
Lambda Power Supply
IRM software support

Thu, Feb 13, 2003

Lambda makes a ZUP (“Zero-up”) series of programmable power supplies that are to be
used in the Electron Cooling project here. It is necessary to support them via the IRM serial
port. There is provision for supporting up to 31 power supplies via one controller, which is
automatically supported by the first power supply in the daisy chain. This note describes a
local application that can support this interface.

The connection to the IRM is via RS232 at 9600 Baud. The controller understands certain
specific commands that allow a computer to query readings and settings and also to set
voltages or currents. It can also provide status and accept digital control. One may think of a
PLC-like interface, where a local application understands the special protocol supported by
the controller, and it also has a mechanism for accepting setting requests from the underlying
system code that can be passed to the hardware via its special serial protocol. This approach
was not taken.

One of the factors that must be obeyed is that it requires about 15 ms for the controller to
process one command; another command should not be sent without allowing for such a
delay. Also, if one queries the controller for information, another command should not be
sent until that information has been received. This means there should be a time-out used for
responses. One way to handle this is to send no more than one command each 15 Hz cycle.

The hardware mechanism for supporting more than one power supply from a single serial
port is as follows: One command selects the target supply number. This value is retained by
the addressed power supply, and each of the others places itself in listen mode, from which it
awakens only when it hears a command selecting its own power supply number. It is
probably a good idea to retain this target number in the local application, in order to save
time making unnecessary switches to the same target, each costing an extra cycle. If too many
settings are issued at once, we probably would not want to tie up the communications link
making only settings and not being aware of changes in readings of other supplies.

Commands for ZUP
Each command is preceded by an ascii “:” and followed by an ascii “;”. The following

table omits these two bracketing characters.

Commands that need support:
MDL? Get ps model id, as in “Nemic-Lambda ZUP(xxV)-(yyA)”
REV? Get software version, such as “Ver6-33 1.0”

These two commands might be handled internally, but very infrequently.
DCL Clear status registers. Maybe do this “manually.”
ADRnn Set target ps address for subsequent communications

RMT0 Transition to local mode (return only via front panel button.)
RMT1 Transition from latched remote to non-latched remote.
RMT2 Transition to latched remote (disabled front panel button)
RMT? Returns remote/local setting: RM1 = remote, RM2 = latched remote.

The above RMT commands may not be used, except to monitor via “RMT?”.

VOLn Set output voltage, where allowed range depends upon ps model.
VOL! Returns present programmed output voltage value, id = SV.
VOL? Returns actual output voltage, id = AV.

CURn Set output current, where allowed range depends upon ps model.
CUR! Returns present programmed output current, id = SA.
CUR? Returns actual output current, id = AA.

OUT1 Set output on
OUT0 Set output off
OUT? Returns output on/off status, as OT1 = on, OT0 = off

FLD1 Arm foldback protection
FLD0 Release foldback protection
FLD2 Cancel foldback protection
FLD? Returns foldback protection status, where FD1 = on, FD0 = off

OVPn Set over voltage protection level in volts, depending on ps model.
OVP? Returns present over voltage protection value, id = OP.

UVPn Sets under voltage protection limit in volts, depending on ps model.
UVP? Returns under voltage protection limit, id = UP.

AST1 Set auto-restart on
AST0 Set auto-restart off
AST? Returns auto-restart status, where AS1 = on, AS0 = off.

There are quite a few parameters specified, many of which will not be changed at all often.
But if they are to be mapped to analog channels, it would be good to update them promptly
following a setting.

With so many possible parameters, even if only a few normally need to be accessed, it may be
good to have a general method that supports all of them. Then one can install the appropriate
references to access those of interest.

It will be necessary to be aware of the model number for each supply that is accessed, since
that determines the format of numeric setting values that must be used in the serial protocol.
This information may be usable for limiting the values that a user can set, although that can
be accomplished by choosing a suitable full scale value in the analog descriptor.

How many different digital settings are there? One is a write-only control bit that clears the
status registers. Two more could be used for establishing remote/local state. Beyond that,
there is OT, FD (2 bits), OP, UP, AS. Some of these bits are already mapped in the operational
status register: cc/cv, fold, ast, out, srf, srv, srt, alarm. These would take care of OT, FD, AS.
The alarm status register shows ovp, otp, a/c-fail, fold, prog. The error codes register shows 5
bits: not used, wrong command, buffer overflow, wrong voltage, wrong current.

What are the analog values related to a supply? Certainly we must include settings and
readings of the voltage and current. There is also the over-voltage protection level and the

Lambda Power Supply p. 2

under-voltage protection limit. If we include a readback of the programmed settings of
voltage and current, we have a total of 6 analog channels for each supply. The order may be:
AV, SV, AA, SA, OP, UP. (A slightly different order was actually used.)

Two other values that may be of interest can be derived from the model number. The reply to
the MDL? query is something like “Nemic-Lambda ZUP(6V-33A).” The two numbers give the
rated output voltage and the rated output current, respectively. If we include these two
values, we could talk about 8 channels of numeric information per supply.

The STT? command can get all 4 principal numeric values, plus the three status registers, in a
single line that may be about 60 characters long, depending on the numeric field widths. This
means that such a query will likely require two 15 Hz cycles to complete, at 9600 baud. But
the LA can get a call on receipt of the line of text in the reply, so it could send a new query
command right away if one is waiting. The number of characters would depend upon
knowledge of the baud rate used. At 9600 baud, each character uses about 1 ms.

How can the order of numeric channels relating to one supply be specified? Suppose the LA
has a parameter nn that specifies the number of power supplies, ranging from 1–31. Allocate
8 channels for each supply. Let each supply have an internal queue associated with it. After a
STT? command completes, the queue is checked for another command, such as a setting or
unusual query, and if one is found, it is sent out. After completion of that command, we
move on to the next supply in sequence. In the absence of anything waiting in a queue, then,
a series of STT? commands will be sent and the subsequent replies parsed into 4 analog
values and 3 bytes of status. If there were only 5 supplies, this might take 10 cycles, assuming
that STT? commands were sent every other cycle, to repeat the queries. With 31 supplies, it
would obviously take longer, so that the update period might be about 4 seconds.

Suppose a supply does not respond. A time-out must be imposed to detect this, and a status
bit should be asserted (or cleared) to show that the supply did not respond. The non-
responding status bit may be grouped with the other status bits. What about the numeric
values from that supply? After some time, they may be considered stale, and they can be
cleared to zero, perhaps. But as long as they are in the sequence, they should be queried from
time to time. Perhaps the query should be the model number query while in this state. Once a
reply is returned from the model number query, they can again be included in the normal
sequence. This condition may occur when the local pushbutton is pressed to place the supply
into local mode. The only way to return to remote mode is via the pushbutton.

Suppose, when it is time to address a given supply, we first check whether there is MDL
information. If there is not, then that must be the first query. Following its completion, the
STT? command can be issued. If the MDL info already exists, then check the queue (for that
supply) for a possible setting waiting. If there is one, perform it; otherwise, move on to the
next supply. The queue can also contain infrequent queries, including the MDL and the over-
voltage and under-voltage limits. The REV? command can also be used for this.

When a reply message is received, it can be processed without paying attention to the
context, beyond the current power supply number.

Some logic in the 15 Hz cycle activity of the LA is necessary to fill the queues for each supply.
The infrequent queries are placed there, including the MDL query, as are setting messages that
are gleaned from the message queue that interfaces with the underlying system code.

Lambda Power Supply p. 3

The formats used by various numeric values depend upon the power supply model. In each
case, they are really a kind of fixed point value, where the decimal point occurs in only one
position, and every other character in the field is a digit 0–9; no spaces or signs are used. To
build these values, it may be easiest to use CvI, then insert the decimal point as appropriate,
replacing all initial spaces with ascii zero.

When a setting message is found in a message queue, and a similar one is already found in
the queue for the target supply, merely replace the earlier one with the new one. This should
make knob control more palatable to use.

A data base will be needed for handling all the required logic, including the numeric
formatting for each model of power supply. The easy way to handle this might be to create a
data file that contains all this information in some structure. The LA would access this data
file at initialization. The key to a power supply model is the pair of values for peak voltage
and current provided by that power supply model. To specify a numeric format, use the
numeric field width and the number of digits past the decimal point. Each field width in use,
including the decimal point, ranges from 4–6 and is always at least 2 more than the number
of digits following the decimal point, which ranges from 1–3. Only the setting values for
output current vary by the peak voltage and peak current ratings for a supply; all other
numeric values depend only on the peak voltage rating. It may be advisable to recognize that
additional models may be added to the Lambda product line in the future.

One easy structure for the data file would be a simple table of 2 words plus 8 byte-size
values. The two words hold the peak voltage and peak current specifications that serve to
characterize a given model, and the 8 byte-size values hold the field width and number of
decimals for each of the 4 numeric settable parameters, in the order SV, SA, OP, UP. Another
scheme can use byte values that specify both width and number of decimals as two 4-bit
nibbles. In this way, each model would use only 8 bytes per entry. If there are 15 models, this
table is only 120 bytes. The end of the table might be indicated with an 8-byte entry of all
zeros. The index to each entry would have no significance, so the table should be easy to edit.
After reading in the table, the LA can notice the number of entries in the table and use that
loop count in its searches. This would be the entry format:

Field Size Meaning
pV 2 peak voltage rating, in volts
pA 2 peak current rating, in amps
fSV 1 format for setting voltage, as 0xwd, where w=width, d=decimals
fSA 1 format for setting current
fOP 1 format for setting over-voltage protection level
fUP 1 format for setting under-voltage protection limit

LA Parameters
The following list of parameters may be used with the local applicatuion:

Prompt Meaning
ENABLE B Enable Bit#
SUPPLIES Number of power supplies to scan
BASE C Base Channel# for analog data, 8 channels per supply
BASE B Base Bit# for digital data, 4 bytes per supply

Lambda Power Supply p. 4

Returning to digital control, there may be 8 bits of write-only digital control, occupying a
single byte. If the corresponding pseudo-address is not installed in the BADDR table, then
these controls are not accessible.

Bit# Meaning
7 Clear status registers
6 Output control
5 Auto-restart control
4 (spare)
3 Foldback protection control (2 bits)
2 “
1 Remote/local control (2 bits)
0 “

The format of the status registers in the first 3 of the 4 bytes alloted per supply are:
Bit# Meaning
7 cc/cv mode, 0=constant voltage, 1=constant current
6 fold, 1=foldback protection armed
5 ast, 1=auto-restart on, 0=auto-restart off
4 out, 1=output on, 0=output off
3 srf, 1= foldback protection SRQ enabled
2 srv, 1= over-voltage protection SRQ enabled
1 srt, 1=over-temperature protection SRQ enabled
0 alarm, 1=alarm register bit is set

Bit# Meaning
7 n.u.
6 n.u.
5 n.u.
4 ovp, 1=over-voltage protection tripped
3 otp, 1=over-temperature protection tripped
2 a/c fail, 1=failure at the input voltage supply
1 fold, 1=foldback protection activated
0 prog, 1=programming error occurred

Bit# Meaning
7 n.u.
6 n.u.
5 n.u.
4 n.u.
3 wrong command, 1=unknown string received
2 buffer overflow, 1=overflow in communication buffer
1 wrong voltage, 1=attempt to set supply voltage out of spec limits
0 wrong current, 1=attempt to set supply current out of spec limits

One more bit of status needs to be made available, that which announces a communications
failure; the supply did not respond when addressed with a query. The base Bit# for
announcing communications failure can target up to 4 bytes, depending on the number of
supplies in use. An alternative method could take over one of the unused status bits above.

Lambda Power Supply p. 5

The commands that are actually needed to be used, aside from those used for digital control,
are the following:

MDL? or REV?, to capture the peak voltage and current ratings
STT?, to acquire the usual operating values of AV,SV,AA,SA, and the 3 status bytes.
VOLn, to set the output voltage
CURn, to set the output current
OVPn, to set the over-voltage protection level
UVPn, to set the under-voltage protection limit

The digital setting commands needed are:
ADRnn, every time it is necessary to switch communications to another supply
DCL, to clear status registers
OUTn, to set output control on/off
FLDn, to set foldback protection on/off
ASTn, to set auto-restart control on/off
RMTn, to switch the remote/local status

These commands need to be executed separately, even though the bits that cause them are
packed together into a single byte.

New planning
After further thinking about how to handle these supplies, here are some brief notes

that describe how to simplify the required system support for the ZUP series of supplies.

Planned sequence of analog channels for each power supply:

*Actual voltage
*Actual current
*Over-voltage level
*Under-voltage limit
Set voltage
Set current
Peak output voltage
Peak output current

The asterisk (*) indicates that the actual voltage and actual current channels are controllable,
along with the over-voltage and under-voltage values. The set voltage and set current are
readings of what the power supply thinks are the current programmed setting values. They
are certainly affected by controlling the actual voltage and current channels, but they are not
the basis for control.

There is no need for a special analog control type designed to support control of these power
supplies. The controllable channels can be dummy channels, where the analog control type
field is simply 0x12000000. The local application monitors changes that occur in the dummy
setting values for these channels. When a change is noticed, it arranges to have the new
setting promptly passed to the supply at the next convenient time. A subsequent update in
the set voltage or set current channel does not affect the setting fields of the actual voltage
and actual current channels. As a result, the actual voltage and actual current channel setting
field values reflect what the user desires and what the local application should act upon,
whereas the set voltage and set current channel readings reflect what the power supply

Lambda Power Supply p. 6

thinks are its current programmed settings. A user is likely to be interested in the latter
settings only when analyzing a problem.

The digital control options can be handled as a set of dummy bits that cause the indicated
effect to be delivered to the supply. This scheme is analogous to that used for HLRF systems.
A dummy bit is set to “1” to ask that a digital action be taken, and the LA clears the bit when
it has accomplished that action. Eight bits may be enough for all digital actions supported by
the power supply.

The digital status bytes comprise the status returned by the supply, which consists of one
byte, plus two 5-bit fields. It may be useful to assign one of the unused bits of these three
status bytes to indicate communications failure with the power supply. A likely candidate for
this purpose may be the hi bit of the alarm status byte.

All in all, one has a set of 8 analog channels and 4 digital bytes that make up the software
interface to each power supply. This approach means that no system changes are required to
implement this kind of power supply support; all the required logic is provided by the local
application. In addition, configuring the front end for supporting a set of such power
supplies is easy; merely install a single instance—only one serial port is available—of the
local application, and also define the set of relevant channels and digital status bits and
dummy control bits for each supply. The local application name might be ZUPS, referring to
the Zero-UP series of Lambda Power Supplies that use this protocol.

A revised set of control bits, now dummy bits sampled by LA and automatically cleared is:
Bit# Meaning
7 Output ON
6 Output OFF
5 Auto-restart ON
4 Auto-restart OFF
3 Clear status registers
2 Foldback protection CANCEL
1 Foldback protection ARM
0 Foldback protection RELEASE

If another dummy control byte is used, the following controls could be added:

Transition from Remote to Local mode
Transition from latched Remote to non-latched Remote
Transition back to Local or non-latched

These three control actions could be supported by three of the unused bits of, say, the
program status byte, in order to keep the 4-byte digital model.

By use of the action control bit approach, none of the particulars of the ZUP protocol for these
control actions needs to be forced on the user. The local application merely delivers the
appropriate commands as necessary.

Sequencing
How can the LA logic be organized to generate a suitable sequence of RS232-based

commands that include many different Lambda power supplies? Earlier there was reference

Lambda Power Supply p. 7

to a queue of commands to be made for each supply, in which a more recent setting could
overwrite an earlier one that has not yet been sent out. Perhaps it can be done differently.

Suppose there is a fixed set of possible commands that can be generated for each supply, so
that rather than a queue, there is a list of all possible commands. The act of placing a
command into a queue dedicated to a single power supply is then replaced with marking the
command for that power supply to be done. When a new setting is seen, by monitoring the
setting field of the channel associated with the actual current, for example, and that
command is already marked but not yet sent, the program merely overwrites the setting
value for that command. (If it is not marked, then set the value anyway and mark it.)

When the sequencing reaches a new power supply, it should check for possible marked
commands in some priority order, yet to be determined. If any is found marked, it arranges
to send out that command and clear the mark. After that is completed, it sends the usual STT?
command out, and upon return of the reply data moves on to the next supply.

To back up, when starting to serve a given supply, it should first check whether that supply
is “down,” meaning that its attempt to communicate failed the last time, say, because no
reply data was returned following the last STT? command. If the supply is down, the first
step should be to send the MDL? query to get the peak voltage and peak current specs for the
supply. Only if that succeeds in prompting a reply does it then send out the usual STT?
command. If there is no reply from the MDL? command, it just moves on to the next supply in
sequence anyway.

With this sequencing logic, there is only one possible command to be done before issuing the
usual STT? command. This means that the time to sequence through all supplies, even in the
case of high activity of setting requests, should be no more than twice as long as it is in the
absence of any such setting requests.

In addition, as noted above, there should be logic that occasionally marks commands to be
done less frequently, such as querying the over-voltage and under-voltage values, and maybe
even requesting the MDL? command to be issued. The throttling of such slow requests can be
done if no commands are marked, and a counter counts down for that supply. That would
mean the specification of time would be in units of the time required for executing the entire
sequence, passing through all power supplies. This time depends mostly upon the number of
supplies and somewhat on the amount of setting activity.

In the case that the node is “up,” there should already be a peak voltage and current value
available. But any time no such values exist, that again is a reason to send the MDL? command
before doing anything else.

Once a supply has been declared “down,” and a short period of time has elapsed, the analog
values for that supply should probably be cleared, so one is not misled by stale data. By
clearing the peak values for the supply, that means that another MDL? query will occur before
anything else happens to that supply. It is unlikely, but conceivable, that someone changed
the supply while it was “down.” Following return to “up” status, one should fairly promptly
see new values for the various numeric parameters and status, since following a current
return of MDL info, the STT? command will be sent. It would be good to arrange to query the
over-voltage and under-voltage values fairly soon after a supply comes “up,” too.

Lambda Power Supply p. 8

One could adopt an attitude that, when detecting setting changes, special focus is placed on
that supply, so that timely updating of other supplies, for which settings are not occurring,
languishes somewhat. But that is not the approach of the design described here. The
perturbation of response updates is not greatly dependent upon setting activity. It is expected
that settings do not normally occur all that often to many supplies at once. If they do, the
current design would not optimize the settings to be done as nearly as possible
simultaneously. On the other hand, they will likely be sent to all within a second or so, again
mostly depending upon the total number of supplies.

Programming details
The sequencing logic for driving the serial port can be used in both the 15 Hz cycle call

of the LA as well as a serial input call, which occurs upon receiving a line of text in response
to a query command. In the DoCycle routine, there might be the following:

If serial NOT busy, look for command waiting to be sent, send it, set serial busy.
Else if serial busy, and if time-out not exceeded, do nothing.
Else declare current PS down, AdvancePS.

In the DoSerial routine,
Process received serial input
Update data pool with latest values
If last comand was STT?, AdvancePS.

Diagnostics
It may be useful to include a diagnostic to record serial activities in a data stream. One

might be called “ZUPSLOG “. Two kinds of records can be used: one is written whenever a
setting command is sent; a second is written every time a reply is received. Each record is 16
bytes long, with the last 8 bytes used for the time-of-day, down to half ms within the current
cycle, in keeping with the typical cases of such diagnostics. The first 8 bytes have two forms:

Field Size Meaning
(1) psNum 1 One-byte power supply address in range 1–31

command 3 Three-character ascii command code
setData 4 BCD data value for setting, using 0xA for decimal point

(2) psNum 1 One-byte power supply address in range 1–31
command 3 Three-character ascii command code
nCRecv 1 #characters received in reply
eTime 3 Elapsed time from command to reply received, in ms units

The difference between the two forms is that a command that sends a numeric value to a
targeted power supply is of the first form. A command that sends no numeric value simply
uses the 4-byte field to hold any single digit value sent as an integer (with no decimal point
indicator). The second format is used whenever a reply is received. If we use the BCD format
for numeric values, then the nCRecv byte can be used to indicate which format is given, since
it will be nonzero for any reply, whereas the first byte of the BCD form will be zero, since no
numeric values use more than 6 digits. The ms elapsed time values are not expected to use
more than one byte. If desired, we could use all BCD format for these four bytes, whic would
make it easier to read. That would make the 0xA digit stand out a bit more, as it will be part
of each numeric value.

Lambda Power Supply p. 9

To illustrate how the two formats might look in hexadecimal, here are examples:

(1) 0143 5552 0005 A200 ps#1, CUR, 5.200 amps

(1) 014F 5554 0000 0001 ps#1, OUT, 1 (set output on)

(2) 0153 5454 5300 0071 ps#1, STT, 53 chars received, 71 ms

The times for type 1 formats indicate when the command started being sent out the serial
port. The times for type 2 formats indicate when the reply data has been received. The
elapsed time recorded, then, reflects the baud-rate time to send out the command, the time to
process the command by the power supply, and the time to receive the reply text. It is
assumed that the local application is called soon after the arrival of the CR-LF characters that
terminate the reply text.

Data structures
What structure format is suitable for the management of communications with each

power supply?

typedef struct {
byte psState; /* power supply up/down state */
byte psAdr; /* power supply address */
short marks; /* flags for signaling settings */
short peakVolt /* peak voltage value */
short peakCur; /* peak current value */

byte waitPeak; /* count-down for MDL/REV request */
byte waitRemote; /* count-down for remote/local req */
byte waitOver; /* count-down for overVolt request */
byte waitUnder; /* count-down for underVolt request */
short version; /* firmware version# *100 */
short timeoutCnt; /* #timeouts due to lack of response to query */

byte4 status; /* 3 status bytes, 1 control byte */
long spareL; /* -- */

float actVolt; /* actual values */
float actCurr;

float actSetVolt; /* set values */
float actSetCurr;

float actSetOver;
float actSetUnder;

float setVoltMon; /* last recognized setting values */
float setCurrMon;

float setOverMon
float setUnderMon;

} PSContext;

There is an array of these 64-byte structures that is indexed by power supply numbers 1–31.

Lambda Power Supply p. 10

The values for the marks field are as follows:
Bit# Meaning

(hi byte) 7 Output ON
6 Output OFF
5 Auto-restart ON
4 Auto-restart OFF
3 Clear status registers
2 Foldback protection CANCEL
1 Foldback protection ARM
0 Foldback protection RELEASE

(lo byte) 7 Set voltage
6 Set current
5 Set over-voltage
4 Set under-voltage
3 Get over-voltage
2 Get under-voltage
1 Get remote/latched-remote status
0 (spare)

When readings need to be updated, following processing of the reply data, the following
procedure can be used:

PROCEDURE SetRealR(chan: Integer; n: Integer; VAR data: Real);

The arguments are the starting channel#, the number of consecutive channels targeted, and
the array of floats that are to be converted into 16-bit raw values and deposited in the reading
fields of successive ADATA table entries.

Digital status
In order to deliver digital status to the data pool, it maybe useful to deliver it to the

dummy addresses found in the BADDR table. On the following cycle, then, the usual RBinary
Data Access Table entry (0x0405) will update the BBYTE table.

If the BBYTE table entries are targeted instead, the contents of the memory bytes pointed to by
the dummy byte addresses will not reflect what is in the BBYTE table, since the BBYTE table is
not updated every cycle for all power supply status bytes. The updating only takes place for
a given power supply when new status data is received in response to the STT? command. In
between such updates, the normal updating of the BBYTE table occurs using values that are
held in the dummy bytes. This is why the contents of the dummy bytes need to be set. To be
sure of the BADDR entry contents, require that it look like a non-volatile memory address.

Restore
If all of the analog control is handled by dummy channels, how will the settings be

passed to the supplies during the Restore operation occurring following system reset? The
Restore operation will only deliver the data to the dummy channels. To solve this problem,
assume that the local application does all of the settings following initialization. It simply
marks all of these setting activities to be performed, using the setting values it obtains from
the dummy setting values. The assumption here is that these dummy values always
represent the user intended values for the power supplies. If settable values are installed in a

Lambda Power Supply p. 11

power supply locally, the computer will not know about them, although it will update the set
value channels. It will not attempt to “discover” that the user has done something locally and
update the dummy setting values to reflect the set values. The user is expected to perform
settings remotely through the computer. Without doing this, the restore operation, which can
result from resetting the front end or merely restarting the local application, cannot be
expected to work correctly and deliver the proper values to the supplies.

Post-implementation notes
What is going on when nothing is happening? Each 15 Hz cycle, the current supply is

queried by an STT? command. As soon as a reply is received, an ADR command is sent to
select the next power supply in numeric sequence. The reply to the STT? command is
expected to take more than one 15 Hz cycle to execute and return a reply at 9600 baud, so the
result is that supplies are sequenced every 2 cycles. (Actually, it is almost possible to receive
the reply within a single 15 Hz cycle; if that is so, we might sequence through the supplies at
a 15 Hz rate. The unknown is the time that the supply requires between reception of the STT?
command before it begins its 54-character reply message.)

When a setting is to be performed for the current supply, the appropriate setting message is
sent, and on the following 15 Hz cycle, the STT? query is sent, and after receiving a reply, it
moves to the next supply. The last command sent to a supply is the query commnd, and no
more than one command is sent to that supply before the STT? command is sent. In the
extreme case that settings are waiting to be sent to all supplies,the sequencing from supply to
reply should take 3 cycles rather than 2.

Installation steps
The ZUPS local application supports up to 31 Lambda power supplies that use the

Zero-UP serial (RS232-based) protocol. The supplies are addressed beginning at 1. The
number of supplies scanned is given by a parameter. Eight analog channels are allocated for
each power supply in sequence, with the meanings of voltage, current, overvoltage
protection, undervoltage limit, voltage setting, current setting, peak voltage, and peak
current. Four binary bytes are allocated for each supply in sequence, including operational,
alarm, and program status bytes and one control byte. A data stream called “ZUPSLOG “
should be defined to hold diagnostic records of recent settings that have been made, plus a
record of recent data that has been acquired, including the number of characters received and
the time between sending the query command and receiving the reply. The serial port baud
rate should be set to 9600 baud, the fastest rate supported by the Zero-UP protocol. So, if one
has to support 5 supplies, numbered from 1–5, there will be a sequence of 40 analog channels
defined, plus 20 bytes (160 bits) defined. Of course, an entry for ZUPS must be placed in the
Local Applications table (LATBL) specifying the appropriate parameters, and the LOOPZUPS
program downloaded from node0508. The local application also needs access to a data file
called “DATAZUPD”. The data file contains the specification of numeric formats assumed by the
various power supply models in the ZUP series. Only 15 models are known, although the
data file can support up to 24. A power supply model is defined by the two values of peak
voltage and peak current.

Lambda Power Supply p. 12

