.024

Power: Delta-gamma Monte Carlo (lognormal)

T= 50 0.020 0.000 0.024 0.004 0.074 0.096 0.158

T=100 0.022 0.002 0.072 0.014 0.114 0.110 0.134

T=150 0.018 0.004 0.040 0.010 0.148 0.122 0.148

T=200 0.040 0.004 0.082 0.020 0.182 0.158 0.188

T=250 0.052 0.000 0.096 0.014 0.200 0.162 0.176

Notes: The Table compares the Monte Carlo performance of alternative techniques for validating forecast
models over 1000 simulations.  In each simulation, the portfolio of interest is comprised of three call
options on an underlying geometric Brownian motion.  Size indicates that the forecast model is Black-
Scholes and the null hypothesis is therefore true.  The panels labeled “power” display rejection rates for
approximate forecast models.  For the  unconditional and Bernoulli VaR (interval forecast) and LR  tail

procedures, the underlying VaR has a 95% or 99% confidence level.  For the backtesting procedures, the
desired confidence level is 95% (desired size is 5%).



Table 5
Testing the Distributional Assumption

 Stochastic Volatility Process

Pr(reject lognormal  | rejected Black-Scholes)

T= 50  0.644             
T=100                0.613            
T=150                0.571            
T=200                0.610                       
T=250                0.593                

Pr(reject stoch. vol.  | rejected lognormal delta Monte Carlo)

T= 50  0.048             
T=100                0.043            
T=150                0.066            
T=200                0.063            
T=250                0.051            

Pr(reject lognormality | rejected modified delta Monte Carlo)

T= 50  0.080             
T=100                0.134            
T=150                0.152            
T=200                0.201            
T=250                0.223            

Pr(reject stoch. vol.     | rejected lognormal delta-gamma Monte Carlo)

T= 50  0.082             
T=100                0.068            
T=150                0.095            
T=200                0.073            
T=250                0.052            

Pr(reject lognormal    | rejected modified delta-gamma Monte Carlo)

T= 50  0.132             
T=100                0.176            
T=150                0.191            
T=200                0.233            
T=250                0.224            

Notes: The Table compares the Monte Carlo rejection rates of the LRdist test described in the text and displayed
schematically in Figure 1.  Rejection rates are calculated from 1000 simulations.  In each simulation, the portfolio
of interest is comprised of three call options on an underlying stochastic volatility process for which the Heston
(1993) model provides an analytic option price.  ‘Modified’ indicates that the model assumes a stochastic volatility
process rather than the lognormal.  The nominal confidence level is fixed at 95%



Table 6
Testing a Second Distributional Assumption

Stochastic Volatility Process

Pr(reject stoch. vol     | rejected Black-Scholes. rejected lognormality)

T= 50  0.069             
T=100                0.046            
T=150                0.125            
T=200                0.059            
T=250                0.116            

Pr(reject lognormality   | rejected modified delta Monte Carlo, rejected SV distribution)

T= 50  0.150             
T=100                0.000            
T=150                0.258            
T=200                0.172            
T=250                0.250            

Pr(reject stoch. vol        | rejected delta Monte Carlo, rejected lognormal)

T= 50  0.030             
T=100                0.066            
T=150                0.080            
T=200                0.135            
T=250                0.037            

Pr(reject lognormality   | rejected modified delta-gamma Monte Carlo, rejected SV distribution)

T= 50  0.000             
T=100                0.091            
T=150                0.177            
T=200                0.250            
T=250                0.286            

Pr(reject stoch. vol         | rejected delta-gamma Monte Carlo, rejected lognormal)

T= 50  0.030             
T=100                0.018            
T=150                0.054            
T=200                0.046            
T=250                0.053            

Notes: The Table compares the Monte Carlo rejection rates of the LRdist test described in the text and displayed
schematically in Figure 1.  Rejection rates are calculated from 1000 simulations.  In each simulation, the portfolio
of interest is comprised of three call options on an underlying stochastic volatility process for which the Heston
(1993) model provides an analytic option price.  ‘Modified’ indicates that the model assumes a stochastic volatility
process rather than the lognormal.  The nominal confidence level is fixed at 95%
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Figure 1.  Sequential Testing Procedure 

                              

     

Notes to Figure:  The flowchart indicates the sequence of tests suggested in the text for
evaluating both a pricing model and a set of distributional assumptions.  Arrows labeled “reject”
indicate that the test statistic led to a rejection of the null hypothesis. 
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Figure 2
Alternative Backtesting Techniques

Power-Size Curves
Black-Scholes

           

T=100

T=250
Notes: The percent of Monte Carlo simulations in which alternative backtesting techniques
correctly rejected the null hypothesis that the forecast distribution coincides with the true
distribution.  The true distribution is that of three call options on a geometric Brownian motion. 
The sample sizes are set to 100, top graph, and 250, lower graph.
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Figure 3
Alternative Backtesting Techniques

Power-Size Curves
Delta Monte Carlo

T=100

T=250

Notes: The percent of Monte Carlo simulations in which alternative backtesting techniques
correctly rejected the null hypothesis that the forecast distribution coincides with the true
distribution.  The true distribution is that of three call options on a geometric Brownian motion. 
The sample sizes are set to 100, top graph, and 250, lower graph.



0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LR
Bernoulli
Uncondit.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LR
Bernoulli
Uncondit.

Figure 4
Alternative Backtesting Techniques

Power-Size Curves 
Delta-Gamma Monte Carlo

T=100

T=250

Notes: The percent of Monte Carlo simulations in which alternative backtesting techniques
correctly rejected the null hypothesis that the forecast distribution coincides with the true
distribution.  The true distribution is that of three call options on a geometric Brownian motion. 
The sample sizes are set to 100, top graph, and 250, lower graph.


