50 MODEL EVALUATION PROCEDURES

This section describes the procedures used to evduate the performance of the meteorological
and photochemica models using the routine and specia studies surface and aoft aerometric data for the
26-28 June and 17-19 July 1991 L MOS episodes.

5.1  Evaluation Approach

A rigorous modd evduation consists of two components. The operational evaluation entals
an assessment of the modd's ability to estimate correctly surface meteorologica or ar qudity variables
largely independent of whether the actual process descriptions in the modd are accurate. The
operationa evauation essentidly tests whether the predicted surface meteorologica and air qudity fieds
are reasonable, consistent and agree adequately with routindy available observations. In this study, the
operationa evauations focus on the various modd's reliability in reproducing hourly-average surface
wind speed, wind direction, temperature, mixing ratio and ozone concentrations across the 4.0/4.5 km
“urban” LMOS andysis domain.

The scientific evaluation addresses the redism of the meteorologicad and ar qudity
processes smulated by the modds through testing the modd as an entire system (i.e,, not merdy
focusing on surface wind and temperature or ozone predictions) as well as its component parts. The
scientific evaluaion seeks to determine whether the modd's behavior, in the aggregate and in its
component modules, is consgtent with prevailing theory, knowledge of physica processes, and
obsarvations. The main objective is to reved the presence of bias and internal (compensating) errorsin
the modd that, unless discovered and rectified, or a least quantified, may lead to erroneous or
fundamentally incorrect decisons based on modd usage.

Idedlly, the scientific evaluation congsts of a series of diagnostic and mechanidtic tests amed at:
(@ examining the existence of compensatory errors, (b) determining the causes of failure of a flawed
model, (c) stressing amode to ensure fallureif indeed the mode is flawed, (d) provide additiond insght
into modd performance beyond that supplied through routine, operationa evaluation procedures.

Practicaly, arigorous scientific evauation is sedom feasible due to the absence of the specific
measurements needed to test the process modules (e.g., soil moisture, Reynold=s stress measurements,
PBL heights, trace gas species, and so on).  Accordingly, the overal mode performance evauation in
this sudy is largely limited to operationd teting of the MM5 and RAMS modds= primary
meteorologica outputs (i.e., wind speed, wind direction, temperature, and moisture) and the CAMx and
MAQSIP models predictions of ozone and NOx. However, some components of the scientific
evauaion of the CAMx and MAQSIP modds s possible through examination of ground-level and aoft
primary and product species and species ratios.  In addition, corroborative anayses involving joint
andyds of emissons inventory estimates, air quality modd predictions and ambient measurements adds
to the scientific evauation.



The testing procedures used here include those employed in other regional model evauations
(see, for example, Steyn and McKendry, 1988; Ulrickson and Mass, 1990; Tesche and McNaly,
1993a,b, 1996a,b; McNadly and Tesche, 1996a,b, 1998; Seaman and Stauffer, 1996; Seaman et d.,
1997). These anadlyss procedures are incorporated into the Model Performance Evauation, Andyss,
and Platting Software (MAPS) system (McNaly and Tesche, 1994) which dso includes a variety of
other satistical and graphica testing methods for photochemica and meteorologicd models (Tesche et
a., 1990; ARB, 1992; EPA, 1991). Tables 5-1 through 5-4 list the specific numerical measures and
graphica tools used to evauate surface and aoft meteorologicd and ar quality mode predictions.
Below, we introduce the gatistica and graphical procedures used to test the models. All of these
performance measures and graphica procedures were employed in the evauations athough due to
reporting limitations, only the most pertinent results are presented and discussed in this report.

5.1.1 Statistical M easures

As noted, the operationd evauation process includes the cdculaion and andyss of severd
routine statistical measures and the plotting of specific graphicd displays to characterize the basic
performance attributes of the models. Below, we define the specific datistical measuresthat are used in
the evauation of the meteorologica and photochemica models.

Mean and Global Statistics. Severd datisticad measures are caculated as part of the meteorologica
and photochemical modd evauations. In some of the definitions below, the variable O represents a
mode-estimated or derived quantity, e.g., wind speed, temperature or concentration. The subscripts e
and o correspond to model-estimated and observed quantities, respectively. The subscript i refers to
the ith hour of the day.

Mean Estimation (M g). Themean mode esimate is given by:
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where N is the product of the number of smulation hours and the number of ground-level monitoring
locations providing hourly-averaged observationd data. O represents the modd-estimate at hour i.

Mean Observation (M g). The mean obsarvation is given by:
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Here, O represents the observations at hour i.



Average Wind Direction. Because wind direction has a crossover point between O degrees
and 360 degrees, standard linear statistical methods cannot be used to calculate the mean or standard
deviation. Evaduations by the EPA (Turner, 1986) suggest that the method proposed by Yamartino
(1984) peforms wdl in estimating the wind direction standard deviation. Specificaly, this quantity is
caculated by:

s.=arcsin(b) [ 1+ 0.1547 b®]

where:
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Here, aisthe measured hourly or instantaneous wind direction vaue.

Standard Deviation of Estimation (SDe). The standard deviation of the modd estimates is
given by:
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Standard Deviation of Observations (SDo). The standard deviation of the observations is
given by:
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Least Square Slope and I ntercept Regression Statistics. A linear least-squares regression is
performed to calculate the intercept (a) and dope (b) parametersin the following equation:

leei:a+b|:0i

This regression is performed for each set of hourly (or instantaneous) data to facilitate caculation of
severd error and sill atigtics.

Difference Statistics. Severd difference satistics are cdculated, based principally on hourly resduas
of model estimates and observations.

Residual (dj). For quantities that are continuous in space and time (i.e., wind speed, tempera
ture, pressure, phl height, species concentrations) difference (or resdud) datigtics are very useful.
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Difference datidics are based on the definition of a resdud quantity. A mixing ratio resdud, for

di= Ce(Xi 1t)'Co(Xi 1t)

example, isdefined as:
where dj is the i-th resdua based on the difference between modd-estimated (ce) and observed (cp)
mixing ratio & location x and timei.

Standard Deviation of Residual Distribution (SDr). The standard deviation of the residua
didribution is given by:
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wheretheresidud is defined as;
di = Ce(Xi ’t)'Co(Xi !t)

and MBE is the firs moment, i.e.,, the mean bias eror, defined shortly. This datistic describes the
"disperson” or soread of the resdud digtribution about the estimate of the mean. The standard
deviation is cdculated usng dl estimation-observation pairs above the cutoff level. The second moment
of the resdud distribution is the variance, the square of the standard deviation. Since the standard
deviation has the same units of measure as the variable (eg., meters/sec for wind), it is used here as the
metric for disperson. The sandard deviaion and variance measure the average "spread” of the
resduds, independent of any sysematic bias in the estimates. No direct information is provided
concerning subregiona errors or about large discrepancies occurring within portions of the diurnd cycle
athough in principle these, too, could be estimated.

Accuracy of Peak Model Estimates (A). Five rdated methods are used to evduate the
accuracy of the modd's estimate of the maximum vaue of a spatidly digtributed variable. This may be,
for example, temperature, wind speed, pressure, or concentration. In the definitions below we use the
peak one-hour average mixing ratios for discussion purposes, however, these measures may be applied
to other meteorologicd variables aswell.

Severa accuracy messures are used because there are different, informative, and plausible ways
of comparing the pesk measurement on a given day with modd esimates. These five accuracy
measures provide complimentary tests of the model's performance.

Paired Peak Estimation Accuracy. The paired pesk estimation accuracy, Ass, iSgiven by:
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A quantifies the discrepancy between the magnitude of the pesk one-hour average mixing ratio
mesasurement & a monitoring station, ¢, (X,f), and the estimated mixing retio at the same location, X, and
a the sametime, . Model estimates and observations are thus "paired in time and space” The paired
peak egtimation accuracy is a dringent modd evduation measure. It quantifies the modd's ability to
reproduce, a the same time and location, the highest observed mixing ratio during each day of the
episode.  The mode-estimated mixing ratio used in al comparisons with observations is derived from
bi-linear interpolation of the four ground level grid cdls nearest the monitoring station.

Ais is very sengtive to patid and tempora misdignments between the estimated and observed
mixing ratio fidds. These goace and time offsats may arise from spatid digolacements in the transport
fields resulting from biases in wind speed and direction, problems with simulation of water vapor phase
changes, precipitation processes, or subgrid-scae phenomenathat are not intended to be resolvable by
mesoscale prognostic models.

Temporaly-Paired Peak Estimation Accuracy. The temporally-paired pesk estimation accuracy,
A, isgiven by:

— Ce(X,t) :(io(xlf) x 100 %
Co(X,1)

A quantifies the discrepancy between the highest measurement a a monitoring sation and the highest
model estimate at the same station or any other grid cdl within a distance of, say, 25 km. This measure
examines the modd's ability to reproduce the highest observed vadue in the same subregion a the
correct hour.

Spatialy-Paired Pegk Estimation Accuracy. The spatialy-paired peak estimation accuracy, As, IS
given by:

_ cdX) - cio(Xf) «100%
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As quantifies the discrepancy between the magnitude of the peak one-hour average measurement a a
monitoring station and the highest estimated value at the same monitor, within 3 hours (before or after)
the peak hour.

Unpaired Peak Egtimation Accuracy. The unpaired pesk estimation accuracy, Ay,
isgiven by:

— Ce(X,t) :(':\O(X,t,) x 100 %
Co(Xit)

A, quantifies the difference between the magnitude of the pesk one-hour average measured value and
the highest estimated vaue in the modding domain, whether this occur a a monitoring station or not.
The unpaired peak estimation accuracy tests the modd's ability to reproduce the highest observed vaue
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anywhere in the region. This is the least dringent of the above four pesk edtimation measures
introduced thus far. It is a weak comparison relaive to the previous ones but is useful in coarse
screening for model fallures  This measure quickly identifies Stuations where the mode produces
maximum vauesin the region that sgnificantly exceed the highest observed va ues within the network.

Average Station Peak Edtimation Accuracy. The average station peak estimation accuracy, A, is
given by:
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Here, xj isthe ith monitoring Setion location. A is caculated by first determining the spatialy-paired
peak estimation accuracy, Ad, a each monitoring station. Thus, the average dtation pesk estimation
accuracy is Smply the mean of the absolute vaue of the Ay scores, where the temporal offset between
estimated and observed maxima at any monitoring station does not exceed three hours.

Mean BiasError (MBE). The mean biaserror isgiven by:

MBE = =& (co(x - ca (x 9)
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where N equas the number of hourly estimate-observation pairs drawn from al vaid monitoring sation
data on the smulation day of interest.

Mean Normalized BiasError (MNBE). The mean normdized bias error, often just cdled the
bias, isgiven by:
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Mathematicdly, the bias is derived from the average dgned deviation of the mixing retio (or
temperature) resduas and is cdculated using al pairs of estimates and observations above the cutoff
leve.

Mean Absolute Gross Error (MAGE). The mean gross error is caculated in two ways, Smilar
to the bias. The mean absolute gross error is given by:
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Mean Absolute Normalized Gross Error (MANGE). The mean absolute normalized gross
eror is

MANGE:ié |Ce (Xi lt)-CO (Xi 1t)|xloo%
N 2 Co (Xi 1)

The gross error quantifies the mean absolute deviation of the resduds. It indicates the average
unsgned discrepancy between hourly estimates and observations and is caculated for dl pairs. Gross
eror is a robust measure of overall mode performance and provides a useful basis for comparison
among modd smulaions across different model grids or episodes. Unless caculated for specific
locations or time intervals, gross error estimates provide no direct information about sub-regiond errors
or about large discrepancies occurring within portions of the diurnd cycle.

Root Mean Square Error (RMSE). The root mean square error is given by:
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The RMSE, as with the gross error, is a good overal measure of model performance. However, snce
large errors are weighted heavily, large errors in a smdl subregion may produce large a RMSE even
though the errors may be smdl esawhere.

Systematic Root Mean Square Error RMSEs). A measure of the modd's linear (or
systematic) bias may be estimated from the systematic root mean square error given by:
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Unsystematic Root Mean Square Error (RM SEy). A messure of the modd's unsystematic
biasis given by the unsystematic root mean square error, that is:
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The unsystematic difference is a measure of how much of the discrepancy between estimates and
observationsis due to random processes or influences outside the legitimate range of the modd.



A "good" mode will provide low vaues of the root mean square error, RMSE, explaining most of
the variation in the observations. The sysematic error, RMSE; should approach zero and the
unsystematic error RM SE;, should approach RMSE since;

RMSE” = RMSE, + RMSE.?

It is important that RMSE, RMSE;, and RMSE, are dl andyzed. For example, if only RMSE is
estimated (and it gppears acceptable) it could consst largely of the systematic component.  This bias
might be removed, thereby reducing the bias transferred to the photochemica modd. On the other
hand, if the RMSE condgts largely of the unsystematic component (RM SE,)), this indicates further error
reduction may require model refinement and/or data acquisition. It aso provides error bars that may
used with the inputs in subsequent sengitivity anayses.

Skill M easures. Three modd skill measures are cdculated, principdly for the meteorologica models.

Index of Agreement (I). Following Willmont (1981), the index of agreement is given by:
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This metric condenses dl the differences between model estimates and observations into one atistical

quantity. It istheratio of the cumulative difference between the model estimates and the corresponding

observations to the sum of two differences. between the estimates and observed mean and the
observations and the observed mean.  Viewed from another perspective, the index of agreement is a
measure of how well the modd estimates departure from the observed mean matches, case by case, the
observations departure from the observed mean. Thus, the correspondence between estimated and

observed vaues across the domain a a given time may be quantified in a single metric and displayed as
atime series. The index of agreement has a theoreticd range of 0 to 1, the latter score suggesting

perfect agreement.

RMS Skill Error (Skillg). The root mean square error skill ratio is defined as:
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Variance Skill Ratio (Skillygr). The varianceratio skill isgiven by:
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5.1.2 Graphical Tools

Many features of mode smulations are best andyzed through grephicd means. In addition to
reveding important quditative relaionships, graphica digplays dso supply quantitative information. The
main graphica displays used to andyze the meteorologica and air qudity modd performance results
indude:

> The temporal correlation between estimates and observations;

> The spatid digtribution of estimated ground-level fidds;

> The correlation among hourly pairs of estimates, observations and residuds,

> The varidion in bias and error estimates as functions of time and space;

> The degree of mismatch between volume-averaged modd estimates and point

measurements; and
> Log p/Skew-T plots of wind, temperature and mixing ratio.

These plotting methods are exemplified in the many recent modd evaduation sudies cited in the
reference section.

5.2 Meteorological Model Evaluation M ethodology

The god of the MM5/RAMS modd inter-comparison was to (a) assess whether and to what
extent confidence may be placed in the MM5 and/or RAMS modding systems to provide wind,
temperature, mixing, moisture, and radiation inputs to the CAMx and MAQSIP modéls for the 26-28
June 1991 and 17-19 July 1991 LMOS episodes, and (b) to compare and contrast the performance of
the two models amongst themsdves. We re-emphasize that the term "modeling system " refers to the
main MM5 or RAMS source code, its preprocessor and data preparation programs, the mapping
routines, and the supporting database.  Two factors limit the technicd rigor with which the two modds
can be compared:

> Inconsistent Grid Domains and Resolutions Between the MM5 and RAMS
Applications; In the planning of the MM5 modeling under CRC Project A-11 and the
[llinois EPA RAMS3c modding sudies, there was gpparently no coordination in the
choice of grid domains and horizontd resolution. For example, the MM5 grid nesting
scheme congsts of  horizonta grid scales of 4 km, 12 km, and 36 km, respectively. In




contrast, the RAMS nesting scheme employs nests of 13.5 km and 4.5 km resolution.
In addition to this incondgstency between the horizonta scale of resolution (i.e., 4 kmvs.
4.5 km; 12 km vs. 13.5 km), the domains chosen at each horizonta scae differ widdly.
For example, the RAMS modeling domain a 13.5 km scale most closely corresponds
to the MM5 domain a 36 km scde. The result of this inconsistency between horizonta
grid resolution and domain scae is that direct comparisons between models at the same
or dmilar horizontd grid resolutions or over comparable physca domains is not

possible.

> Evaluation Based on Processed Meteorological Fields Rather than Raw M odel
Output: Idedly, the evduaion of the meteorologica modds would be performed in
two stages: with the direct output from the prognostic mode, and with the find input to
the air quality modd. Since neither the MM5 or RAMS models were operated on the
identical grid meshes as the CAMx or MAQSIP air qudity models, some form of
mapping of the meteorologica files onto the air quality grids is necessary. Since these
intermediary processors modify the prognostic modd outputs in potentialy important
ways, an evauation before and after is vita. However, due to resource congraints,
only the smplest form of comparison was feasble inter-comparing the ar qudity
modd-ready MM5 and RAMS meteorologica files rather than a comparison between
the prognostic mode outputs.

Chapter 6 presents the highlights of the MM5 and RAMS comparative performance evauation. Full
details of the investigation are presented in the companion report by Tesche and McNally (1999).

53  Photochemical Model Evaluation Methodology

The objective of the CAMx and MAQSIP modd evauations was to test the models ability to
reliably estimate ground level and adoft ozone, precursor, and product species concentrations based on
routine and specid studies measurements collected in the Lower Lake Michigan during the 26-28 June
and 17-19 July 1991 LMOS fidd programs. As part of this testing process, specific sengtivity
gamulaions are included to examine the response of the model=s to prescribed VOC and/or NOx
emissions reductions as well as to changes in grid nesting dructure and the use of sub-grid-scae
paremeterizations of point source plumes (i.e, Plume-in-Grid treetments). In andyzing the evauation
results, we seek to identify areas of smilarity and dissmilarity in the two model=s responses. The air
quaity modd evduation will be carried out in two-phased process beginning with the smplest
comparisons of mode estimates and observations, progressing to more illuminating anayses of mode
sengtivity and uncertainty .

53.1 Phasel: Initial Screening
Phase 1 conssts of an initid screening of the ground level ozone results for both episodes. This

initial screening is amed a identifying obvious flaws or deficiencies in the base case modd smulations

5-10



than require immediate, focused diagnogtic analyses. If such deficiencies are not found it does not mean
that the smulation base case is declared acceptable; rather, it indicates that the andysis shifts for more
dressful testing of model performance (Phase 2 described below). The graphica procedures we find
most useful indlude the following:

> Spatid mean time series plots;

> Time series plots a particular monitoring stations;

> Daily maximum grounc-levd tile plots;

> Scatterplots of hourly prediction/observation pairs, and

> Time series plots of mean normalized bias and gross error.

Useful datigicdl metrics (including those most commonly employed in the literature) include the
accurecy of daily peak unpaired (time and space) prediction, daily mean normalized bias, daily mean
normdized gross error, and the average (across al monitoring gations) of the daily pesk unpaired
prediction accuracy. In the aggregate, these four dtatisticad measures and five graphica displays have
been found to be a rdiable sat of procedures for assessng whether a particular smulation suffers from
obvious flaws and/or performance problems. Lacking such a finding, one moves to the more rigorous
and informative second phase of the evauation.

We note that there has been (and continues to be) a tendency to terminate the modd evaluation
activity if the ozone performance results for the above metrics meet or exceed EPA=s so-cdled
performance gods (EPA, 1991). However, ample experience has shown that modd smulations
passng EPA=s performance goas for accuracy, bias and error may till possess sgnificant flaws and
vice versa. Accordingly, in this sudy we place only very limited weight on whether the CAMx and
MAQSIP evauation results meet or surpass the EPA gods. Experience in modeling, we believe, isa
better guide in judging the acceptability of a photochemical modd base case.

5.3.2 Phase2: Refined Evaluations

Phase 2 entails a more extensive evauation of the base case modd performance using, to the
fullest extent possble, dl avalable surface and doft data for ozone, precursor species VOCs and
oxides of nitrogen), and pertinent ratios of precursor and/or product species. This refined evauation is
amed at dressing the modd to ascertain whether more subtle flaws or deficiencies in the base case
model smulations exist than are revealed through smple ingpection of the surface ozone results. If such
deficiencies are not found in a models performance (say, for a precursor species such as PAR or NO) it
does not necessarily mean that the overdl smulaion should be declared unacceptable; rather, it
indicates that potential need to explore the matter further. For example, it would be unreasonable to
expect aregiona-scale mode to perform well for NO concentrations immediately downwind of amgor
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roadway segment since the model=s chemistry and physics are not formulated to treat such microscde
phenomena. Certainly available data bases do not support such localized performance testing.

The chemical species to be evaluated in Phase 11 include ozone, PAR, NO;, NOX, and NOxp.
where the latter species is actudly the sum of NOx and PAN. These species will be evauated at the
surface and doft contingent upon data availability (see beow). Additiond graphica displays will be
employed for these precursor/product species smilar to those used in Phase 1 for ozone. These new
displays will be generated for the full set of precursor/product species presently available in the 1991
LMQOS data base. Displays for species ratios (e.9.,03/NO,, PAR/NO,, and PAR/NO,;) will dso be
developed. A full set of grephica displays and datigticd results will be archived for each modd
configuration (CAMX/MM5, CAMX/RAMS, MAQSIP/MM5) and base case.

Supplementa graphical procedures to be used in Phase Il include:

> Spatia maps of arcraft traverses over Lower Lake Michigan with superimposed time
series plots of arcraft dtitude, Oz and NO, concentration measurements,

> Maps of integrated ozone and NOx mass fluxes across transport planes;
> Time series plots of totad mass accumulation rates at the ground and aoft.

If possible, we will compute 8-hr average ground level ozone peformance datigics  Findly,
gopropriate datistical and graphica displays will be used to compare the output of the CAMx and
MAQSIP models for each grid structure/emissions change smulation to help to identify the amilarities
and differencesin modd response to grid structure and/or emissions changes.

5.3.3 Available Aerometric Data for the Evaluations

Severd reports from the LMOS program have described the ar qudity data collected and
anadyzed as part of the study (see, for example, Luriaet d., 1992; Uthe et d., 1992; Main et d., 1993;
Korc et d., 1993). Here we summarize briefly the surface and doft air qudity data avallable for our
andyss.

Surface Air Quality Data

Data files containing hourly-averaged concentration measurements at humerous stations were
provided by LADCo for both modeling episodes. These data sets were reformatted for use by MAPS.
For the 26-28 June, 1991 episode, the following numbers of surface monitoring dtations were
represented in the data sets provided: ozone (68), NO (25), NO, (27), NOy (27), and VOCs (15). A
total of 10 stations had co-located measurements of NOx and VOCs. For the 17-19 July, 1991
episode, the following numbers of surface monitoring stations were available: ozone (69), NO (24),
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NO, (27), NOy (27), and VOCs (15). As before, atotal of 10 stations had co-located measurements
of NO, and VOCs.

Aloft Air Quality Data

Data sets from the various arcraft flights were aso provided by LADCo. These sets were
andyzed with the "Flying Data Grabber" routines in MAPS, producing a set of observation files that
could be compared with corresponding photochemica mode output. For the 26-28 June, 1991
episode, the totd number of arcraft flights available for andyss included: ozone (29), NO (30) and
NO, (27). For the 17-18 July period, the available flights included: ozone (18), NO (18) and NO
(17). Aircraft data were not collected on 19 July, 1991.
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