

Coherence and Phase in Imaging

OR What REALLY are the limitations on Coherent Diffractive Imaging?

Keith A. Nugent

ARC Centre of Excellence for Coherent X-ray Science & School of Physics

The University of Melbourne

Australia

A Lightning Review...

Protein Crystallography

Very High Resolution Imaging

Coherent imaging methods are being developed. ARC Centre of Excellence for COHERENT X-RAY SCIENCE **Coherent Field Impose Measure Intensity, Keep Phase**

Impose "support"

Guess Phase

Coherent Diffractive Imaging

- The diffraction pattern (equivalently, the autocorrelation function) of an object with <u>finite support</u> "almost" uniquely defines the object
- If we can find an object that is consistent with the measured diffraction pattern and the (assumed known) support, then we have almost certainly found the object.
- Complete <u>coherence</u> is implicitly assumed

R.H.T.Bates, Optik, 61, 247 (1982)

Coherent Diffractive Imaging makes a number of implicit assumptions

ARC Centre of Excellence for COHERENT X-RAY SCIENCE

- Planar incident wave
- Complete coherence
- Finite support

In this presentation I will question all three ...

Coherent Diffractive Imaging

ARC Centre of Excellence for COHERENT X-RAY SCIENCE

HM Quiney et al, "Iterative image reconstruction algorithms using wave-front intensity and phase variation", Optics Letters **30**, 1638-1640 (2005)

Fresnel diffraction imaging

Fresnel diffraction imaging

ARC Centre of Excellence for COHERENT X-RAY SCIENCE

GJ Williams, et al, "Fresnel Coherent Diffractive Imaging", Physical Review Letters, 97, 025506 (2006)

What are the effects of partial coherence?

Note: X-ray science is almost always concerned with beams and so the paraxial and quasi-monochromatic assumptions are adopted

GJ Williams et al, "Coherent Diffractive Imaging and Partial Coherence", Phys Rev B, **75**, 104102 (2007)

A Partially Coherent Description

A Partially Coherent Description

ARC Centre of Excellence for COHERENT X-RAY SCIENCE

There is no object that is consistent with both the data and the prior knowledge if perfect coherence is assumed

Partial coherence can prevent the iteration from ever converging

A Partially Coherent Description

ARC Centre of Excellence for COHERENT X-RAY SCIENCE

$$I_{\infty}^{sc}(s) = \mathcal{A}_{0}^{2} \int \sigma(r) \sigma^{*}(r+x) exp\left[-ik_{0} \frac{r \cdot x}{f}\right] dr exp\left[-\mu |\mathbf{x}|^{2}\right] exp\left[-ik_{0} s \cdot x\right] dx$$

GJ Williams et al, "Coherent Diffractive Imaging and Partial Coherence", Phys Rev B, **75**, 104102 (2007)

The Effects of Coherence

The Effects of Coherence

ARC Centre of Excellence for COHERENT X-RAY SCIENCE

FFeenel##==038246

The Effects of Coherence

Is the Image Correct?

Coherent Diffractive Imaging makes a number of implicit assumptions

- Planar incident wave
- Complete coherence
- Finite support

Can we build partial coherence into the reconstruction?

Partially coherent diffraction?

 $J_{out}(r_1, r_2) = T(r_1)T^*(r_2)J_{inc}(r_1, r_2)$

Potential algorithm for recovering partially coherent images

This needs a measurement of the coherence function

Phase Space Tomography

Phase Space Tomography

Recovered Coherence Function

ARC Centre of Excellence for COHERENT X-RAY SCIENCE

C.Q. Tran, et al, Synchrotron Beam Coherence Measured using Phase-Space Tomography", Optics Letters, **30**, 204-206 (2005).

1D is OK, but how do we do a two-dimensional field?

A separable field – one that can be written as a product of a function of x and a function of y – can be reduced to two one-dimensional problems.

A Gaussian field passing through a rectangular aperture will be separable.

$$J(x_{1}, x_{2}, y_{1}, y_{2}) = J_{x}(x_{1}, x_{2})J_{y}(y_{1}, y_{2})$$
$$I(x, y) = X(x)Y(y)$$

Two-dimensional diffraction patterns

ARC Centre of Excellence for COHERENT X-RAY SCIENCE

Data is consistent a separable field

The Complex Degree of Coherence

CQ Tran et al, "Experimental Measurement of the Four-Dimensional Mutual Optical Intensity for an Undulator X-ray Source", *Physical Review Letters*, <u>accepted</u>

Can we improve the spatial resolution?

An algorithm for recovering the MOI

Iterative Recovery of the Mutual Optical Intensity

Coherent Diffractive Imaging makes a number of implicit assumptions

- Planar incident wave
- Complete coherence
- Finite support

What do we mean by "support"?

Independent Fresnel CDI images of a large object

ARC Centre of Excellence for COHERENT X-RAY SCIENCE

Experimental data obtained using coherent visible light

Summary

Collaborators

- Harry Quiney (UM)
- Andrew Peele (La Trobe)
- Garth Williams (UM)
- Lachlan Whitehead (UM)
- Brian Abbey (UM)
- Sam Flewett (UM)
- Chanh Tran (now at La Trobe)
- Jesse Clark (La Trobe)
- Bipin Dhal (UM)
- David Paterson (Australian Synchrotron)
- Martin de Jonge (APS)
- Ian McNulty (APS)

