HQS Progress Report High Field Nb_{3} Sn Quadrupole Magnet

Shlomo Caspi

LBNL
Collaboration Meeting - CM11
FNAL
October 27-28, 2008

Introduction

LARP

- large bore (120mm)
- high field (15.2T) (3000 A/mm2, 4.2K, 12T)
- Gradient $219 \mathrm{~T} / \mathrm{m}$ at 1.9 K
- Accelerator quality

Collaboration :

- BNL - reaction and potting tooling
- FNAL - magnetic design, Islands, wedges, "end" spacers
- LBNL - cable, winding \& curing tooling, mechanical design, magnet assembly.

Outline:

- Magnetic design
- Mechanical design
- Tooling design.

Magnetics

Coil cross-section and parameters

Coil aperture		mm	120
Yoke OR		mm	260
Cable reference name		-	HQ-KC2
Bare cable width		mm	15.150
Bare cable mid-thickness		mm	1.437
Cable keystoning angle		deg	0.750
Cable insulation thickness		mm	0.100
Turns per quadrant IL/OL		-	20/26
Minimum pole width		mm	23.82
Midplane shim per octant		mm	0.140
Quench* gradient @ 1.9K		T/m	219.78
Quench*peak field @ 1.9K		T	15.29
Quench** ${ }^{\text {corrent @ 1.9K }}$		kA	19.57
Inductance @ quench*		mH / m	7.71
Stored energy @ quench ${ }^{\text {² }}$		MJ / m	1.48
Octant forces @ quench	F_{x} total	MN/m	3.38
	F_{y} total	MN/m	-5.03
	$\mathrm{F}_{\theta} \mathrm{IL} / \mathrm{OL}$	MN/m	2.63/3.15

[^0]
Iron saturation \& field quality - Roxie

LARP

Courtesy of V. Kashikhin

Time (s) : 1.

$|$| Field reference radius | | mm | 40 | |
| :---: | :---: | :---: | :---: | :---: |
| Harmonics
 $10 \mathrm{~T} / \mathrm{m}$ | b_{6} | - | -1.6317 | |
| | $\mathrm{~b}_{10}$ | - | -0.0156 | |
| | $\mathrm{~b}_{14}$ | - | -0.0106 | |
| | $\mathrm{~b}_{18}$ | - | -0.3910 | |
| Harmonics | b_{6} | - | 0.0000 | |
| | b_{10} | - | -0.0021 | |
| | $\mathrm{~b}_{14}$ | - | -0.0118 | |
| | $\mathrm{~b}_{18}$ | - | -0.4059 | |
| S. Caspi, LBNL | | | | |

gerkeley Lab

3D analysis - Tosca

Courtesy of V. Kashikhin

LARP

Field, Gradient, Stored-energy - Poisson

$T A B D$

HQ - poisson results

Short-sample straight section

$1.9 \mathrm{~K} / 4.4 \mathrm{~K}$	Layer 1			Layer 2		
A/mm^2	2000	2500	3000	2000	2500	3000
Imax (kA)	$17.5 / 15.98$	$18.58 / 16.95$	$19.45 / 17.72$	18.14	19.30	20.22
$B \max (T)$	$13.72 / 12.59$	$14.52 / 13.3$	$15.17 / 13.9$	13.55	14.34	14.98
Gmax (T/m)	$197 / 181$	$208 / 191$	$219 / 199$			

S. Caspi, LBNL

Mechanics

HQS - Mechanical Shell based Structure

LARP

Components

- Aluminum bolted collars => alignment
-remains in compression from assembly to operating conditions
- Iron pads and yoke
- Iron master key => alignment
- axial rods => axial preload
- 25 mm aluminum shell => azimuthal preload
- Coil and collar in compression
- Cooling area

Assembly

- 60 mm bladders located outside the key span
- 38 MPa pressure ($600+50$ microns clearance for 220 T/m)

570 mm outer diameter

- Collars, pads and key locations optimize to minimize stress

HQ - CAD Model

S. Caspi, LBNL

Design Concept and Guidelines

LARP

- Use modified pads and collars for coil alignment
- Collars for azimuthal alignment (not for pre-stress)
- Bolted pads for coils assembly
- Keys, bladders and Aluminum shell during final azimuthal assembly
- Axial rods to control axial forces
- Final pre-stress during cool-down by a shell based Aluminum structure
- Maintain full azimuthal contact between coil-island and island-collar
- Bladder and key locations optimized
- Structure to maintain pre-stress up to expected "short-sample" but coil pre-stress can be reduced if adjusted to the operating point.

HQ - Mechanical analysis Azimuthal stress in the coil

=> High but acceptable stress at short sample
Courtesy of H. Felice

LARP
 Axial Aluminum

 rods
S. Caspi, LBNL

Winding-Curing-Reaction-Potting

HQ - Cable optimization

Test winding samples

Variation of the keystone angle, thickness...
Up to now, 8 cables evaluated

Micrographs analyzed for each sample

- Edge deformation - strand distortion
- Deformation of the sub-elements
- Barrier
- Size of the facets on the surface of the cable

S. Caspi, LBNL

HQ - Winding tests

LARP

=> 120 mm cross-section: minimum pole width 23.8 mm

Winding tooling

LARP

Winding layer 1

LARP

Layer 2 spacer

Curing layer 1

LARP

Winding layer 2

LARP

Curing layer 2

LARP

Reaction tooling

HQ Schedule (updated 9/18/08)

Summary

- We have 90 m of cable to wind first practice coil
- Design of coils, spacers, end-shoes, layer-to-layer transition completed.
- Shipment of tooling for winding and curing in the next few weeks
- Reaction and potting tooling in final design stage.
- 3D magnetic design completed.
- 3D analysis of structure and assembly underway.

[^0]: * $\mathrm{J}_{\mathrm{c}}(12 \mathrm{~T}, 4.2 \mathrm{~K})=3000 \mathrm{~A} / \mathrm{mm}^{2}, \mathrm{~K}_{\mathrm{cu} / \mathrm{nonCu}}=0.87$

