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Microwave instability as a coherent light source

Jiunn-Ming Wang
Brookhaven National Laboratory, Building 725C, Upton, New York 11973

~Received 5 December 1997!

We suggest that the coherent radiation observed recently at SURF II and the National Snychrotron Light
Source vacuum ultraviolet ring is due to coherent microwave instability or, equivalently, to ‘‘microbunching’’
of the electron beams in the storage rings. We formulate in this paper the problem of microwave instability in
the time domain. A linear homogeneous integro-differential equation for the perturbed current distribution is
derived to describe the microwave coherent motion inside the electron bunch. For a specific band-limited
high-frequency impedance, the equation can be diagonalized analytically and the eigensolution manifests
explicitly the characteristics of microbunching. Coherent radiation power is also calculated for this solvable
model, assuming the instability to be initiated by the shot noise inherent in the electron beam.
@S1063-651X~98!10105-8#
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I. INTRODUCTION

We study in this paper the problem of coherent light em
sion from a storage ring due to a coherent instability of
circulating electron beam. We are particularly interested
the coherent instability associated with a local modulation
the beam charge density, namely, the ‘‘microwave’’ instab
ity. A coherent instability is always associated with a loss
beam kinetic energy. If the cause of the instability is
evanescent impedance, for example, the rf cavity modes
low the beam pipe cutoff frequency, then the energy lost
the beam is deposited into the impedance source, the rf
ity in this example. On the other hand, if the instability
caused by radiation impedance or, in other words, by
high-frequency component of the impedance such as the
chrotron radiation impedance@1# or the rf cavity parasitic
modes above the beam pipe cutoff frequency, then the
ergy lost by the beam can be extracted from the ring
radiation.

It is the purpose of this paper to construct a solva
model for the microwave instability. We solve the initi
value problem by assuming that the instability is started
the shot noise of the beam and then obtain the beam po
loss. Above the beam pipe cutoff frequency, the beam po
loss equals radiation power.

By the ‘‘microwave instability’’ we mean the instability
in the region

l! l W!s, ~1!

wherel is the perturbation wavelength~carrier wavelength!,
l W is the wake length, ands is the electron bunch length. Al
lengths are in units of radians. In terms of the carrier wa
number n052p/l and the impedance bandwidthb[(4p
2 l W)/2l W>2p/ l W , the above condition is equivalent to

n0@b@2p/s. ~2!

We shall refer to 2p/s as the electron bunch bandwidth.
The microwave instability was discovered in 1975

Boussard@2#. Boussard conjectured that the microwav
instability condition can be obtained simply by~i! writing
PRE 581063-651X/98/58~1!/984~8!/$15.00
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down the well-known coasting beam instability condition@3#
corresponding ton0 and~ii ! replacing the average beam cu
rent I av that appears in the coasting beam condition by
peak current of the bunched beam. This conjecture w
proved@4# in 1979 and the coherent mode of the microwa
instability was later shown@5# to correspond to local modu
lation of the beam charge density inside the bunched be
or to ‘‘microbunching.’’

Boussard’s condition can be understood as follows. A
herent wave corresponding to the microwave instability
localized in a small region within the bunch as depicted
Fig. 1. Therefore, only the current density at the location
the coherent wave, not the average current, contributes to
instability condition.

With regard to the size of the coherent wave packet ins
the electron bunch in Fig. 1, note that since the wake len
l W is the measure of the distance within which the wake fi
induced by an electron can affect another electron, the
electrons can maintain coherence with each other only if t
are less than a wake length apart. As a consequence
length of the coherent wave packet in Fig. 1 should be
same as the wake length. In other words,~coherence length!
5~wake length!.

Wang suggested@6# that the microwave instability is a
source of coherent light above the beam-pipe cutoff f
quency. Recently, coherent light emission from electr
beams has been reported by two groups@8,9# working on two
different storage rings; the wavelength of the coherent li
was found to be much less than the bunch length in b

FIG. 1. Illustration of a coherent wave localized inside the el
tron bunch. The horizontal axis isf and the vertical width of the
oval at a given horizontal positionf represents the equilibrium-line
densityr(f).
984 © 1998 The American Physical Society



d

c
ity
ia
In

he
ra
ro
n
fe
m

e
nd

en
if

f
g

is
th
ua
a

on

m
to
Th
re

o
in
e
te
a
ta

y-
lf

th
he
t
h
e

ted
ve
o-
e-
s

-

on.
the

on-

-
e-
nal

l
l

an
her-

the

PRE 58 985MICROWAVE INSTABILITY AS A COHERENT LIGHT SOURCE
experiments. We suggest that the coherent light observe
these groups was due to the microwave instability.

This paper is organized as follows. In Sec. II we introdu
the Vlasov equation appropriate to the microwave instabil
We show that the Vlasov equation, together with an init
condition, is equivalent to a nonlinear integral equation.
Sec. III we linearize the integral equation to first order in t
initial perturbation and show that the linearized integ
equation is equivalent to a homogeneous linear integ
differential equation for the perturbed current distributio
We refer to this equation as the basic equation. The dif
ential operator of the basic equation is second order in ti

In Sec. IV we introduce an orthonormal basisB2 of a
finite-dimensional linear function spaceM in preparation for
the discussion of a solvable model to be introduced in S
V. The spaceM is referred to as the modulation space a
the shape of each member of the basisB2 looks like the
envelope of the coherent wave packet of Fig. 1. Differ
members ofB2 have identical shapes, but are located in d
ferent positions on the bunch. In Sec. V we introduce
model impedance and the corresponding basic equation
the current. We show that the basic equation can be dia
nalized in terms of the orthonormal set of functions d
cussed in Sec IV, namely, in terms of the members of
basis. We also solve the initial value problem of the eq
tion; the results are expressions of the perturbed current
the induced radiation field in terms of the initial perturbati
current.

In Sec. VI we calculate the radiation power. We assu
that the initial starting perturbation of the instability is due
the grainy characteristics of the shot noise in the beam.
graininess of the shot noise is averaged over in the exp
sion for the radiation power.

The treatment of this paper is complimentary to that
Ref. @4#. While the earlier calculation was done primarily
the frequency domain, the calculation here is perform
mainly in the time domain. Through solving a concre
model in the time domain, we attempt to make the char
teristics of microbunching associated with microwave ins
bility more transparent.

It is interesting to compare the microwave-instabilit
induced coherent light in a storage ring with the se
amplified spontaneous emission~SASE! @7# in a free-
electron laser. In both cases, the radiation is a result of
longitudinal self-microbunching of the electron beam. T
main difference is that in SASE, self-bunching is related
the electron transverse motion caused by the undulator, w
in microwave instability, the microbunching is due to th
longitudinal impedance alone and the transverse motion
the electron beam is not involved.

II. VLASOV EQUATION

A. Equation of motion and the Vlasov equation

We use the dynamical variablesf and e to describe the
beam particle motion

f5u2v0t, e5E2E0 ,

whereu describes the position around the ring andE0 and
v0 are, respectively, the nominal energy and the~angular!
by

e
.
l

l
-

.
r-
e.

c.

t
-
a
or
o-
-
e
-
nd

e

e
s-

f

d

c-
-

-

e

o
ile

of

revolution frequency of the beam. It has been demonstra
@4# that the effect of synchrotron motion on the microwa
instability is negligible since the growth rate of the micr
wave instability is much larger than the synchrotron fr
quency. Hence the equations of motion can be written a

ḟ52âe, ė5ceE~f,t !,

whereE is the longitudinal electric field induced by the co
herent signal of the beam andâ is related to the momentum
compactiona by â[av0 /E0. The corresponding Vlasov
equation is

]

]t
C~f,e,t !2âe

]

]f
C1ceE~f,t !

]

]e
C50, ~3!

whereC(f,e,t) is the distribution function in (f,e) space.
We are interested in the transient solution of this equati
So we next discuss the initial condition we impose on
Vlasov equation.

B. Initial condition and an integral representation

We assume that the coherent instability starts att50 and
that the beam has no energy spread initially:

C~f,e,t50!5F~f!d~e!.

Subject to this initial condition, the Vlasov equation~3! is
equivalent to

C~f,e,t !5F~f!d~e!2ceE
0

t

dt8E„f1âe~ t2t8!,t8…

3
]

]e
C„f1âe~ t2t8!,e,t8…. ~4!

This equation obviously satisfies the above-stated initial c
dition; it is straightforward to verify that Eq.~4! implies Eq.
~3!.

Note that Eq.~4! is not linear inC since the induced field
E depends onC through the Maxwell equations. In this pa
per, the solution of the Maxwell equations will be repr
sented by a generalized Ohm law in terms of the longitudi
beam impedanceZn(v). In what follows we shall deal with
this integral equation form of the Vlasov equation.

C. Shot noise

The beam is composed ofN particles. Denote the initia
position of the j th particle byf j and represent the initia
distribution byF(f;f1 ,f2 , . . . ,fN). The granularity of the
distribution due to the fact that the electrons are pointlike c
be treated as shot noise. We assume that the partial co
ence of the shot noise is entirely responsible for initiating
coherent instability.

The shot noise can be represented by

F~f;f1 ,f2 , . . . ,fN!5
1

N(
j 51

N

d~f2f j !. ~5!
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Assuming that the probability density of eachf j is r(f j )
and averagingF over f j , we have

^F~f!&[)
j 51

N E df jr~f j !F~f;f1 ,f2 , . . . ,fN!5r~f!.

~6!

r(f) is normally referred to as the equilibrium-line densit
here it is normalized to unity. We assumer(f) to be a
smooth function off, e.g., a Gaussian function with var
ances2.

It is convenient to define the ‘‘centered’’ distributio
function

f ~f;f1 ,f2 , . . . ,fN!5F~f;f1 ,f2 , . . . ,fN!2r~f!,
~7!

so that

E df f ~f;f1 ,f2 , . . . ,fN!50

and

^ f ~f!&5)
j 51

N E df jr~f j ! f ~f;f1 ,f2 , . . . ,fN!50.

III. AN INTEGRO-DIFFERENTIAL EQUATION
FOR THE PERTURBED CURRENT

Let us denote byI (f,t) the perturbed part of the electro
beam current that is carrying on the coherent oscillation.
derive in this section a homogeneous linear integ
differential equation forI (f,t) from Eq. ~4!. The induced
coherent fieldE(f,t) can be expressed in terms ofI (f,t) by
Ohm’s law. We assume bothI (f,t) andE(f,t) to satisfy the
conditions~1! and ~2!. We first derive an approximate form
of Eq. ~4!.

A. Linearization

To linearize the integral equation~4!, we iterate the equa
tion once by substituting the first term on the right-hand s
of the equation into the last term. In Sec. II C we splitF into
two parts: the equilibrium electron beam distributionr and
the ‘‘centered’’ shot noisef . We regardr as the zeroth-orde
term andf the first-order term. We treat Eq.~4! up to O( f ).

SinceE is a beam-induced field, it is linear inC, namely,
it is linear in bothr and f . As mentioned in the Introduction
E consists, in our region of interest, of components w
wavelengthl satisfyingl!s, wheres is the bunch length
of the smooth functionr. However, the amount of such
small wavelength component ofE induced by a smooth long
bunch represented byr is negligible. In other words, the
beam impedance responsible for microwave instability
nonvanishing only at very high frequency corresponding tn
much greater than the bunch bandwidth 2p/s; therefore, the
contribution ofr to E is very small. We therefore ignore th
r contribution toE and conclude that

E5O~ f !.
e
-

e

s

~Suppose that the bunch bandwidth is smaller than the b
pipe cutoff and that there is evanescent beam impeda
then ignoring ther contribution toE is equivalent to ignor-
ing the effect of the potential well distortion on the micr
wave instability.! For a similar reason, the termF(f)d(e)
can be replaced byf (f)d(e) and thus the linearized integra
equation can be written as

C~f,e,t !5 f ~f!d~e!2ceE
0

t

dt8E„f1âe~ t2t8!,t8…

3
]

]e
$r„f1âe~ t2t8!…d~e!%. ~8!

Each term of this equation isO( f ).

B. Basic equation

The perturbed current is related toC of Eq. ~8! by

I ~f,t !5eNv0E de C~f,e,t !.

Substituting Eq.~8! into this equation and then performin
an integration by parts with respect toe, we obtain

I ~f,t !52pI av f ~f;f1 ,f2 , . . . ,fN!

12pI avâr~f!ceE
0

t

dt8~ t2t8!
]

]f
E~f,t8!, ~9!

whereI av5eNv0/2p. Differentiating Eq.~9! with respect to
t, we have

]

]t
I ~f,t !52pceIavâr~f!E

0

t

dt8
]

]f
E~f,t8! ~10!

and

]2

]t2
I ~f,t !52pceIavâr~f!

]

]f
E~f,t !. ~11!

From Eqs.~9! and ~10! we have the initial conditions

I ~0!~f![I ~f,t50!52pI av f ~f;f1 ,f2 , . . . ,fN!
~12!

and

İ ~0!~f![
]

]t
I ~f,t50!50. ~13!

We note that Eq.~11! relates the currentI to the beam-
induced longitudinal electric fieldE. In the remainder of this
section we transform this equation into an equation that
latesI to the impedance or, equivalently, to the wake fiel

Let us Fourier transform the currentI ,

I ~f,t !5(
n
E dV I n~V!exp~ inf2 iVt !

5(
n

I n~ t !exp~ inf!,
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I n~ t !5E dV I n~V!exp~2 iVt !,

where the sum overn is from 2` to `. By definition of the
longitudinal beam impedanceZn(v), the induced electric
field is

E~f,t !52
1

2pR(
n
E dV I n~V!Zn~nv01V!

3exp~ inf2 iVt !, ~14!

whereR is the average ring radius. Recall that we are dea
with an impedance with a large bandwidthb @see condition
~2!#; let us further assume that the bandwidth ofZ is much
larger than the bandwidth inV of I n(V). Then, in the region
of V where I n(V) is appreciable,Zn(nv01V)>Zn(nv0)
and in terms of the shorthand notationZn[Zn(nv0) we have

E~f,t !>2
1

2pR(
n

I n~ t !Znexp~ inf!. ~15!

We now define the functionsF andG by

F~f!5
1

2p(
n

Znexp~2 inf! ~16!

and

G~f!5F8~f!5
1

2p(
n

Unexp~2 inf!, ~17!

with Un[2 inZn . The beam-induced electric field can no
be written as

E~f,t !52
1

2pRE2p

p

df8F~f82f!I ~f8,t !, ~18!

]

]f
E~f,t !5

1

2pRE2p

p

df8G~f82f!I ~f8,t ! ~19!

and Eq.~11! becomes

]2

]t2
I ~f,t !5kE

2p

p

df8K~f,f8!I ~f8,t !, ~20!

with

k5ev0âI av5eav0
2I av /E0

and

K~f,f8!5r~f!G~f82f!. ~21!

We shall refer to Eq.~20! with Eq. ~21! as the basic equation
We have to solve the basic equation subject to the in

conditions~12! and ~13!. For a coasting beam,r~f!51/2p
5const, the right-hand side of Eq.~20! is a convolution in-
tegral; hence the equation can be diagonalized by a sim
Fourier transform and the solution to the initial value pro
lem is immediate. The mathematical complication for
bunched beam arises from thef dependence ofr, which
g

l

le
-

causes differentn’s within the bunch bandwidth 1/s to be
coupled @4#. On the other hand, this coupling is also th
reason why the eigenmode of the microwave instability
localized in thef space even though the eigenmode o
coasting beam is well known to be of the form exp(inf)
whose magnitude is a constant around the ring.

We have reduced in this section the problem of the m
crowave instability into the basic Eq.~20! with the kernel
given by ~21!. In preparation for diagonalization of the op
erator~21! in a model to be introduced in Sec. V, we intro
duce in the next section a set of localized orthonormal fu
tions.

IV. MODULATION SPACE AND MODULATION BASIS

The beam current distribution functionI (f,t) belongs to
the infinite-dimensional spaceS of the functions of the vari-
able f,2p,f,p. This space is spanned by the bas
$exp(inf)un50,61,62, . . . ,6`%. Define a (2b11)-dimen-
sional subspaceM,S that is spanned by the basisB1
5$exp(inf)un50,61,62, . . . ,6b%.

We now introduce another orthonormal basisB2[$Ga% of
M, which will be used in Sec. V to describe the modulati
envelope of the coherent wave on the bunch. The integeb
here will be identified with the impedance bandwidthb in
the condition~2!. In accordance with the condition, we a
sumeb to be large.

Divide the storage ring circumference2p,f<p into
2b11 equal parts with the lattice points

f5fa[ l Wa/2, ~a50,61,62, . . . ,6b!, ~22!

where

l W54p/~2b11!.

Definition. For a50,61,62, . . . ,6b,

Ga~f!5@ 2p~2b11!#21/2 (
n52b

b

exp@ in~f2fa!# ~23!

5@ 2p~2b11!#21/2
sin@~b11/2!~f2fa!#

sin@~f2fa!/2 #
.

~24!

Ga(f) is a function peaked atf5fa and the first zeros of
the function are atf5fa6 l W/2. The functionsGa corre-
sponding to differenta ’s are of identical shape, but they ar
shifted from each other inf by integer multiples ofl W/2.
NeighboringG ’s have non-negligible overlaps; the peak of
G and one of the first zeros of the nextG coincide. A fewG ’s
are depicted in Fig. 2. Note that if we take one of t
Ga(f)’s and multiply it by the carrier wave with wavelengt
l satisfying Eq.~1!, we obtain the coherent wave depicted
Fig. 1.

We refer to the spaceM as the modulation space, to th
set B25$Ga% as the modulation basis, and to the functi
Ga(f) as the modulation function. The following theorem
about the modulation basis can be proven easily.

Theorem 1 (orthonormality).
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E
2p

p

df Ga~f!Gb~f!5dab . ~25!

Theorem 2 (completeness inM).

(
a52b

b

Ga~f!Ga~f8!5
1

2p (
n52b

b

exp@ in~f2f8!#

5A2b11

2p
G0~f2f8!. ~26!

Theorem 2 implies that$Ga% spans the spaceM and that

E
2p

p

df8F (
a52b

b

Ga~f!Ga~f8!G f ~f8!5 f ~f!, ; f PM.

In other words, the operator~26! is the unity operator onM.
If f is orthogonal toM, then the last integral vanishes.

We introduced in this section the modulation spaceM
through the basisB1. We then introduced another basisB2 of
the same space. The memberGa of B2 is localized in a small
region of f space, while the magnitude of the memb
exp(inf) of B1 is distributed uniformly in thef space. We
will see thatB2 is the set of the independent eigensolutio
of the model to be introduced in the next section for t
microwave instability.

V. SOLVABLE MODEL

In this section we introduce a model impedance t
makes the operator~21! diagonalizable in terms of the modu
lation basisB25$Ga% introduced in the preceding sectio
This makes the basic equation~20! solvable.

In what follows, the symbolsn0 ,b,l,s, andl W carry the
same meaning as in the Introduction. They are assume
satisfy the conditions~1! and ~2!.

A. Model impedance and kernel

For n.0 the model impedance is defined by

Un5H Ū if n02b<n<n01b

0 otherwise.
~27!

If we ignore terms ofO(b/n0) relative toO(1), Eq. ~27! is
equivalent to

FIG. 2. Three neighboring modulation functions.
r

s

t

to

Zn5H Z̄ if n02b<n<n01b

0 otherwise,
~28!

with Ū52 in0Z̄. The impedances forn,0 can be obtained
by using

U2n5Un* , Z2n5Zn* ,

where an* indicates the complex conjugate.
We now calculate the corresponding model kern

K(f,f8). Substituting Eq.~27! into Eq. ~17!, we obtain

G~f!5@Ūexp~2 in0f!1 c.c.#A2b11

2p
G0~f!,

where Eq.~23!, with a50 and the relationU2n5Un* , has
been used and c.c. stands for the complex conjugate. C
bining the above equation with Eqs.~26! and ~21!, we have

K~f,f8!5$Ūexp@ in0~f2f8!#1 c.c.%r~f!

3 (
a52b

b

Ga~f!Ga~f8!.

By assumption~2! and Eq.~24!, r(f)>r(fa) within the
range off whereGa(f) is appreciable, namely, within th
rangeuf2fau,lW/2. Hence, introducing the notation

ra[r~fa!,

we can approximate

r~f!Ga~f!>raGa~f! ~29!

and

K~f,f8!>$Ūexp@ in0~f2f8!#1 c.c.%

3 (
a52b

b

raGa~f!Ga~f8!.

Note that the kernel is now diagonalized in the modulat
space. This is the form of the kernel we use below.

B. Diagonalization of the basic equation

We are now ready to solve the basic equation~20!. First,
let us collect here some of the relevant formulas obtain
above:

]2

]t2
I ~f,t !5kE

2p

p

df8K~f,f8!I ~f8,t !, ~30!

K~f,f8!5$Ūexp@ in0~f2f8!#1c.c.%

3 (
a52b

b

raGa~f!Ga~f8!, ~31!

I ~0!~f![I ~f,t50!52pI av f ~f;f1 ,f2 , . . . ,fN!,
~32!
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İ ~0!~f![
]

]t
I ~f,t50!50, ~33!

I ~f,t !5 (
n52`

`

I n~ t !exp~ inf!. ~34!

DecomposeI (f,t) into three mutually orthogonal compo
nents

I ~f,t !5exp~ in0f!J~f,t !1exp~2 in0f!J* ~f,t !1 Ǐ ~f,t !,

whereJPM (M was defined in Sec. IV.! Note that the first
component is the contribution ofI n(t) with nP@n02b, n0
1b#, the second component is the contribution fro
nP@2n02b, 2n01b#, and Ǐ is defined to be the contribu
tion from n outside both these bands. These three com
nents are orthogonal to each other since they belong to
overlapping bands ofn. For example,

E
2p

p

df exp~ in0f!J~f,t ! Ǐ * ~f,t !50.

We observe right away from Eqs.~30! and ~31! and the
definition of Ǐ above that

]2

]t2
Ǐ ~f,t !50.

This, together with Eq.~33!, implies thatǏ (f,t) is indepen-
dent oft. We shall therefore ignoreǏ in the remainder of this
paper and write

I ~f,t !5exp~ in0f!J~f,t !1exp~2 in0f!J* ~f,t !.
~35!

Note that in this equation the carrier wave exp(in0f) is
modulated by an elementJ(f,t) ofM. Now using Eqs.~31!
and ~35!, the basic equation~30! becomes a linear equatio
in the modulation spaceM,

]2

]t2
J~f,t !5kŪ(

a
raGa~f!E

2p

p

df8Ga~f8!J~f8,t !.

~36!

Since $Ga% is an orthonormal basis ofM, this equation is
already diagonalized, the eigenfunction beingGa(f). Let

J~f,t !5 (
a52b

b

Ja~ t !Ga~f!; ~37!

then

d2

dt2
Ja~ t !5kraŪJa~ t !. ~38!

The coherent frequencyVa of the modea can readily be
obtained from Eq.~38!. Let

Ja~ t !;exp~2 iVat !;
o-
n-

then

Va
252kraŪ. ~39!

Note that for each eigenvectorGa(f) of Eq. ~36! there are
actually two solutions forJ(f,t),

Ga~f!exp~2 iVat !, Ga~f!exp~ iVat !. ~40!

This is a reflection of the fact that the basic equation~30! is
second order in time.

Let us pause now and compare Eq.~39! with the corre-
sponding result for a coasting beam. The coherent freque
Vn corresponding to the moden of a coasting beam is given
by @3#

Vn
25 inkZn/2p

and the corresponding eigenfunction is exp(inf). If we sub-
stitute 1/2p in this equation byra and replaceinZn with
2Ū, we obtain Eq.~39!. This amounts to a proof of the
Boussard conjecture. It is worth repeating here, for empha
what was stated in the Introduction: The realization of t
Boussard conjecture is a consequence of the coherent w
of the microwave instability being localized in the bunc
even though the coasting beam coherent wave, exp(inf), is
spread throughout the whole ring.

C. Matching the initial condition

We have just found that corresponding to each mo
numbera there are two solutions~40! for J(f,t). In order
for these two solutions to satisfy the initial condition~33!,
they must combine to give

J~f,t !;Ga~f!cosVat.

Now adding up the contributions from alla, and including
the contribution from theJ* term in Eq.~35!, we obtain

I ~f,t !5 (
a52b

b

Ga~f!@ I a
~0!exp~ in0f!cosVat1 c.c.#,

~41!

where

I a
~0!5E

2p

p

df Ga~f!I ~0!~f!exp~2 in0f!. ~42!

We now calculate the longitudinal electric fieldE induced by
I (f,t). Combining the Eqs.~15!, ~28!, and ~41! and then
using the relationZ2n5Zn* , we obtain

E~f,t !52F Z̄ (
a52b

b

Ga~f!I a
~0!

3exp~ in0f!cos~Vat !1 c.c.G /2pR. ~43!

We have thus succeeded in solving the transient problem
our model by expressingI (f,t) andE(f,t) in terms of the
initial current I (0)(f).
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VI. RADIATION POWER

Having found the solution~41! and ~43! to the initial
value problem, we are ready to calculate the radiation pow
The power lost by the beam~per radian of the beam distri
bution! is

P~f,t !52RE~f,t !I ~f,t !. ~44!

From conservation of energy, this is also the radiation pow
The total radiation power is then

Ptot~ t !5E
2p

p

dfP~f,t !. ~45!

Substituting Eqs.~41! and~43! into Eq.~44! and ignoring the
fast oscillating terms involving exp(6i2n0f), we obtain

P~f,t !5
1

2p (
a,b

@ Z̄I a
~0!I b*

~0!cosVat cosVb* t

1 c.c.#Ga~f!Gb~f!, ~46!

where botha andb are summed from2b to b. Recall that
I (0) is a messy collection of the grainy shot noise. We n
statistically average Eq.~46! over the shot noise.

Averaging over shot noise

We use angular brackets, as we did in Sec. II C, to in
cate averaging over the shot noise:

^P~f,t !&5
1

2p (
a,b

@ Z̄^I a
~0!I b*

~0!&cosVat cosVb* t1 c.c.]

3Ga~f!Gb~f!. ~47!

From Eq.~42!

^I a
~0!I b*

~0!&5E
2p

p

dfE
2p

p

df8exp@ in0~f82f!#

3Ga~f!Gb~f8!^I ~0!~f!I ~0!~f8!&. ~48!

We must now evaluatêI (0)(f)I (0)(f8)& or, equivalently,
^ f (f) f (f8)& @cf. Eqs.~32!, ~5!, and~7!#. The shot noise in a
bunched beam is correlated because the bunch distribu
function r(f) is not uniform. In anticipation of the fina
results, we make the following remarks. SinceGa(f) is ap-
preciable only within a widthl W>2p/b aroundf5fa , we
see from Eq.~48! that we have to take the average only
this region. From the assumptionl W!s, the bunch distribu-
tion r(f) is nearly constant within the widthl W of Ga(f);
we can therefore safely take the uniform shot noise aver
assuming the noise density to beNra .

We start from the definition
r.

r.

t

i-

on

e,

^ f ~f! f ~f8!&5E
2p

p

)
j 51

N

@r~f j !df j #

3 f ~f;f1 ,f2 , . . . ,fN!

3 f ~f8;f1 ,f2 , . . . ,fN!.

Using Eqs.~5! and ~7! on the above equation, we have

^ f ~f! f ~f8!&5
1

N
@r~f!d~f82f!2r~f!r~f8!#.

~49!

The last term of this equation reflects the effects of the c
relation induced by nonuniformity of the bunch. Let us i
nore this term for now and show later that the contribution
this term is indeed negligible in our region of interest giv
by Eqs.~1! and ~2!.

If we ignore the last term of Eq.~49!, then Eq.~48! yields

^I a
~0!I b*

~0!&5@~2pI av!2/N#E
2p

p

df r~f!Ga~f!Gb~f!.

With use of the approximation~29!, the above equation be
comes

^I a
~0!I b*

~0!&5@~eNv0ra!2/Nra#da,b , ~50!

where Theorem 1 has been used. Substituting Eq.~50! into
Eq. ~47!, we obtain

^P~f,t !&5 (
a52b

b

^Pa~f,t !&, ~51!

with

^Pa~f,t !&52R̄@~eNv0ra!2/2pNra#ucosVatu2Ga
2~f!,

~52!

where R̄ is the resistive part ofZ̄. Had we assumed the
initial beam to consist of uniform shot noise with densityra
we would have obtained the same result.

The calculation of averaged total radiation power fro
^P(f,t)& above is straightforward. The result is

^Ptot~ t !&5 (
a52b

b

^Ptot,a~ t !&, ~53!

with

^Ptot,a~ t !&5E
2p

p

df^Pa~f,t !&

52R̄@~eNv0ra!2/2pNra#ucosVatu2. ~54!

If we write

Va5Va,R1 iga , ~55!

whereVa,R is the real coherent frequency shift andga is the
growth rate of the modea, then, for larget,
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ucosVatu2>
1

4
exp~2gat !. ~56!

It is interesting to approximate the summation in Eq.~53! by
an integral. If we set

a→
2b11

2p
f>

b

p
f, (

a52b

b

→
b

pE2p

p

df,

Va→V~f!5VR~f!1 ig~f!, ra→r~f!,

then Eqs.~53! and ~54! give an interesting expression

^Ptot~ t !&5
1

2p
R̄E

2p

p

df
@eNv0r~f!#2

Nr~f!l W
exp@2g~f!t#,

~57!

where Eq.~56! has been used.
We have so far ignored the effect of the last term of E

~49!. Let us verify now that it is indeed ignorable. The la
term of Eq.~49! adds to Eq.~50! a term proportional to
ry

,

5

ra

c

te
.

1

NE2p

p

df r~f!Ga~f!exp~2 in0f!

3E
2p

p

df8r~f8!Gb~f8!exp~ in0f8!.

If we apply the approximation~29! to the integrands above
then both integrals vanish since exp(6in0f) is orthogonal to
Ga(f) andGb(f).

We constructed a model for microwave instability a
calculated the radiation power under the assumption that
impedance is present only at frequencies above the b
pipe cutoff and that the initial condition for the cohere
instability is the partially coherent signal from the eve
present shot noise in the beam. For our model impeda
~27! and~28!, the radiation power is given by Eq.~57!. In the
integrand of this equation, the denominatorNr(f) l W is the
number of particles in a coherence length or the numbe
electrons participating in a coherent mode. If the instabi
is not initiated by the shot noise but by some other mec
nism, then the factor 1/Nr(f) l W would be replaced by
something else.
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