

Tools for the Solution and Refinement of Problem Structures

Charles F. Campana, Ph.D. Bruker AXS Inc.

Current Software Tools

Bruker Programs

SMART (Chambers)
RLATT (Pressprich)
CELL_NOW (Sheldrick) [Version 2008/2]
XPREP (Sheldrick) [Version 2008/2]
SAINT (Chambers) [Version 7.53A]
SHELXTL (Sheldrick) [Version 2008/2]
SADABS & TWINABS (Sheldrick) [Version 2008/1]
APEX2 [Version 2008.2] (Kaercher et al.)

Other Programs

ROTAX (Parsons) [February 2006 Version] PLATON (Spek) [August 2007 Version] JANA2006 (Petricek & Dusek) [March 2008 Version] Mercury (CCDC) [Version 1.4.2]

Recommended Reference for Problem Structures

Müller, P. *Crystal Structure Refinement*. 1st ed. New York, NY: Oxford University Press, 2006. ISBN: 0198570767

Application of Advanced Tools to Problem Structures

Non-Merohedral Twins

Diagnosis – CELL_NOW, RLATT, ROTAX Processing – SAINT (w/ multiple OM), TWINABS Solution – XM or XS (HKLF 4 data) Refinement – XL (BASF + HKLF 5)

Pseudo-Merohedral Twins

Diagnosis – XPREP, ROTAX Processing – SAINT, SADABS Solution – XM or XS Refinement – XL (BASF + TWIN)

Merohedral Twins

Diagnosis – XPREP, ROTAX Processing – SAINT, SADABS Solution – XM or XS Refinement – XL (BASF + TWIN)

Inversion (Racemic) Twins

Diagnosis – XPREP, ROTAX Processing – SAINT, SADABS

Solution – XM or XS

Refinement – XL (BASF + TWIN)

Modulated Structures

Diagnosis – SMART, APEX2, RLATT Processing – SAINT (w/ QVEC inst.), SADABS Solution – XM or XS Refinement – JANA 2000(Petricek & Dusek)

Introduction and Overview Examples of Difficult Structures

Indexing, Unit Cell Determination Problems

- Split Crystals
- Non-Merohedral (Rotational) Twinning
- Modulated Structures

Structure Solution Problems

- Incorrect Space Group
- Pseudo-Merohedral Twinning
- Merohedral Twinning

Structure Refinement Problems

- Disordered Structures
- Pseudo-Merohedral Twinning
- Merohedral Twinning

Background

- Organometallic Re complex (C₂₀H₃₄B₆Cl₂Re₂)
- Monoclinic $P2_1/n$, Z = 4

Problems

- R1 = 20%
- Many atoms with NPD U-values
- Incorrect structure (3 Cl atoms per molecule)

7

Bruker AXS

Other important details

- 330 violations of systematic absence rules for P2₁/n
- 1679 Inconsistent equivalents
- R(int) = 0.2042 R(sigma) = 0.1212
- Many significant correlations in refinement
- Recommended weighting scheme: WGHT 0.0000 920.9722
- K 51.471 11.087 4.180 2.588
- Most Disagreeable Reflections

h	k	1	Fo^2	Fc^2	Delta(F ²)/esd	<pre>Fc/Fc(max)</pre>	Resolution(A)
-8	4	1	16585.63	7.4	7 6.25	0.004	1.25
-12	2	2	25248.76	151.1	5 6.16	0.017	0.87
8	6	4	20892.44	153.2	4 6.03	0.017	1.10
8	2	8	36143.16	635.9	5 6.03	0.035	1.01
-9	4	2	17985.62	302.2	0 5.99	0.024	1.12
-9	6	3	12074.38	93.0	3 5.94	0.013	1.07
12	2	2	18911.99	2.1	3 5.93	0.002	0.85
12	4	1	13717.04	11.6	9 5.91	0.005	0.85

Actual Unit Cell (Unconstrained)

CELL	10.5146	16.7855	14.3817	89.9607	94.7430	90.0833	2529.575
CELLSD	0.0011	0.0017	0.0014	0.0019	0.0017	0.0017	0.809

XPREP Output

 Option A: FOM = 0.089 deg.
 MONOCLINIC
 P-lattice
 R(sym) = 0.224 [
 5389]

 Cell:
 10.515
 16.785
 14.382
 89.96
 94.74
 90.08
 Volume:
 2529.57

 Matrix:
 1.0000
 0.0000
 0.0000
 1.0000
 0.0000
 0.0000
 1.0000

 Option B: FOM = 0.000 deg.
 TRICLINIC
 P-lattice
 R(sym) = 0.000 [
 0]

 Cell:
 10.515
 14.382
 16.785
 89.96
 89.92
 85.26
 Volume:
 2529.57

 Matrix:-1.0000
 0.0000
 0.0000
 0.0000
 1.0000
 0.0000
 1.0000

Option A selected (XPREP suggested Option B!!!)

Systematic absence exceptions:

	-21-	-a-	-C-	-n-
N	21	458	458	450
N I>3s	11	377	358	337
<i></i>	1.1	22.0	22.2	8.8
<i s=""></i>	6.9	13.3	12.4	10.0

True Space Group is TRICLINIC P-1

Refinement in P-1 Space Group

- Unit Cell Parameters
 - CELL 0.7107310.514614.381716.785589.96189.91785.257ZERR4.000.00040.00060.00070.0010.0010.001
- 0 Inconsistent equivalents
- R(int) = 0.0267 R(sigma) = 0.0453
- R1 = 0.1342
- Correct structure, but many NPD U-values
- Recommended weighting scheme: WGHT 0.0000 649.6266

Most Disagreeable Reflections

h	k	1	Fo ²	Fc^2	Delta(F^2)/e	sd Fc/Fc(max)	Resolution(A)
7	-7	1	11267.14	18.66	6.84	0.006	1.16
-5	4	4	8311.13	508.36	6.28	0.030	1.61
-2	5	3	3458.91	8.18	6.08	0.004	2.23
-5	3	3	8537.00	4.83	5.81	0.003	1.77
7	-8	3	13399.65	126.62	5.68	0.015	1.08
-3	8	4	6747.74	668.96	5.64	0.034	1.45
-5	-3	7	5815.16	320.09	5.63	0.024	1.53
7	-3	5	12077.00	413.54	5.57	0.027	1.29
0	4	2	3441.84	499.71	5.56	0.029	3.30

Insert LIST 4 instruction into .INS file and repeat refinement

Run ROTAX program from Command Prompt

ROTAX output

Insert TWIN and BASF instructions into .INS file and repeat refinement

```
PLAN 5
TWIN -1 0 0 0 -1 0 0 0 1
BASF 0.5
WGHT 0.040000
```

Results of twinned refinement

- BASF 0.23970
- R1 = 0.0329, wR2 = 0.0798, GooF = 1.066
- Correct structure, no NPD U-values, normal weighting scheme

Bruker AXS

12

Bruker AXS

Background

Form III of 2,2',4,4',6,6'-Hexanitroazobenzene (HNAB-III)

Two previous polymorphs (HNIABZ11 & HNIABZ20) characterized and published - E. J. Graeber & B. Morosin, Acta Cryst, B30, 310 (1974).

Beautiful orange plate-like crystals obtained (Sandia NL 1977)

X-Ray photographs indicated orthorhombic C222₁

Excellent data collected on Picker FACS-I diffractometer (Sandia NL) & later Syntex P3/F (UNM)

No solution after much effort (MULTAN etc.) – 30 years!

Hemisphere of data collected on SMART CCD system (Sandia NL 2003)

Standard XPREP run (accept default parameters)

Search for higher metric symmetry
Identical indices and Friedel opposites combined before calculating R(sym)
Option A: FOM = 0.008 deg. ORTHORHOMBIC C-lattice R(sym) = 0.046 [3489]
Cell: 15.401 41.471 5.524 90.00 90.00 89.99 Volume: 3528.25
Matrix: 1.0000 0.0000 0.0000 1.0000 0.0000 2.0000 0.0000 -1.0000 0.0000

Option A selected

Standard XPREP run (accept default parameters)

SPACE GROUP DETERMI	NATIO	1							
Lattice exceptions:	P	A	в	C	I	F	Obv	Rev	All
N (total) =	0	3801	3801	0	3844	3801	5050	5060	7586
N (int>3sigma) =	0	2826	2826	0	2903	2826	3754	3734	5596
Mean intensity =	0.0	9.1	9.1	0.0	21.4	9.1	18.4	18.0	18.3
Mean int/sigma =	0.0	9.8	9.8	0.0	11.2	9.8	10.5	10.5	10.6
Crystal system O and	d Lati	cice typ	pe C sel	ected					

Mean |E*E-1| = 0.616 [expected .968 centrosym and .736 non-centrosym] Chiral flag NOT set

Systematic absence exceptions:

	c	n	-C-	-n-	a	b	21
N	229	229	62	62	498	498	7
N I>3s	166	166	42	42	373	373	0
<i></i>	14.3	14.3	11.7	11.7	8.5	8.5	0.3
<i s=""></i>	12.0	12.0	10.8	10.8	9.9	9.9	0.7

dentical indices and Friedel opposites combined before calculating R(sym) Option Space Group No. Type Axes CSD R(sym) N(eq) Syst. Abs. CFOM [A] C222(1) # 20 chiral 1 155 0.046 3489 0.7 / 9.9 3.10 Option [A] chosen

Standard XPREP run (accept default parameters) ---File hnab.ins set up as follows: TITL hnab in C222(1) CELL 0.71073 15.4015 41.4709 5.5240 90.000 90.000 90.000 8.00 0.0007 0.0023 0.0005 0.000 0.000 0.000 ZERR LATT -7 SYMM -X, -Y, 0.5+ZSYMM -X, Y, 0.5-Z SYMM X, -Y, -Z SFAC C H N O UNIT 96 32 64 96 TEMP 23 TREF HKLF 4 END

7586 Reflections written to new reflection file hnab.hkl

XPREP run (change default parameters)

TOLERANCES CHANGED

Maximum deviation (deg.) in higher symmetry cell search = 1.000
Threshold (deg.) for terminating search = 0.000
R(int) maximum for terminating cell search = 0.600
R(int) maximum for space group determination = 0.300
Minimum number of data in group for syst. absence test = 5
Maximum mean I/sigma(I) for systematic absences = 2.554
Minimum I/sigma gap between absences and rest = 2.109

--

XPREP run (change default parameters)

Option A: FOM =	0.008 deg. OF	2THORHOMBI	C C-lattice	R(sym) =	0.046 [3489]
Cell: 15.401	41.471 5.524	90.00	90.00 89	.99 Volum	ne:	3528.25
Matrix: 1.0000	0.0000 0.0000	1.0000	0.0000 2.0	000 0.0000	-1.0000	0.0000
Option B: FOM =	0.000 deg. MC	DNOCLINIC	P-lattice	R(sym) =	0.032 [2165]
Cell: 15.401	5.524 22.118	90.00	110.37 90	.00 Volum	ne:	1764.13
Matrix: 1.0000	0.0000 0.0000	0.0000	1.0000 0.0	000 0.0000	0.0000	1.0000
Option C: FOM =	0.008 deg. MC	0NOCLINIC	C-lattice	R(sym) =	0.042 [2353]
Cell: 41.471	15.401 5.524	90.00	90.00 90	.01 Volum	ne:	3528.25
Matrix:-1.0000	0.0000 -2.0000	1.0000	0.0000 0.0	000 0.0000	-1.0000	0.0000
Option D: FOM =	0.008 deg. MC	0NOCLINIC	C-lattice	R(sym) =	0.042 [2415]
Cell: 15.401	41.471 5.524	90.00	90.00 89	.99 Volum	ne:	3528.25
Matrix:-1.0000	0.0000 0.0000	-1.0000	0.0000 -2.0	000 0.0000	-1.0000	0.0000
Option E: FOM =	0.000 deg. TR	RICLINIC	P-lattice	R(sym) =	0.000 [0]
Cell: 5.524	15.401 22.118	69.63	90.00 90	.00 Volum	ne:	1764.13
Matrix: 0.0000	1.0000 0.0000	-1.0000	0.0000 0.0	000 0.0000	0.0000	1.0000

Option B selected

XPREP run (change default parameters)

SPACE GROUP DETERMINATION Lattice exceptions: P C Ι \mathbf{F} Obv A11 Α в Rev N (total) = 0 3780 3791 3801 3777 5686 5054 5050 7586 N (int>3sigma) = 0 2767 2789 2826 2766 4191 3734 3750 5596 Mean intensity = 17.6 17.1 9.1 17.6 14.6 18.9 18.2 18.3 0.0 Mean int/sigma = 0.0 10.5 10.6 9.8 10.5 10.3 10.6 10.5 10.6 Crystal system M and Lattice type P selected Mean |E*E-1| = 0.624 [expected .968 centrosym and .736 non-centrosym] Chiral flag NOT set Systematic absence exceptions: -21--a--C--n-7 498 N 500 496 N I > 3s0 373 337 336 8.5 18.2 18.0 <I> 0.3 <I/s> 0.7 9.9 10.4 10.4 dentical indices and Friedel opposites combined before calculating R(sym) Option Space Group No. Type Axes CSD R(sym) N(eq) Syst. Abs. CFOM

[A] P2(1)# 4 chiral135430.03221650.7 /9.92.29[B] P2(1)/m# 11 centro14020.03221650.7 /9.913.08Option [A] chosen

XPREP run (change default parameters – M option)

```
File hnab3.ins set up as follows:
TITL hnab3 in P2(1)
CELL 0.71073 15.4015 5.5240 22.1182 90.000 110.367 90.000
     4.00 0.0007 0.0005 0.0011 0.000 0.001 0.000
ZERR
LATT -1
SYMM -X, 0.5+Y, -Z
SFAC C H N O
UNIT 48 16 32 48
TEMP 32
FIND
       33
PLOP
       44
             55
                  62
MIND 1.0 -0.1
NTRY 1000
HKLF 4
END
```

7586 Reflections written to new reflection file hnab3.hkl

XM Results

REM TRY 49 FINAL CC 73.23 TIME 10 SECS REM Fragments: 31 31 REM TITL hnab3 in P2(1) CELL 0.71073 15.4015 5.5240 22.1182 90.000 110.367 90.000 ZERR 4.00 0.0007 0.0005 0.0011 0.000 0.001 0.000 LATT -1 SYMM -X, 0.5+Y, -Z SFAC C H N O UNIT 48 16 32 48

XM Results

XL Results - R1 = 17%

XL Results – R1 = 17%

Most Disagreeable Reflections (* if suppressed or used for Rfree)

h	k	1	Fo^2	Fc^2	Delta(F^2)/esd	Fc/Fc(max)	Resolution(A)
-2	1	12	555.54	17.3	30 7.18	0.025	1.74
-1	0	11	233.91	7.5	52 5.90	0.017	1.96
-2	-1	12	619.16	17.3	35 5.89	0.025	1.74
-13	0	11	403.33	28.8	37 5.54	0.032	1.15
5	0	2	1820.13	310.9	96 5.31	0.107	2.56
8	3	5	262.33	5.5	53 5.12	0.014	1.15
5	0	6	735.08	138.4	45 5.11	0.071	1.91
2	3	10	151.73	7.9	99 4.84	0.017	1.30
-9	0	11	269.03	7.1	LO 4.77	0.016	1.51
-4	1	5	371.20	74.3	39 4.74	0.052	2.87
-11	0	12	265.56	28.4	4.74	0.032	1.28
2	-1	13	270.30	24.3	35 4.71	0.030	1.41
-1	0	19	419.68	61.0	03 4.70	0.047	1.12
-5	0	10	487.22	72.2	29 4.62	0.051	2.06
-1	0	21	241.18	7.4	4.59	0.016	1.01
4	3	3	163.01	20.7	78 4.59	0.028	1.54
-11	0	3	236.22	19.8	33 4.51	0.027	1.38
4	3	5	214.44	39.5	52 4.44	0.038	1.45
-4	3	6	185.38	9.5	78 4.43	0.019	1.58
2	1	13	253.70	24.3	36 4.40	0.030	1.41
-8	1	11	165.49	17.4	4.38	0.025	1.55
11	0	2	178.01	5.9	94 4.28	0.015	1.25
-2	1	16	210.01	14.0	54 4.24	0.023	1.32

ROTAX Results

180	.0	degree	e rotatio	n about	1.	0.	0.	direct	lattice	direction	:
[[[1. 0. -0.	.000 .000 .999	0.000 -1.000 0.000	0.000] 0.000] -1.000]							
Fig	ure	e of me	erit =	0.11 ****	* * * *	* * *					

No reflections omitted

Final XL Results – R1 = 3.17%

TITL hnab3 in P2(1) CELL 0.71073 15.4015 5.5240 22.1182 90.000 110.367 90.000 ZERR 4.00 0.0007 0.0005 0.0011 0.000 0.001 0.000 LATT -1 SYMM -X, 0.5+Y, -ZSFAC C H N O UNIT 48 16 32 48 TEMP 32 L.S. 4 ACTA FMAP 2 PLAN 10 TWIN 1 0 0 0 -1 0 -1 0 -1 WGHT 0.029700 0.003436 EXTI BASF 0.44866 FVAR 0.21356

Final Publication:

M. A. Rodriquez, C. F. Campana, A. D. Rae, E. Graeber and B. Morosin, Acta Cryst. C61, o127o130 (2005)

Background

CELL 0.71073 16.5617 16.5617 15.4439 90.000 90.000 120.000 ZERR 6.00 0.0023 0.0023 0.0031 0.000 0.000 0.000 Hexagonal / Trigonal unit cell, Z = 6Organometallic Ru complex ($C_{30}H_{24}N_6Ru$) -Ru(bipy)₃

Problems

Excellent quality data R(int) = 0.0307 R(sigma) = 0.0179 Ambiguous space group, structure could not be solved

XPREP Output

Option A: $FOM = 0$.	000 deg	у. НЕ	XAGONAL		P-latti	ce R	R(sym) =	0.025	[6448]
Cell: 16.562 16	.562 1	L5.443	90.00) 9	0.00 1	20.00	Volum	ne:	3668.43
Matrix: 1.0000 0.	0000 0	0.0000	0.0000) 1.	0000 0	.0000	0.0000	0.000	0 1.0000
Option A selected									
Systematic absence	except	ions:							
61/65 62=31	63	-c-	c						
N 22 18	12	710	475						
N I>3s 9 9	0	7	279						
<i> 140.0 171.1</i>	0.3	0.9	39.0						
<i s=""> 10.9 13.3</i>	0.3	0.6	9.2						
Option Space Grou	p No.	Туре	Axes	CSD	R(sym)	N(eq)	Syst.	Abs.	CFOM
[A] P-3c1	#165	centro) 1	28	0.028	8263	3 0.6 /	9.2	8.91
[B] P3c1	#158	non-ce	n 1	11	0.028	8263	3 0.6 /	9.2	23.27
[C] P6(3)cm	#185	non-ce	n 1	2	0.031	9328	3 0.6 /	9.2	44.75
[D] P6(3)/mcm	#193	centro) 1	1	0.031	9328	3 0.6 /	9.2	51.94
[E] P-6c2	#188	non-ce	n 1	0	0.031	9328	3 0.6 /	9.2 1	11.42

Option [A] chosen

True Space Group is TRIGONAL P-3c1 (No solution possible in any hexagonal space group)

Solution in P-3c1 Space Group with XS Program

• Two independent $Ru(bipy)_3$ molecules – one on D_3 site and one on C_3 site

Refinement in P-3c1 Space Group

- 0 Systematic absence violations
- 0 Inconsistent equivalents
- R(int) = 0.0305 R(sigma) = 0.0179
- R1 = 0.2542
- Correct structure, but some NPD U-values & very large residual peaks in map

Most Disagreeable Reflections

-2 6 10 12249.62 7.38 4.69 0.006 1.34	
-3 5 10 12390.42 8.50 4.55 0.007 1.40	
-1 4 14 5660.73 13.56 4.45 0.009 1.06	
-5 7 2 6912.71 25.24 4.37 0.012 2.20	
-1 4 10 14770.25 301.41 4.33 0.041 1.44	
0 5 10 11512.03 3.27 4.22 0.004 1.36	
-6 11 10 4414.28 42.68 4.19 0.016 1.08	
-8 9 10 11256.75 375.46 4.15 0.046 1.14	

Insert LIST 4 instruction into .INS file and repeat refinement

Run ROTAX program from Command Prompt

ROTAX output

180.0 degree rotation about -1. 1. 0. direct lattice direction:

[0.000 -1.000 0.000] [-1.000 0.000 0.000] [0.000 0.000 -1.000]

Figure of merit = 0.00 **********

XPREP output - test for merohedral twinning

[1] -3 / -31m: R(int) 0.028(9795)/0.017(1907), <|E^2-1|> 1.063/1.070 TWIN 0 -1 0 -1 0 0 0 0 -1 BASF 0.414 [C] or 0.390 [NC]

Insert TWIN and BASF instructions into .INS file and repeat refinement

```
PLAN 5
TWIN 0 -1 0 -1 0 0 0 0 -1
BASF 0.5
WGHT 0.040000
```

Results of twinned refinement

- BASF 0.49628 (perfect twinning)
- R1 = 0.0259, wR2 = 0.0725, GooF = 1.066
- Correct structure, no NPD U-values, normal weighting scheme, no large residual peaks

Simple Monoclinic Structure

Formula – $C_4N_4S_4CI_4$ Space Group – $P2_1/c$, Z = 2

Refinement Output

0 Systematic absence violations 1611 Inconsistent equivalents R(int) = 0.4518 R(sigma) = 0.1179 K 68.634 14.563 4.282 2.946 1.865 1.905 R1 = 0.2550, wR2 = 0.4532, GooF = 3.031 WGHT 0.1768 87.8417

Most Disagreeable Reflections (* if suppressed or used for Rfree)

h	k	1	Fo ²	Fc^2	Delta(F ²)/esd	<pre>Fc/Fc(max)</pre>	Resolution(A)
9	2	3	664.82	58.18	7.24	0.045	0.62
10	3	2	447.64	40.77	7.19	0.038	0.60
-7	17	3	251.81	0.62	5.95	0.005	0.62
9	1	2	123.93	20.71	5.33	0.027	0.66
8	0	2	540.63	161.71	4.29	0.076	0.73
-8	17	2	219.59	20.52	3.93	0.027	0.59
8	3	4	124.35	19.64	3.79	0.026	0.62
7	17	1	156.00	7.77	3.68	0.017	0.58
9	2	2	142.45	0.03	3.49	0.001	0.66
-6	4	2	1270.72	142.27	3.42	0.071	1.15
8	4	2	187.78	1.51	3.39	0.007	0.72

ROTAX OUTPUT

```
180.0 degree rotation about 1. 0. 0. reciprocal lattice direction:
[ 1.000 0.000 0.955]
[ 0.000 -1.000 0.000]
[ 0.000 -1.000]
Figure of merit = 1.59 ********
```

Non-Integer Matrix Element – We cannot use a simple TWIN instruction- we must use CELL_NOW

CELL_NOW Output

Cell for domain 1: 7.388 13.144 6.182 89.96 113.68 90.06

1517 reflections within 0.250 of an integer index assigned to domain 1, 1517 of them exclusively; 46 reflections not yet assigned to a domain

Cell for domain 2: 7.388 13.144 6.182 89.96 113.68 90.06

Rotated from first domain by 179.2 degrees about reciprocal axis -0.484 0.006 1.000 and real axis -0.004 0.001 1.000

 Twin law to convert hkl from first to
 -0.996
 0.006
 -0.967

 this domain (SHELXL TWIN matrix):
 -0.028
 -1.000
 -0.001

 -0.007
 0.002
 0.996

1350 reflections within 0.250 of an integer index assigned to domain 2, 46 of them exclusively; 0 reflections not yet assigned to a domain

.P4P File from CELL_NOW

FILEID	SAINT	V7.06A	4.00	04/27/04	4 14:25:12 NSF2	
SITEID	Administrat	or		?		
TITLE	Integration	1				
CHEM	C4N4S4Cl4					
CELL	7.3884	13.1436	6.1822	89.9643 113.68	305 90.0630	549.797
CELLSD	0.0015	0.0026	0.0012	0.0300 0.03	300 0.0300	0.275
ORT1	0.0359	939306 -	-0.056865178	-0.08263622	22	
ORT2	0.0175	559534	0.049863208	-0.11230579	90	
ORT3	0.1422	276525	0.008283437	0.10842497	76	
ZEROS	0.0000000	-0.0178117	/ -0.0247456	0.0883 (0.1712 0.3467	
ADCOR	-6.304	1 3 -0.1	L071 -0.	0043 0.157	75 0.1081	-0.0209
CELL2	7.3884	13.1436	6.1822	89.9643 113.68	305 90.0630	549.797
CELLSD2	0.0015	0.0026	0.0012	0.0300 0.03	300 0.0300	0.275
ORT12	-0.0368	304073	0.056372143	-0.11858388	30	
ORT22	-0.0152	264848 -	-0.050249487	-0.12757590	04	
ORT32	-0.1423	320156 -	-0.009261458	-0.0293184	71	
ZEROS2	0.0000000	-0.0178117	-0.0247456	0.0883	0.1712 0.3467	
ADCOR2	-6.304	-0.1	L071 -0.	0043 0.15	75 0.1081	-0.0209
SOURCE	MO 0.71	L073 0.70	0.713	59 2.00000	0.00 0.00	

Read this .P4P file into SAINT Integration Program

Example 4 – Non-Merohedral Twinning

HKLF 5 format file from TWINABS

0	9	3	801.97	7.43	1
0	-9	-3	805.63	4.71	1
3	9	-3	861.66	6.32	-2
0	-9	-3	861.66	6.32	1
-3	9	3	851.29	8.22	-2
0	-9	3	851.29	8.22	1
-3	9	3	796.70	7.03	-2
0	-9	3	796.70	7.03	1
3	-9	-3	779.89	7.47	-2
0	9	-3	779.89	7.47	1
3	-9	-3	841.68	7.58	-2
0	9	-3	841.68	7.58	1
3	9	-3	839.86	8.11	-2
0	-9	-3	839.86	8.11	1
-3	-9	3	862.09	6.34	-2
0	9	3	862.09	6.34	1
3	9	-3	872.52	8.36	-2
0	-9	-3	872.52	8.36	1
0	-9	-3	202.50	3.03	2
0	9	-3	177.75	3.10	2

Example 4 – Non-Merohedral Twinning

Final Refinement

FMAP 2 PLAN 5 WGHT 0.023000 0.002298 EXTI BASF 0.18207 0.65985 FVAR CL1 4 0.807182 0.420776 0.495285 11.00000 0.01294 0.01349 =0.00096 0.00272 0.01087 0.00102 C2 0.711815 0.368499 11.00000 0.01049 0.00888 = 0.035413 1 0.01396 0.00045 0.00539 0.00048

HKLF 5

38

REM NSF2 in P2(1)/c
REM R1 = 0.0241 for 9786 Fo > 4sig(Fo) and 0.0302 for all 12385 data
REM 75 parameters refined using 0 restraints

Example 4 – Non-Merohedral Twinning

Final Structure

Background

- Sample from UCSD Summer School
- Prof. Michael Richmond et al. (U. of North Texas)
- NMR indicated dynamic equilibrium between two isomers

Structure was easily 'solved', but could not be refined

- R1 = 16%
- Many NPD atoms
- Three very large difference peaks ('Star of David')

Preliminary structure – Chelating Phosphine Ligand

Three Large Difference Peaks

FVAR		0.15477	0.8500			
OS1	5	1.38180	0.36327	0.23664	21.00000	0.01306
OS2	5	1.16037	0.44356	0.29321	21.00000	0.01737
OS3	5	1.22802	0.46498	0.16310	21.00000	0.01676
C1A	1	1.22737	0.29544	0.22637	21.00000	0.01424
01A	3	1.14724	0.25371	0.21696	21.00000	0.01327
C2A	1	1.53166	0.43473	0.24515	21.00000	0.02705
02A	3	1.61483	0.47245	0.24881	21.00000	0.01637
C3A	1	1.00907	0.38885	0.25481	21.00000	0.02644
03A	3	0.91212	0.35992	0.23556	21.00000	0.03082
C4A	1	1.33420	0.49045	0.32785	21.00000	0.02520
04A	3	1.42200	0.51620	0.35349	21.00000	0.02519
C5A	1	1.13429	0.40796	0.37402	21.00000	0.01968
05A	3	1.11507	0.38537	0.42076	21.00000	0.04168
C6A	1	1.03019	0.51972	0.29063	21.00000	0.02206
06A	3	0.94876	0.56097	0.28462	21.00000	0.04682
C7A	1	1.12667	0.38230	0.13189	21.00000	0.02768
07A	3	1.06313	0.34129	0.11120	21.00000	0.02261
C8A	1	1.33629	0.53964	0.20167	21.00000	0.02088
08A	3	1.39946	0.58535	0.21995	21.00000	0.02206
C9A	1	1.34144	0.46478	0.08771	21.00000	0.02607
09A	3	1.39311	0.47459	0.04379	21.00000	0.02768
C10A	1	1.07098	0.52231	0.13931	21.00000	0.02470
010A	3	0.98114	0.55458	0.12305	21.00000	0.04529
Р1	4	1.49269	0.30401	0.31810	11.00000	0.01685
P2	4	1.51235	0.30162	0.16667	11.00000	0.02253
C1	1	1.64848	0.25992	0.21803	11.00000	0.02086
C2	1	1.64668	0.26068	0.28099	11.00000	0.02963
C3	1	1.77319	0.22528	0.30686	11.00000	0.03008

FVAR		0.14765	0.84986			
PART	1					
ANIS	3					
OS1	5	1.381809	0.363269	0.236644	21.00000	0.01398
OS2	5	1.160375	0.443563	0.293216	21.00000	0.01832
OS3	5	1.228021	0.464972	0.163111	21.00000	0.01769
PART	2					
ANIS	3					
OS4	5	1.279201	0.372329	0.290337	-21.00000	0.01897
OS5	5	1.356916	0.404339	0.165486	-21.00000	0.01516
OS6	5	1.132255	0.478575	0.221611	-21.00000	0.02121
PART	1					
Cla	1	1.227149	0.295498	0.226379	21.00000	0.01463
01A	3	1.147208	0.253766	0.216857	21.00000	0.01437
C2A	1	1.531363	0.434503	0.245167	21.00000	0.02786
02A	3	1.614757	0.472385	0.248824	21.00000	0.01766
• • •						
C9A	1	1.341290	0.464934	0.087821	21.00000	0.02657
09A	3	1.392650	0.474727	0.043766	21.00000	0.02908
C10A	1	1.071073	0.522226	0.139298	21.00000	0.02516
010A	3	0.981357	0.554645	0.123065	21.00000	0.04658
PART	0					
ANIS	2					
Р1	4	1.492683	0.304015	0.318087	11.00000	0.01777
Р2	4	1.512382	0.301606	0.166718	11.00000	0.02357
C1	1	1.648401	0.259913	0.218106	11.00000	0.02206
C2	1	1.646876	0.260442	0.280954	11.00000	0.03039

Remaining Carbonyl Atoms Revealed in Difference Map

Superposition of both isomers

Chelating Phosphine Ligand (85%)

Bridging Phosphine Ligand (15%)

47

Bruker AXS

Crystallographic restraints (SADI, ISOR, SIMU, EADP) were used in initial refinement Final refinement converged at R1 = 5.2%

Background

- Prof. Mark Hollingsworth et al. (Kansas State U.)
- Urea host lattice with long-chain carboxylic acid in channels

Structure of urea lattice was 'solved', but carboxylic acid molecules could not be located

Apparent unit cell

- Orthorhombic P2₁2₁2₁
- <u>a</u> = 8.3096 Å, <u>b</u> = 10.9591 Å, <u>c</u> = 13.6330 Å
- 12 Urea molecules, 4 carboxylic acid molecules per cell

Projection down <u>b</u>-axis

Projection down <u>a</u>-axis

Analysis of Q-peaks

Analysis of Q-peaks

N2C	3	0.662814	0.937759	0.024542	11.00000	0.02028
AFIX	93					
H2CA	2	0.626060	1.006875	0.048581	11.00000	0.05118
H2CB	2	0.753628	0.936746	-0.008654	11.00000	0.05692
AFIX	0					
PART	-1					
ClS	1	0.047758	0.093743	0.256429	10.33333	0.02221
01S	4	-0.065938	0.059457	0.208123	10.33333	0.03123
025	4	0.147213	0.019479	0.303494	10.33333	0.03285
AFIX	3					
H2S	2	0.117603	-0.055411	0.292184	10.33333	0.05883
AFIX	0					
C2S	1	0.090446	0.226023	0.271096	10.33333	0.02369
AFIX	23					
H2SA	2	0.196427	0.240424	0.240008	10.33333	0.03582
H2SB	2	0.103898	0.240028	0.342366	10.33333	0.05245
AFIX	0					
• • • •						
C10S	1	0.080032	1.122110	0.284898	10.33333	0.02266
AFIX	23					
H10A	2	0.095393	1.108073	0.356020	10.33333	0.03019
H10B	2	0.185537	1.108980	0.252859	10.33333	0.07844
AFIX	0					
C115	1	0.034726	1.252421	0.270929	10.33333	0.02477
035	4	-0.087391	1.287204	0.233376	10.33333	0.03143
04S	4	0.147522	1.327757	0.305089	10.33333	0.03101
AFIX	3					
H4S	2	0.123082	1.402847	0.301909	10.33333	0.66676
PART	0					

Anisotropic refinement of dicarboxylic acid

Final refinement

- R1 = 3.83%
- Temperature factors on hydrogen atoms refined

4,8a-dimethyl-2-phenyl-4a,5,6,7,8,8a-hexahydro -4*H*-benzo[d] [1,3]oxazine $C_{16}H_{21}NO$ Hemant Yennawar et al. (Pennsylvania State U.)

Triclinic P-1, Z = 8

$$\underline{a} = 10.1195(5) \text{ Å}$$

 $\underline{b} = 14.1443(7) \text{ Å}$
 $\underline{c} = 19.3863(10) \text{ Å}$
 $\alpha = 82.979(3)^{\circ}$
 $\beta = 84.235(3)^{\circ}$
 $\gamma = 88.777(3)^{\circ}$

Problems

- R1 = 18%
- Many atoms with large U-values & strange thermal ellipsoids
- Two well-behaved molecules, two abnormal molecules

Initial Structure – Molecule A

Initial Structure – Molecule B

Initial Structure – Molecule C

Initial Structure – Molecule E

Disorder - Molecules C & D

Disorder - Molecules E & F

Disorder - Molecules E & F

Refinement Strategy

- Use XP to sort out disorder (PRUN, JOIN, LINK)
- Use restraints (SADI, SAME, EXYZ, EADP, etc.) in XL to refine

Final refinement

• R1 = 0.0526, wR2 = 0.1274, GooF = 1.077

Results

 Correct structure, normal U-values, normal weighting scheme, no large residual peaks

Final Structure – Molecule C

50% Thermal Ellipsoids

Final Structure – Molecule D

50% Thermal Ellipsoids

Final Structure – Molecule E 50% Thermal Ellipsoids

Final Structure – Molecule F

Example 8 – A Commensurately Modulated Carborane Compound

Compound prepared by D.E. Hyatt – Lee Todd's first graduate student at Indiana U. – 1966. No Structure published.

Hyatt, D. E., Owen, D. A., and Todd, L. J., Inorg. Chem., <u>5</u>, 1749-51 (1966).

Recent paper from Durham U. with synthesis, spectroscopy, etc. No structure published.

Batsanov , A.S., Fox, M. A., Goeta, A. E., Howard, J. A. K., Hughes, A. K. and Malget, J. M., J. Chem. Soc. , Dalton Trans., 2624-2631 (2002).

Example 8 – A Commensurately Modulated Carborane Compound

Empirical formula Chemical formula Formula weight Crystal size Crystal habit Density (calculated) Absorption coefficient $C_4H_{21}B_{10}N$ $(CH_3)_3N-CB_{10}H_{12}$ 191.32 0.364 x 0.624 x 0.720 mm clear, colorless prism 1.077 Mg/m3 0.05 mm-1

Early attempts with film and / or scintillation counter methods gave ambiguous unit cells

- Small cell Orthorhombic P, Z = 4, 16 Å × 10 Å × 7 Å
- Intermediate cell Orthorhombic P, Z = 8, 16 Å × 10 Å × 14 Å
- Large cell Orthorhombic P, Z = 28, 16 Å × 10 Å × 49 Å

Reciprocal Lattice Viewer

Correct Unit Cell – Small Cell

Crystal system	Orthorhombic
Space group	Pnma
Unit cell dimensions	<u>a</u> = 16.1370(8) Å
	<u>b</u> = 10.5017(5) Å
	<u>c</u> = 6.9605(3) Å
Volume	1179.57(10) Å ³
Z	4
F(000)	408
Q-vector	0, 0, 3/7 (0.0000, 0.0000, 0.42857)

CCD Data Collection

Instrument Used	Bruker SMART APEXII
Crystal to Detector Distance	8.926 cm.
Image Width (ω or φ)	0.5°
Maximum 2θ angle	68.80°
Maximum Resolution	0.63 Å
Total Images Collected	6523
Exposure Time / Image	10.0 sec.
Total Data Collection Time	21.74 hours
Temperature	100(2) K
Total Reflections Measured	21978
Independent Reflections	2492
R(int)	4.81%
R(sig)	2.54%
Reflections > 2sigma(I)	1965

Integration of satellite reflections with SAINT

New features of SAINT (Version 7.53A)

allows the input and refinement of up to three QVEC instructions for up to 6-dimensional modulated structures. The following input .P4P file was used for this integration:

FILEID	SAINT	V7.09A	4.00	07/	08/04	14:25:34	carbor	ane
SITEID	Administrat	or		?				
TITLE	Integration	1						
CHEM	(Ch3)3N-CB1	0H12						
CELL	16.1418	10.5087	6.9644	90.0000	90.000	0 90.0)000 1	181.365
CELLSD	0.0011	0.0007	0.0005	0.0000	0.000	0.0	000	0.131
ORT1	-9.6469503	8e-003 6.0	5842519e-002	2 -9.972352	5e-002			
ORT2	-5.8215410	e-002 1.0)598534e-002	4.642831	5e-002			
ORT3	1.8862667	/e-002 6.0	5895336e-002	9.228894	1e-002			
ZEROS	0.0000000	-0.0264180	0.0316215	-0.5332	-0.	8447 -	-0.9388	
QVEC	0.00000	0.00000	0.43194					
SOURCE	MO 0.71	.073 0.70	0.713	2.000	00	0.00	0.00	
LIMITS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.0	0							
MORPH	Prism							
DNSMET	?							
CCOLOR	clear							

Integration of satellite reflections with SAINT

When the SAINT program encounters a QVEC instruction in the .P4P file, it automatically produces output files with the .ram extension, instead of the normal .raw extension.

Note: The SAINT.INI file must be edited to include a MAXSATIND = 2 parameter to the INTEGRATE section (to integrate both first and second-order satellite reflections):

VOLTARGET=1.00000 BGQSCALE=6 MAXSATIND=2 IBATNO=1 ESD_SCALE=1.00000 PARNAME=C:\Frames\guest\carborane\work\carborane_0m.p4p

SADABS output formats

.hkl file – SHELX-compatible files for normal solution and refinement (main reflections only)

-1	-б	0	0.19	0.40
-1	-6	0	-0.02	0.35
1	-6	0	0.12	0.32
-2	-6	0	218.05	7.44
-2	б	0	222.14	8.67
-2	-6	0	222.34	8.49
2	-б	0	215.54	7.41
-2	-6	0	221.98	10.43
2	6	0	211.25	8.64
2	-6	0	203.46	10.39
-3	-6	0	0.17	0.36
-3	-6	0	-0.03	0.39
3	6	0	-0.03	0.50

SADABS output formats

.hk6 file – JANA2006-compatible files for modulated structure refinement with JANA2006

-2	-5	-8	0	0	0	8.98	0.66	7
-2	-6	0	0	0	0	215.66	7.41	7
-2	-6	0	2	0	0	20.74	7.31	7
-2	-6	0	-1	0	0	0.76	7.29	7
-2	-6	0	1	0	0	1.66	7.29	7
-2	-6	0	-2	0	0	8.67	7.29	7
2	-б	0	0	0	0	218.17	7.44	7
2	-б	0	1	0	0	2.09	7.30	7
2	-б	0	-1	0	0	0.79	7.29	7
2	-6	0	-2	0	0	6.14	7.29	7
2	-б	0	2	0	0	18.14	7.31	7
-2	-6	-1	2	0	0	29.00	3.36	7
-2	-б	-1	1	0	0	95.42	3.42	7
-2	-б	-1	0	0	0	104.30	3.41	7
-2	-6	-1	-1	0	0	0.60	3.31	7

Absorption correction for modulated structure data with **SADABS**

The SADABS (Version 2008/2) scaling and absorption program has been modified to include the following new features:

When files with the .ram extension are read into SADABS, the program uses the main reflections to optimize the absorption correction model in the normal manner. The correction is then applied to all reflections, including satellite reflections.

Solution and refinement - small cell

Small Cell Refinement (.hkl file main reflections only) Space Group – Pnma, Z = 4 Modeled as 2-fold disorder with Ratio 4:3 (PART –1, PART –2) R1 = 7.9%

Example 8 – A Commensurately Modulated Carborane Compound- Supercell Structure

83

Bruker AXS

Example 8 – A Commensurately Modulated Carborane Compound

Modulated structure refinement - JANA2006

Superspace Group – Pnma (00γ) 0s0

Refinement model: whole molecules distributed over two symmetrically related positions described by the crenel-like modulation; one molecular harmonic used for additional positional and ADP modulations

```
R factors : [4246=3598+648/244], Damping factor: 1.0000
GOF(obs)= 6.27 GOF(all)= 5.79
R(obs)= 7.56 Rw(obs)= 18.12 R(all)= 8.30 Rw(all)= 18.25
R factors for main reflections : [1558=1417+141]
R(obs)= 7.12 Rw(obs)= 16.64 R(all)= 7.42 Rw(all)= 16.73
R factors for satellites of order 1 : [2688=2181+507]
R(obs)= 8.16 Rw(obs)= 19.39 R(all)= 9.49 Rw(all)= 19.56
Last Rw(all): 18.25 18.25 18.25 18.25 18.25 18.25 18.25 18.25
Maximum change/s.u. : 0.0462 for S23ort2[All#1]
```

126

Example 8 – A Commensurately Modulated Carborane Compound

Summary – commensurate structure analysis

Determine unit cell and q-vector(s)

Integrate data (including satellite reflections) – write .ram files

Perform absorption correction and scaling – write .hkl and .hk6 files

Solve and refine basic structure – SHELXTL

Determine superspace group; refine modulated structure – JANA2006

Analysis and presentation of results

Application of Advanced Tools to Problem Structures

Non-Merohedral Twins

Diagnosis – CELL_NOW, RLATT, ROTAX Processing – SAINT (w/ multiple OM), TWINABS Solution – XM or XS (HKLF 4 data) Refinement – XL (BASF + HKLF 5)

Pseudo-Merohedral Twins

Diagnosis – XPREP, ROTAX Processing – SAINT, SADABS Solution – XM or XS Refinement – XL (BASF + TWIN)

Merohedral Twins

Diagnosis – XPREP, ROTAX Processing – SAINT, SADABS Solution – XM or XS Refinement – XL (BASF + TWIN)

Inversion (Racemic) Twins

Diagnosis – XPREP, ROTAX Processing – SAINT, SADABS Solution – XM or XS Refinement – XL (BASF + TWIN)

Modulated Structures

Diagnosis – SMART, APEX2, RLATT Processing – SAINT (w/ QVEC inst.), SADABS Solution – XM or XS Refinement – JANA 2000(Petricek & Dusek)

128

www.bruker-axs.com

Bruker AXS