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Abstract

A phase-space discontinuous Galerkin (PSDG) method is presented for the solution
of stellar radiative transfer problems. It allows for greater adaptivity than competing
methods without sacrificing generality. The method is extensively tested on a spher-
ically symmetric, static, inverse-power-law scattering atmosphere. Results for differ-
ent sizes of atmospheres and intensities of scattering agreed with asymptotic values.
The exponentially decaying behavior of the radiative field in the diffusive-transparent
transition region and the forward peaking behavior at the surface of extended at-
mospheres were accurately captured. The integrodifferential equation of radiation
transfer is solved iteratively by alternating between the radiative pressure equation
and the original equation with the integral term treated as an energy density source
term. In each iteration, the equations are solved via an explicit, flux-conserving,
discontinuous Galerkin method. Finite elements are ordered in wave fronts perpen-
dicularly to the characteristic curves so that elemental linear algebraic systems are
solved quickly by sweeping the phase space element by element. Two implementa-
tions of a diffusive boundary condition at the origin are demonstrated wherein the
finite discontinuity in the radiative intensity is accurately captured by the proposed
method. This allows for a consistent mechanism to preserve photon luminosity. The
method was proved to be robust and fast, and a case is made for the adequacy of par-
allel processing. In addition to classical two-dimensional plots, results of normalized
radiative intensity were mapped onto a log-polar surface exhibiting all distinguishing
features of the problem studied.
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1 Introduction

Computational methods for radiative transfer in extended stellar atmospheres (at-
mospheres whose curvature of the outer layers is not negligible) require a higher

degree of accuracy (compared to engineering applications on earth) to resolve the spe-
cific radiative intensity in the angular direction(s) because of the astronomical length
scale, the peculiar properties of the participating media, and the complexity of the
transfer processes. A chief example is the modeling of a core collapse supernova ex-
plosion (Mezzacappa, 2001; Woosley and Heger, 2002). In connection with this
phenomenon, a problem of radiative transfer in extended stellar atmospheres (Chan-
drasekhar, 1945) is revisited with a phase-space discontinuous Galerkin (PSDG)
method that captures salient features of the solution common to complex models of
stellar astrophysics. As a bonus, the proposed method provides a general framework
that can fit naturally into existing Galerkin solution methods for advanced models of
stellar flows.

The radiative specific intensity in extended atmospheres possesses two distinguish-
ing features (sec. 2), namely, exponential decay near the diffusive-transparent tran-
sition region, and forward peaking (delta-like function shape) at the surface of the
atmosphere. A singularity also exists at the origin where the radiative intensity, the
energy density, and the pressure grow unbounded. These features emerge in the so-
lution of contrived forms of the general radiative transfer equation (Boltzmann equa-
tion) allowing the evaluation of improved solution methods without the difficulties of
solving an elaborated realistic model.

Early studies of radiative transfer in a semi-infinite, plane-parallel stellar atmo-
spheres led to the development of numerous approximate solution methods by many
investigators. The most significant emerged from the solution of a mathematically
similar neutron transport problem by Gauss quadrature (Wick, 1943). The method
enjoyed the physical significance of approximating the radiation intensity by a finite
set of beams aligned in the Gauss point directions—an interpretation already famil-
iar in the early kinetic theory of gases where rudimentary models of a gas allowed
a molecule to move only in few directions (see comments on Joule’s attempts by
Truesdell, 1975). Chandrasekhar (1944) presented the method in the astro-
physical context and extended it to spherical atmospheres (Chandrasekhar, 1945)
where the angular derivative of the radiative intensity was optimally determined as
a function of the intensity value at Gauss points. In the following years, extensive
investigations devoted to plane-parallel atmospheres appeared (Chandrasekhar,
1948).

Wick-Chandrasekhar’s original method was analytical wherein successive ap-
proximations with increasing accuracy were obtained by increasing the number of
Gauss points; typically, the fourth approximation delivered satisfactory convergence
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2 Valmor de Almeida

for the cases studied. Computer-aided developments (often in conjunction with alter-
native quadrature integration rules) improved the method to become what is known
as the discrete ordinates method in disciplines of radiative transfer, e.g., astrophysics
and engineering heat transfer (Siegel and Howell, 1992), and neutron transport,
e.g., nuclear reactor design and shielding (Lewis and Miller, 1984; Marchuk and
Lebedev, 1986). In addition, similar physical interpretations of the method in the ki-
netic theory of gases became known as the discrete velocity gas model (Broadwell,
1964; Platkowski and Illner, 1988) which later evolved into models for large
scale simulation of fluids: the lattice-gas cellular automaton, and lattice Boltzmann
models (Rothman and Zaleski, 1997).

Notwithstanding steady improvements made to the quadrature rule method since
its genesis, applications to the radiative transfer equation in extended atmospheres
proved to be unsatisfactory (Chapman, 1966). The original method became slowly
convergent (or computationally demanding in the case of the discrete ordinates method)
when sharp angular gradients needed to be resolved by means of increasing the num-
ber of Gauss directions. This weakness prompted Hummer and Rybicki (1971) to
devise a novel method using a change to cylindrical coordinates suitable for adapt-
ing the approximate solution to regions of sharp gradients, in particular at the outer
boundary where the radiative intensity is sharply peaked. Several investigations on
extended atmospheres followed (Hummer and Rybicki, 1975; Kunasz and Hum-
mer, 1974). Though successful, one drawback of the method is that it was tightly
tailored to the problem at hand and did not easily lend itself to extensions to apply
to other versions of transport equations, in particular, conservation laws governing
coupled fluid flow and radiation.

In view of its simplicity and generality, the discrete ordinates method turned into
the workhorse computational method of neutron transport and thermal radiative
transfer, and it assumed a central position in astrophysical modeling. However it was
not without trouble; in neutron transport calculations, care had to be taken to avoid
flux distortions known as ray effects (Lathrop, 1968, 1971; Lewis and Miller,
1984). Whereas for radiative transfer in extended atmospheres, the difficulty of intro-
ducing spatially local angular adaptivity into the method hindered its capability to
produce cost effective accurate solutions. Recently, subdomain decomposition mod-
ifications have been proposed to allow for a spatially varying choice of the number
of angular directions (see Bal, 2000, for an application to neutron transport). Note
though that the resulting method sacrifices simplicity and has not been applied to
problems in curved domains.

The foregoing prompted the development of the finite element PSDG method ad-
vocated here (sec. 4). The method pays special attention to the approximation of
the radiative intensity field with respect to the angular direction by constructing the
solution directly onto the phase space (see Martin et al., 1981; Miller Jr. et al.,
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...Phase-Space Explicit Discontinuous Galerkin Method... 3

1973; Mordant, 1986, for a similar approach in neutron transport). Hence, it allows
for the greatest degree of flexibility to adapt an approximate solution to the angular
direction and configurational space simultaneously. Although finite element methods
are successful in solving problems with a high degree of locality, generic radiative
transport problems are non-local by virtue of scattering and non-local boundary con-
ditions. Consequently, a conventional finite element implementation will lead to an
intricate globally coupled algebraic problem. To circumvent global connectivity, an
iterative approach (sec. 3), known in astrophysics as the Eddington factor iteration, is
combined with the PSDG method (similar strategies have been used in neutron trans-
port and heat transfer calculations Chui and Raithby, 1993; Lewis and Miller,
1984; Raithby and Chui, 1990). The iterative approach uses the angular moments
of the radiative transfer equation, namely, radiative energy and momentum equations,
to help set the correct energy and pressure levels in the configurational domain.

For many years, the configurational space DG method has been used in conjunc-
tion with the discrete ordinates method in the area of neutron transport (Lewis
and Miller, 1984). In fact, the DG method was originally proposed for a neutron-
transport-motivated problem (consult Cockburn et al., 2000, for the DG method
history and modern applications mostly in fluid flow calculations). When used in
companion with the discrete ordinate method, the DG method only approximates
the solution in the configurational space. The combination is particularly effective
when a few angular directions suffice to capture mildly anisotropic radiation beams.
However, highly anisotropic cases often require too many directions and the method
becomes prohibitively expensive.

The PSDG method advanced here expands the strength of the spatial DG method
to apply to the entire phase space, thereby eliminating the need for the discrete ordi-
nate approximation of the angular direction. Hence, the accuracy of the approximate
solution can be improved throughout the space while advantage can be taken of adap-
tive methods to significantly reduce the computational cost. The method promises
to be extensible to substantially more complex models of coupled radiation and fluid
flow as it employs a Galerkin-type weak formulation (sec. 4.1) similar to those used
to solve hyperbolic conservation laws of fluid flow which form the basis of radia-
tive hydrodynamics (Mihalas and Weibel-Mihalas, 1999). The PSDG method
is applied to the hyperbolic partial differential form of the radiative transfer equa-
tion (3.1) for extended atmospheres since the integral (non-local) contribution in the
equation is updated iteratively as an energy source term (3.1a) using moments (3.2)
of the radiative transport equation. The solution iterates are constructed element
by element, preserving the normal component of the phase-space flux of the specific
intensity (4.3), and following the characteristic directions of the hyperbolic operator
(which define computational wave fronts, sec. 4.2) wherein computational parallelism
can be exploited.
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4 Valmor de Almeida

Four cases of increasing atmosphere diameter spanning three orders of magnitude
were studied utilizing the PSDG method. In addition, many different intensities of
scattering were investigated by varying the value of the scattering power law exponent
(sec. 6). The computational results (sec. 6) obtained for all combination of parameters
correctly reproduced the asymptotic values (sec. 2.1 and 2.3) of key physical quantities
in the diffusive and transparent limits. In addition, details of the formation of the
forward peaking and diffusive-transparent transition regions are captured accurately
and made vivid by means of a log-polar surface of the normalized specific radiation
intensity field (fig. 6.5 and 6.4).

The computations were carried out in multiple computer architectures and com-
puting times were compared. The calculation of moments of the intensity field ac-
counted for a large fraction of the total time (≈ 50%) even when efficiently performed
(sec. 4.3). The resulting method proved to be robust, accurate, and fast. Typically
thirteen iterations sufficed for a sublinear convergence (convergence order ≈ 0.7,
sec. 6.4).

Last but not least, a careful description of boundary conditions, in particular at
the origin (sec. 2.2), is made in the light of algorithm design and physical meaning.

2 The spherical-geometry transfer problem

For the applications treated in this manuscript, the radiative specific intensity field
I : (x, ξ, ν, t) ∈ Ω × V × P × P → P is a non-negative mapping of the position x in
the Euclidean manifold Ω, direction ξ (

∥∥ξ
∥∥ = 1) in the translation vector space V ,

frequency ν (or energy hν), and time t in the set of positive real numbers P. The
assumption of steady, spherically symmetric, and gray radiation field reduces the set
of independent variables to (r,µ), where r is the radial coordinate of the spherical
coordinate system, and µ := cos θ is the direction cosine of a photon traveling in the
direction θ with respect to the radial position vector (fig. 2.1). Occasionally the angle
θ is referred to as the photon polar angle, and should not be confused with the polar
angle coordinate of the underlying coordinate system.

Under the following restrictions:

• radiative equilibrium (time-independent radiation on static matter),

• gray radiation,

• pure conservative scattering (no true absorption or thermal emission processes),

• power-law radial isotropic scattering coefficient,

• absence of external illumination, and
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...Phase-Space Explicit Discontinuous Galerkin Method... 5

r
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z
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y

θ

0 ≤ θ ≤ π

radiation beam

Ri ≤ r ≤ Ro

ξ

Fig. 2.1: Domain of the atmosphere. Ri is the radius of the inner boundary placed
into the diffusive core region. θ is the photon polar angle.

• nearly isotropic radiation deep into the stellar atmosphere,

the problem of radiation transfer reduces to: find the radiative specific intensity
I : (r, µ) ∈ Ω → R in the spherical annulus Ω := {(r, µ) ∈ R2 | Ri ≤ r ≤ Ro and
−1 ≤ µ ≤ +1} satisfying,

µ ∂rI +
(1− µ2)

r
∂µI = −k(r)

(
I − 1/2

∫ +1

−1

I(r, µ′) dµ′
)

in Ω (2.1a)

with outer and inner boundary conditions respectively,

I(Ro, µ) = 0 − 1 ≤ µ ≤ 0 and (2.1b)

I(Ri, µ) = γ(L0) I(Ri,−µ) 0 ≤ µ ≤ +1, (2.1c)

alternatively,

I(Ri, µ) = β(L0)/π 0 ≤ µ ≤ +1, (2.1d)

where k(r) := α r−n (n > 1) is the scattering coefficient (its reciprocal is the lo-
cal photon mean free path), and γ(L0) and β(L0) are real positive functions of the
constant photon luminosity L0. The outer boundary condition (2.1b) asserts that no
radiation falls onto the atmosphere while at the inner boundary, (2.1c) states that
the outward going radiation is a partial reflection of the incoming radiation, and the
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alternative boundary condition (2.1d) specifies that radiation at every outward point-
ing direction be a constant (comments on (2.1c) and (2.1d) follow in sec. 2.2). The
aforementioned problem is non-local in view of the integral operator in (2.1a) and the
inner boundary condition involving γ and β (sec. 2.2). Given an explicit form of γ
and β, (2.1) defines an unambiguous mathematical problem with an unique solution
(not available in terms of tabulated functions).

2.1 Asymptotic analytical results

It is instructive to organize the asymptotic analytical results in a progressive sequence
according to physical quantities derived from the radiation specific intensity with
increasing rank, that is, from scalar to tensor. It just so happens that mathematically,
the sequence involves operations with higher order angular moments.

2.1.1 Radiative equilibrium

The radiative equilibrium condition implies that the energy density emitted by an
element of mass in the atmosphere is exactly balanced by the energy density absorbed
by that element. This condition is satisfied for the problem at hand since∫ 1

−1

k(r) E(r) dµ′︸ ︷︷ ︸
emitted energy density

− 4π

c

∫ 1

−1

k(r) I(r, µ′) dµ′︸ ︷︷ ︸
absorbed energy density

= 0, (2.2)

where c is the speed of light, and E(r) := (2π/c)
∫ +1

−1
I(r, µ′) dµ′ is the radiative

energy density.

2.1.2 Luminosity

Taking the zeroth moment of (2.1a) (i.e. angular integration) and using (2.2),∫ 1

−1

(
µ ∂rI +

(1− µ2)

r
∂µI

)
dµ′ = 0,

dr F − 2 F

r
= 0, (2.3)

F (r) =
constant

r2
, (2.4)

are obtained, where F (r) := 2π
∫ 1

−1
I(r, µ′) µ′ dµ′ is the radial component (the other

two components are null) of the net rate of the radiative energy flux at r. Hence, after
solving the radiative energy equation (2.3), it is concluded that the energy flux is not
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...Phase-Space Explicit Discontinuous Galerkin Method... 7

a constant, but rather it decays with the square of the radius. This behavior arises
from the increase of the area of the spherical shell traversed by the radiation at r.
Nevertheless the rate of loss of energy of the spherical shell, defined as the photon
luminosity originated at r, is a constant L0; thus

L(r) := 4πr2 F (r) = L0. (2.5)

2.1.3 Radiative Stress

Taking the first moment of (2.1a)∫ 1

−1

(
µ ∂rI +

(1− µ2)

r
∂µI

)
µ′dµ′ =

∫ 1

−1

(
−k(r)

(
I − 1

2

∫ 1

−1

I dµ′′
))

µ′dµ′,

then

dr P +
3P − E(r)

r︸ ︷︷ ︸
(div T )r

=
−k(r)

c
F (r), (2.6)

where P (r) := (2π/c)
∫ +1

−1
I(r, µ′) µ′2 dµ′. The result (2.6) is an equation referred to

as the radial component of the radiative momentum. The radiative stress tensor
T (r) := (1/c)

∫ 4π

0
I(r, µ) ξ⊗ ξ dw, where dw = sin θ dθ = −dµ is the element of solid

angle about the pencil of radiation, has the following components relative to the
orthonormal vector basis, {er,eθ,eφ} induced by the spherical coordinate system,P 0 0

0 P 0
0 0 P


︸ ︷︷ ︸

isotropicPI

+
1

2

0 0 0
0 E − 3P 0
0 0 E − 3P


︸ ︷︷ ︸

deviatoric

=
1

2

2P 0 0
0 E − P 0
0 0 E − P

 . (2.7)

Hence, P (r) is the radiation pressure at r as indicated by the isotropic part of T .
Moreover, the principal directions of stress (eigenvectors) are (er,eθ,eφ). These are
directions of largest traction wherein the shear contribution is null. The corresponding
principal stresses (eigenvalues) are

λ1 = P, and λ2 = λ3 = (E − P )/2. (2.8)

These are the magnitude of the traction in the principal directions. Finally, the
principal invariants of the stress tensor result in,

tr T := λ1 + λ2 + λ3 = E, (2.9a)

tr cof T := λ1λ2 + λ1λ3 + λ2λ3 =
(3P + E)

4
(E − P ), (2.9b)

det T := λ1λ2λ3 = P
(E − P

2

)2

. (2.9c)
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8 Valmor de Almeida

2.1.4 Diffusive limit

There are two mathematically and physically relevant limits in the solution of (2.1).
The first is the diffusive limit which takes place deeply into the optically thick atmo-
sphere, r → 0. Here the photon mean free path is small and the photons travel in
random walk by virtue of copious collision. The specific intensity is nearly isotropic
therefore the pressure-energy density ratio (Eddington factor) limr→0 P/E = 1/3,
and the state of stress (2.7) becomes isotropic PI = (E/3)I for vanishingly small r.
Note that the energy density is equally partitioned along the principal directions of
stress; hence the magnitude of the traction in each direction is E/3. The asymptotic
behavior of the energy density can be obtained from (2.6) using P/E = 1/3 and
limr→0(3P − E)/r = 0, thus

lim
r→0

E =
3α L0

4π c

r−(n+1)

(n + 1)
and lim

r→0
P =

α L0

4π c

r−(n+1)

(n + 1)
.

In addition, the principal stresses (2.8) and the stress invariants (2.9) become, respec-
tively,

lim
r→0

λ1 = lim
r→0

λ2 = lim
r→0

λ3 = E/3, and

lim
r→0

tr T = E, lim
r→0

tr cof T = E2/3, and lim
r→0

det T = (E/3)3.

2.1.5 Streaming limit

The second notable limit in the solution of (2.1) is encountered at the surface of an
extended atmosphere, r → ∞, where the scattering coefficient is vanishingly small,
limr→∞ k(r) = 0. The solution of (2.1) in this limit is of the form,

lim
r→∞

I(r, µ) =
I0(r)

2π
δ(µ− 1), (2.10)

referred to as the outward peaking of the radiation specific intensity at the outer
boundary. This behavior stems from the fact that the outer shells of an extended
atmosphere behave as a vacuum (in view of the inverse power law scattering assump-
tion) and the radiation becomes highly anisotropic in the absence of scattering (the
photon mean free path is large and photons travel without collision). Thus, the ra-
diation beam tends to align perfectly with the radial coordinate direction. However,
because the luminosity is a constant and the area of the outer surface is very large,
the magnitude of the delta peak, I0, is very small. That is, the asymptotic value of
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...Phase-Space Explicit Discontinuous Galerkin Method... 9

I0 follows from the luminosity:

lim
r→∞

F (r, µ) := 2π

∫ 1

−1

lim
r→∞

I(r, µ′) µ′ dµ′

= I0(r) by (2.10),

thus by (2.5)

I0(r) = L0/4π r2. (2.11)

Hence, the forward peak is a qualitative behavior of I that requires a high resolution
method for computing an accurate quantitative representation of a delta-like function
of vanishingly small magnitude. In view of (2.10), the following limits are expected
for problem (2.1)

lim
r→∞

I(r, µ) =
L0

4π r2
δ(µ− 1) by (2.11),

max lim
r→∞

I(r, µ) =
L0

4π r2
from (2.10),

lim
r→∞

c E(r) = lim
r→∞

F (r) = lim
r→∞

c P (r) from (2.10), (2.12)

lim
r→∞

c E(r) 4π r2 = lim
r→∞

c P (r) 4π r2 = L0 by (2.5) and (2.12). (2.13)

From (2.13) the ratio of pressure to energy tends to unity, P/E → 1, and the
state of stress (2.7) becomes highly anisotropic with components, with respect to the
basis {er,eθ,eφ}, equal to P 0 0

0 0 0
0 0 0

 .

In the streaming limit, the eigenvalues (2.8) and invariants (2.9), respectively,

lim
r→∞

λ1 = E, and lim
r→∞

λ2 = lim
r→∞

λ3 = 0, and

lim
r→∞

tr T = E, lim
r→∞

tr cof T = 0, lim
r→∞

det T = 0,

show that the energy density is no longer equally partitioned among the principal
directions of stress, and that the stress tensor is singular. At the outer boundary of
an extended atmosphere the radiation traction exerted on the stellar medium is null
in all but one direction, the outward pointing radial principal direction. Because the
radial direction is an eigenvector of the stress tensor the traction vector points in the
same direction, and its magnitude is E; the single nonzero eigenvalue λ1.
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2.2 The inner boundary condition

There are alternative ways to enforce the diffusive limit at the inner radius of prob-
lem (2.1); that are not all equivalent. In general, different choices of boundary con-
dition lead to small differences in the solution near the origin. Other choices can
introduce quantitative and qualitative errors in the solution that may or may not
disappear with increasing radius. Of concern is the performance of a particular algo-
rithm that can be adversely affected by an unsuitable choice of boundary condition,
for this reason a “good” choice is at least of practical importance.

The present choices (2.1c)–(2.1d) were found to be suitable and convenient to con-
structing an approximate solution via a discontinuous Galerkin method (sec. 2.1.4).
The condition (2.1c) introduces a finite discontinuity in I(Ri, 0) at the zero polar an-
gle which is readily captured by the solution method. The jump sets an energy flux,
consistent with a given luminosity L0, which should vary as in (2.5). The verification
of (2.5) pointwise is an indication of the accuracy of the solution method (fig. 6.9).

The origin of the spherical domain in (2.1) is a point of singularity where the
energy density, energy flux, and momentum flux grow without bounds (sec. 2.1.4).
To avoid calculations with very large numbers, an inner boundary is created at a
sufficiently small radius Ri. When Ri is near the origin, I(Ri, µ) is nearly isotropic.
This small departure from isotropy is critical to setting a finite energy flux emitted
by the star.

Finding the coefficient γ in the quasi-reflection condition implied by (2.1c) re-

quires the conservation of luminosity (2.5) and the fact that
∫ 0

−1
I(Ri, µ

′) µ′ dµ′ =

−
∫ 1

0
I(Ri,−µ′) µ′ dµ′, with end result

γ = 1− 2 L0

4π R2
i F−

i

, (2.14)

where F−
i := 2π

∫ 0

−1
I(Ri, µ

′) µ′ dµ′ < 0 is the unknown incoming flux into the core.
Therefore, γ introduces a non-local boundary condition (in practical calculations
γ − 1 ≈ 0.4–0.5%.

A partial isotropy argument in the outgoing direction (0 ≤ µ ≤ 1) was used in
proposing (2.1d) since β is independent of µ. Similarly, as in the previous derivation
for γ, the actual form of β was obtained from the conservation of luminosity (2.5).
Therefore, from (2.1c),

β = Fi︸︷︷︸
net flux at Ri

− F−
i ,︸︷︷︸

incoming flux at Ri

β =
L0

4π R2
i

− 2π

∫ 0

−1

I(Ri, µ
′) µ′ dµ′,

(2.15)
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...Phase-Space Explicit Discontinuous Galerkin Method... 11

which shows that the boundary condition (2.1d) is non-local.
It remains to show that these choices of γ and β will lead to the diffusive limit

asymptotics (sec. 2.1.4). To that end, if one observes that the incoming radiation
at the inner radius I(0,−1 ≤ µ ≤ 0) is sufficiently flat with respect to µ, the limit
P/E → 1/3 for the energy-to-pressure ratio follows; so do the results in section 2.1.4.

2.3 Scaling and working formulae

The choice of units of length and energy can simplify the aforementioned formulae
making them suitable for a comprehensive parameter analysis. Let the units of length,
energy flux and specific radiation intensity, and energy density be

α
1

n−1 ,
L0

4π α
2

n−1

, and
L0

4π α
2

n−1 c
, (2.16)

respectively. The scaled quantities measured in these units will be denoted by the
same variables used earlier to avoid cumbersome notation. That is, one would indicate
the newly scaled quantity by a hat superscript, e.g.

r = r̂ α
1

n−1 , I = Î
L0

4π α
2

n−1

, F = F̂
L0

4π α
2

n−1

, E = Ê
L0

4π α
2

n−1 c
, etc.

Then, after rewriting the formulae in terms of the hat quantities, the superscript is
removed. The results follow in the ensuing sections.

2.3.1 Transfer problem

Problem (2.1) remains formally unchanged in the new scaled version but with the
following new definition

k(r) := r−n, γ := 1− 1

R2
i F−

i

, β := R−2
i − F−

i . (2.17)

From the first identity above, the local mean free path of a photon emitted at radius r

is k−1(r) = rn measured in units of α
1

n−1 . The effect of varying the power law exponent
n is deduced from this result: photons emitted in the region r < 1 possess mean free
paths smaller than the radius they are emitted at, decreasing with increasing n, while
photons emitted in the region r > 1 have mean free paths greater than the radius,

increasing with n. Regardless the value of n, the mean free path (in units of α
1

n−1 ) of
a photon emitted at r = 1 is equal to the unit. The effect of increasing n is to make
the diffusive region more diffusive, and the transparent regions more transparent.
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12 Valmor de Almeida

2.3.2 Luminosity and stress

The luminosity conservation in units of (2.16) reduces to

r2 F (r) = 1, (2.18)

and the momentum equation to

dr P +
3P − E(r)

r
= −k(r)F (r), (2.19)

with pressure, stress, and principal stresses measured in units of energy density, and
principal invariants measured in the corresponding powers of the same unit; all for-
mulae related to stress remain formally unchanged.

It is instructive to report results on the “undiluted” quantities, namely,

E (r) := r2 E(r), F (r) := r2 F (r) = 1,

P(r) := r2 P (r), and detTTT (r) := (r2)3 det T .

That is, the factor r2 tends to offset the natural dilution of the fields due to the
increase in the area of the spherical shell at r.

2.3.3 Streaming limit

The asymptotic magnitude of the forward peak in units of L0/
(
4π α

2
n−1

)
is

max lim
r→∞

I(r, µ) = r−2, (2.20)

while energy and pressure expressed in units of L0/
(
4π α

2
n−1 c

)
turn into a similar

result,

lim
r→∞

E(r) = lim
r→∞

P (r) = r−2, lim
r→∞

det T = 0

lim
r→∞

E (r) = lim
r→∞

P(r) = 1, and lim
r→∞

detTTT = 0.

2.3.4 Diffusive limit

Near the core r → 0, energy and pressure limits result in,

lim
r→0

E(r) =
3 r−(n+1)

n + 1
, lim

r→0
P (r) =

r−(n+1)

n + 1
, lim

r→0
det T (r) = (E/3)3

lim
r→0

E (r) =
3 r−n+1

n + 1
, lim

r→0
P(r) =

r−n+1

n + 1
, and lim

r→0
detTTT (r) = (E /3)3.
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...Phase-Space Explicit Discontinuous Galerkin Method... 13

2.3.5 Radial optical depth

It is often more important to measure distance from the outer surface of the atmo-
sphere towards the interior. The radial optical depth is such a measure in units of
photon mean free path defined as,

τ(r) :=

∫ r

Ro

k(r) dr︸ ︷︷ ︸
unscaled

=

∫ r

Ro

r−n dr︸ ︷︷ ︸
scaled

=
r−(n−1) −R

−(n−1)
o

n− 1
. (2.21)

Thus τ(r) is the number of mean free paths between the outer boundary and the radial
position r measured along the radius. The optical depth of the origin is τ(0) = ∞
which renders the atmosphere of the transfer problem (2.1) infinitely optically thick.
Another key value is τ(rt) = 1, that is, the radial position rt exactly one mean free
path away from the outer boundary. From (2.21),

rt =
1(

n− 1 + R
−(n−1)
o

) 1
n−1

< 1. (2.22)

Therefore photons emitted at optical depths equal or less than one, measured from
the surface of the atmosphere, stream to the outer boundary without collision since
the distance they travel is less or equal to one mean free path. On the other hand,
photons emitted at optical depths greater than one undergo an increasing number
of collisions with increasing optical depth, and they tend to become trapped in the
diffusive region. Therefore the radial position rt defines the diffusive-transparent
transition region.

Henceforth all quantities are assumed scaled.

3 Radiative pressure iteration

A natural scheme for solving the integrodifferential problem (2.1) can be devised in
two steps. First, assume the integral operator as a given function of r and solve
the resulting hyperbolic partial differential equation in phase space. Second, iterate
to correct the scattering integral. This is in essence a fixed-point method likely to
fail when scattering becomes dominant. An attemptable improvement is to use the
moments of the original integral differential equation to perform the necessary integral
correction; that is, to help to set the correct energy level throughout the system. One
successful scheme, often referred to as the Eddington iteration method (Hummer and
Rybicki, 1971; Mihalas and Weibel-Mihalas, 1999), uses the pressure-to-energy
ratio as a relaxation/corrective parameter to iterate between the radiative transfer
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14 Valmor de Almeida

equation and its zeroth and first moment equations (radiative energy and momentum
equations). This improvement is explored here (algorithm 3.1) in conjunction with a
discontinuous Galerkin method.

The hyperbolic problem (scaled as in sec. 2.3) corresponding to (2.1) at the kth
iteration is

µ ∂rI
(k) +

(1− µ2)

r
∂µI

(k) = −r−n
(
I(k) − E(r)(k−1)/4π

)
in Ω (3.1a)

with inner and outer boundary conditions respectively

I(Ro, µ)(k) = 0 − 1 ≤ µ ≤ 0 and (3.1b)

I(Ri, µ)(k) = γ(k−1) I(Ri,−µ)(k−1) 0 ≤ µ ≤ +1, (3.1c)

where γ(k−1) = 1 − 1/(R2
i (F−

i )(k−1)) while the radiative momentum and energy
equations, (2.19) and (2.18) are combined into one for the undiluted pressure P : r ∈
[Ri, Ro]→ R.

dr P(k) +
(
1− 1

f(r)(k)

)P(k)

r
= −r−n in ]Ri, Ro[, (3.2a)

with boundary condition at the surface

P(Ro)
(k) =

f(Ro)
(k)

g(k)
, (3.2b)

where f(r)(k) := P (r)(k)/E(r)(k) is the pressure-to-energy ratio known as the Ed-
dington factor which acts as a relaxation field, and g(k) := F (Ro)

(k)/E(Ro)
(k).

Note that from (2.18), this ratio equals the undiluted pressure when the value
of f(Ro)

(k) is known correctly (converged). The foregoing prompts the iterative al-
gorithm (3.1) that explains the use of the Eddington factor. The solution method
starts by solving the momentum equation (3.2) so the resulting energy distribution is
inserted in (3.1). For this reason, an initial approximation for the pressure-to-energy
ratio is required. Because the Eddington factor varies from 1/3 in the diffusive limit,
to 1 in the free streaming limit (sec. 2.1), a reasonable choice is f(r)(0) = 1− 2

3
e−r/rt

(Hummer and Rybicki, 1971). A choice for g(0) is also necessary; hence, in view of
its significance a value between 1 and 1/2 is appropriate.

Algorithm 3.1. Radiative pressure discontinuous Galerkin iteration

1. Set f(r)(0) = 1− 2
3
e−r/rt, and g = 1/2
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2. Solve (3.2) for P(r)(0) (sec. 5)

3. Set I(r, µ)(0) = 0, and override (3.1c) with I(Ri, 0 ≤ µ ≤ 1)(0) = 1
4. Set E(r)(0) = P(r)(0)/r2f(r)(0)

5. Set tol = 10−7

6. Set k = 1; Nmax = 15; converged = 0
7. While k ≤ Nmax and !converged Do:

8. Solve (3.1) for I(r, µ)(k) (algorithm 4.1)

9. Compute elemental relative update norm
∥∥δI

(k)
1 /I(k)

∥∥
H1(Ke)

∀ Ke

10. Compute max. DG residual max
Ke ∈T h

(
eb

(k)
i /eb

(1)
i

)
(4.14)

11. If max
Ke ∈T h

∥∥δI
(k)
1 /I(k)

∥∥
H1(Ke)

≥ tol then

12. Compute f(r)(k) = P (r)(k)/E(r)(k) from I(r, µ)(k)

13. Compute g = F (Ro)
(k)/E(Ro)

(k) from I(Ro, µ)(k)

14. Solve (3.2) for P(r)(k) (sec. 5)

15. Compute E(r)(k) = P(r)(k)/r2f(r)(k)

16. Compute (F−
i )

(k)
:=

∫ 0

−1
I(Ri, µ

′)(k) µ′ dµ′ and obtain γ(k) (2.17b)

17. Else

18. converged = k
19. Endif

20. EndWhileDo

Steps 8–13 are elaborated in section 4, and steps 14–15, in section 5. Noteworthy
is step 15 which sets the energy level throughout the space, providing the correction
on the right side of (3.1a). In practice, this algorithm is found to be convergent and
robust for a wide range of parameters (sec. 6).

4 The homogeneous problem

At the kth iteration, problem (3.1) is linear hyperbolic with known characteristic
curves. The Dirichlet boundary conditions are applied to the part of the bound-
ary where the angle between the outward pointing normal and the tangent to the
characteristic curves intersecting the boundary is greater than π/2. Only the seg-
ments of the boundary that satisfy this condition allow prescription of data. An
approximate solution for this sort of problem can be obtained quickly, accurately,
and economically (reduced computational storage) by a finite element discontinuous
Galerkin method. To simplify the description of the solution method, the superscript
k is dropped, E(r)(k−1)/4π is denoted J(r), and the boundary condition (3.1c) is
rewritten as I(Ri, µ) = A(µ) with A representing a known function.
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16 Valmor de Almeida

Let v : (r, µ) ∈ Ω→ R2 be the tangential vector field to the characteristic lines in
(3.1) (fig. 4.1). The components of this vector field with respect to the orthonormal
basis {ir, iµ} induced by the phase space coordinate system are (µ, (1− µ2)/r). Let
the radiation inflow boundary be denoted by ∂Ω− := {(r, µ) ∈ ∂Ω | v · n < 0}, with
n denoting the unit outward pointing normal on ∂Ω. Then the boundary conditions
(3.1b) and (3.1c) can be expressed compactly as I ≡ Ib− on ∂Ω−. Define I ≡ I∗ + δI
where I∗ is some convenient extension of the data Ib− onto Ω, therefore by construction
δI |∂Ω−≡ 0, and problem (3.1) for δI is homogeneous

∇δI · v + r−n δI = −S∗ in Ω, (4.1a)

δI = 0 on ∂Ω−, (4.1b)

where the residual S∗(r, µ) := ∇I∗ ·v +r−n(I∗−J) should be square integrable in Ω;
this requires continuity of I∗ in the v direction. The phase space gradient operator
is denoted ∇(·) := µ(·) ir +(1−µ2)/r(·) iµ. Thus, given any suitable function I∗, the
solution of (4.1) delivers the solution of (3.1) via I ≡ I∗ + δI.

When k = 1 (algorithm 3.1, step 6) I∗ is set as in (4.7) (at this point its value is
not relevant), and J(r) = E(r)(0)/4π (from step 4); together they define S∗(r, µ). The

solution of (4.1), δI
(1)
1 , is the correction to I∗ that provides the new radiative intensity

field iterate I
(1)
1 ≡ I∗ + δI

(1)
1 . In practice, to be sure that the linear problem (4.1)

has been solved to a satisfactory accuracy, a second “inner” iteration is performed
by setting I∗ ← I

(1)
1 , recomputing S∗, and solving (4.1) for δI

(1)
2 . After the update

I
(1)
2 ≡ I∗ + δI

(1)
2 , the first iterate has been refined, and an indication of whether the

solution method used is correct is obtained from some measure of the magnitude
of the correction which should be vanishingly small, say

∥∥δI
(1)
2 /I

(1)
2

∥∥ ≈ 0 (typically
10−14–10−15, fig. 6.12).

At the kth iteration, I∗ ≡ I(k−1) and A(µ) = γ(k−1)I(Ri,−µ)(k−1), and the solution

of (4.1) is repeated for δI
(k)
1 and δI

(k)
2 . Note that the second update must be always

vanishingly small, therefore the first update provides a measure of the convergence of
the iterative method for solving the original problem (2.1). In typical computations

when
∥∥δI

(k)
1 /I

(k)
1

∥∥ < 10−7 the iteration is stopped (steps 11 and 18, algorithm 3.1).
The particular norm used depends on the method used to solve (4.1) as described in
the next subsection.

Finally, when
∥∥δI

(k)
1 /I

(k)
1

∥∥ ≈ 0 then, from (4.1a), the residual norm
∥∥S∗

∥∥ ≈ 0, and

I∗ ≡ I(k−1) u I(k) is an approximate solution of (2.1). Note that in algorithm (3.1)
the norm of the residual (step 10) is not used to stop the iterations. This is so
because unlike the relative update norm, it is in general difficult to scale the residual
so that an indication of convergence is associated to a small residual norm. Hence the
relative residual norm

∥∥S(k)
∥∥/

∥∥S(1)
∥∥ (the residual reduction since the first iteration)
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Fig. 4.1: Phase space characteristic lines. These lines are tangent to the vector
field v = µ ir + (1 − µ2)/r iµ, therefore they are computed by numerical integration
of ṙ(σ) ir + µ̇(σ) iµ = v. The combination of the inflow segments form ∂Ω− where
v ·n < 0. Numbering within the grid illustrates the wave front finite element ordering
(sec. 4.2).
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18 Valmor de Almeida

is observed, which typically is on the order of 10−10 at convergence (fig. 6.12), but not
used as an indicator of convergence.

4.1 A discontinuous Galerkin finite element method

The method of choice for solving the homogeneous problem (4.1) is described next.
Consider the weak formulation: find δI ∈ S (Ω) := {δI ∈ L2

0(Ω) | ∇ δI · v ∈ L2(Ω)}
such that (

∇ δI · v, φ
)

+
(
r−n δI, φ

)
= −

(
S∗, φ

)
∀ φ ∈ L2

0(Ω) , (4.2)

where
(
a, b

)
:=

∫
Ω

a b dΩ is the inner product in L2(Ω), L2
0(Ω) := {φ ∈ L2(Ω) | φ ≡

0 on ∂Ω−} is a linear space of square integrable functions with homogeneous data on
the inflow boundary of Ω, and the residual S∗ ∈ L2(Ω). The trial functions δI in the
linear space S (Ω) are required to be weakly continuous only along the v direction
which is a sufficient request for regularity.

Let T h := {Ke | e = 1, . . . , N} be a finite element partition of the polygonal
domain Ω, where

⋃
e Ke = Ω,

⋂
e Ke = ∅, and Ke is either a quadrilateral or a

triangle for all e. Define the finite dimensional (finite element) linear functional space
X h

0 (Ω) := {w ∈ L2
0(Ω) | w|Ke ∈ Pk(Ke) ⊂ H1(Ke) ∀ Ke ∈ T h}, where Pk(Ke)

is a space of (quasi) polynomials over Ke of degree ≤ k. Note that X h
0 (Ω) is not

properly included in S (Ω) but it has elements that can be used as trial functions in
(4.2). The next theorem identify such elements.

Theorem 4.1. Let δIh denote elements in X h
0 (Ω) such that the weighted-flux conti-

nuity condition is satisfied

〈δIh
+ v · n, φ〉∂Ke

− = 〈δIh
− v · n, φ〉∂Ke

− ∀ φ ∈X h
0 (Ω), (4.3)

where ∂Ke
− is the subset of points of ∂Ke with inflow v ·n < 0, and δIh

− represents the
value of δIh outside Ke relative to n (the outward normal pointing vector on ∂Ke).
That is, δIh

−(y) = lims→0− δIh(y + s v) ∀ y ∈ ∂Ke
− is the value outside Ke, similarly

δIh
+(y) = lims→0+ δIh(y+s v) is the value inside. Also, the arclength integration on the

boundary of Ke is denoted 〈δIh v · n, φ〉∂Ke :=
∫

∂Ke
δIh v · n φ ds. Then, δIh ∈ S (Ω).

n

K e∂K e
−

v
v

n

δIh
−

δIh
+
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...Phase-Space Explicit Discontinuous Galerkin Method... 19

Proof. Since δIh|Ke ∈ H1
0(Ke)∀ Ke ∈ T h, then

∑N
e=1

∫
Ke
∇ δIh · v dΩ <∞. However

N∑
e=1

∫
Ke

∇ δIh · v dΩ =
N∑

e=1

{∫
∂Ke

δIh v · n ds−
∫

Ke

δIh div v dΩ

}
<∞,

=
N∑

e=1

{∫
∂Ω∩ ∂Ke

δIh v · n ds−
∫

Ke

δIh div v dΩ

}
<∞, by (4.3)

=

∫
∂Ω

δI v · n ds−
∫

Ω

δIh div v dΩ <∞,

=

∫
Ω

∇ δIh · v dΩ <∞,

thus, ∇ δIh · v ∈ L2(Ω) and δIh ∈ S (Ω).

Substituting a trial function δIh into (4.2) and selecting the test function φ con-
forming to X h

0 (Ω) ⊂ L2
0(Ω)

N∑
e=1

(
∇ δIh · v, φ

)
Ke

+
(
r−n δIh, φ

)
Ke

= −
N∑

e=1

(
S∗, φ

)
Ke
∀ φ ∈X h

0 Ω, (4.4)

with
(
a, b

)
Ke

:=
∫

Ke
a b dΩ, and integrating by parts the first term on the left side for

each element Ke, with its boundary oriented by its corresponding outward pointing
normal vector n, one obtains

(
∇ δIh · v, φ

)
Ke

= −
(
δIh, div(φv)

)
Ke

+ 〈δIh v ·n, φ〉∂Ke .

Therefore (4.4) becomes

N∑
e=1

−
(
δIh, div(φv)

)
Ke

+ 〈δIh v · n, φ〉∂Ke +
(
r−n δIh, φ

)
Ke

=

−
N∑

e=1

(
S∗, φ

)
Ke
∀ φ ∈X h

0 Ω. (4.5)

From the flux continuity condition (theorem 4.1), 〈δIh v ·n, φ〉∂Ke can be replaced by
〈δIh

+ v ·n, φ〉∂Ke
+ + 〈δIh

− v ·n, φ〉∂Ke
− , where ∂Ke

+ is the subset of points of ∂Ke with
outflow v · n > 0. The result is

N∑
e=1

(
∇ δIh · v, φ

)
Ke

+
(
r−n δIh, φ

)
Ke
− 〈[[ δIh ]] v · n, φ〉∂Ke

− =

−
N∑

e=1

(
S∗, φ

)
Ke
∀ φ ∈X h

0 (Ω), (4.6)
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where [[ δIe ]] := δIh
+ − δIh

− is the jump on δIh across the inflow area (line) ∂Ke
−.

Comparing the above against (4.2), no continuity requirement is necessary except
within an element Ke. The small price paid for recovering the solution of the original
formulation in a full discontinuous framework is the appearance of the additional
jump term. However as a bonus, this term enforces the conservation of the normal
flux across element boundaries. Therefore, despite the non-divergence form of (4.6),
the normal flux of the specific radiative intensity is conserved. In fact the jump term
is the means for constructing approximate solutions in S (Ω) using X h

0 (Ω).
A similar rationality can be applied to the linear form (S∗, φ)Ke . That is, it is

desirable to build S∗ := ∇ I∗ · v + r−n(I∗ − J) ∈ L2(Ω) from discontinuous pieces,
I∗h ∈X h

0 (Ω), that form a valid I∗. For example, when k = 1 (algorithm 3.1, step 7)
I∗ is set as follows

I∗(r, µ) =


0 for r = Ro, and − 1 ≤ µ ≤ 0,

1 for r = Ri, and 0 ≤ µ ≤ +1,

0 otherwise,

(4.7)

which can be approximated by I∗h. Hence, the conclusion is analogous,

N∑
e=1

(
S∗, φ

)
Ke

=
N∑

e=1

(
S∗h, φ

)
Ke
− 〈[[ I∗h ]] v · n, φ〉∂Ke

− , (4.8)

where S∗h := ∇ I∗h · v + r−n(I∗h − J) ∈X h
0 (Ω), thus (4.6) turns into

N∑
e=1

(
∇ δIh · v, φ

)
Ke

+
(
r−n δIh, φ

)
Ke
− 〈[[ δIh ]] v · n, φ〉∂Ke

− =

−
N∑

e=1

((
Sh∗, φ

)
Ke
− 〈[[ I∗h ]] v · n, φ〉∂Ke

−

)
∀ φ ∈X h

0 (Ω). (4.9)

Standard choices of a finite element basis for X h
0 (Ω) are readily available (Cia-

rlet, 1978). The most attractive are discontinuous basis with compact support on
the elements. Since trial, δIh, and test, φ, functions can be expressed as a linear com-
bination of this basis, the final discontinuous Galerkin finite element approximation
to the solution of (4.1) reads: find δIh|Ke ∈Pk(Ke) such that(
∇ δIh · v, φ

)
Ke

+
(
r−n δIh, φ

)
Ke
− 〈δIh

+, v · n, φ〉∂Ke
− =

−
((

Sh∗, φ
)

Ke
− 〈I∗+

h v · n, φ〉∂Ke
− +

N∑
e=1

〈Ih
− v · n, φ〉∂Ke

−

)
∀ φ ∈Pk(Ke)

(4.10)
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for all Ke ∈ T h, where Ih
− ≡ I∗−

h+δIh
− was used. Note that this is almost an element-

by-element algebraic set of linear equations for the unknown δIh|Ke . The only term
preventing the simultaneous solution of (4.10) for each element is the sum (on the
right side) for the value of Ih

− in the neighbor elements of Ke sharing ∂Ke
−. In some

cases there exists a fast solution to this problem; this topic is covered next.

4.2 Computational wave fronts and elemental linear systems

The validity of (4.10) holds for general v fields and general partitions T h. However
a computationally efficient implementation can be made if v is a “flow” without
“recirculation”, and the edges of Ke are either inflow or outflow of information (both
inflow and outflow through the same edge are not allowed). From the characteristic
curves in figure 4.1 it can be observed that no recirculation is present in the tranfer
problem (2.1), and that a structured quadrilateral partition of Ω satisfies the condition
of edge “uniflow.”

Let the elements of T h be ordered such that the element coupling term (sum) on
the right side of (4.10) is known. That is all elements Kd with d < e that share ∂Ke

−

have been visited and solved for Ih
− (= I∗−

h+δIh
−). This ordering is attainable and must

start at the inflow boundary with elements possessing ∂Ke
− on ∂Ω−, therefore for

this subset of boundary elements, T h
1 := {Ke | e = N0, . . . , N1} (note that φ|∂Ω− ≡ 0

by construction), (4.10) reduces to(
∇ δIh · v, φ

)
Ke

+
(
r−n δIh, φ

)
Ke
− 〈δIh

+, v · n, φ〉∂Ke
− =

−
(
Sh∗, φ

)
Ke
∀ φ ∈Pk(Ke), (4.11)

which can be solved for δIh|Ke in every Ke ∈ T h
1 simultaneously. Because the union

of ∂Ke
+ for all elements in T h

1 form a new inflow boundary front, another group of
elements whose inflow boundary lie on

⋃
e ∂Ke ∀Ke ∈ T h

1 can be colored, say T h
2 :=

{Ke | e = N1 + 1, . . . , N2}. The process can continue recursively until T h =
⋃

i T
h

i

with
⋂

i T
h

i = ∅. Each subset T h
i holds a group of elements lying on a wave front so

that the final ordering is indicated in figures 4.1 and 4.2 where the maximum number
of element neighbors contributing to the sum in (4.10) is three. Despite the curved
characteristic lines in the problem, a suitable sequencing of elements can be obtained
by a modification of the ordering algorithm of Lasaint and Raviart (1974) (for
straight characteristic curves). As the finite element partition is refined, particularly
in the angular direction, the cardinality of T h

i increases and many elements can be
solved for simultaneously with exploitation of computational parallelism (fig. 4.2).

With the choice of a basis {wj | j = 1 . . . , Me} for Pk(Ke), trial and test functions
become a linear combination of wj’s defined by unknown coefficients xj, say δIh|Ke ≡
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Fig. 4.2: Discontinuous Galerkin computational wave fronts. Mesh size is of 150 000
structured quadrilateral elements. On the left, a particular color indicates a group of
elements that can be solved simultaneously provided that all elements in the previous
color level have been visited. There exits 2 148 fronts (groups) of elements (T h =⋃2 148

i=1 T h
i ). On the right, a graph of the number of elements Ni −Ni−1 per front T h

i

is reported. In average, the lower part of the phase space (incoming radiation) can be
solved for at a rate of 50 elements per wave front simultaneously. The upper part has
a larger number of elements, in the angular direction, and can be solved at an average
rate of 100 elements per front simultaneously.

∑Me

j=1 xj wj|Ke . Upon substitution in (4.10) the following linear system of algebraic
equations is obtained for element Ke

Me∑
j=1

eAi,j
exj = − ebi i = 1, . . . ,Me, (4.12)

where

eAi,j :=
(
∇wj · v, wi

)
Ke

+
(
r−n wj, wi

)
Ke
− 〈wj v · n, wi〉∂Ke

− , (4.13)

ebi :=
(
Sh∗, wi

)
Ke
− 〈I∗+

h v · n, wi〉∂Ke
− +

N∑
e=1

〈Ih
− v · n, wi〉∂Ke

− . (4.14)

The elemental matrix of coefficients eAi,j is typically dense so is the elemental vector
ebi. The number of basis functions Me depends on the polynomial space Pk; for a
common quadrilateral finite element Me = (k + 1)2 (bi-linear polynomials lead to
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Me = 4). In view of the discontinuity property of these polynomials, the degree of
polynomial approximation can be variable with the finite element without changes in
any of the equations so far presented. Therefore this solution method, for the radiative
transfer equation (3.1), lends itself easily to hp-adaptivity. Since the size of (4.12)
is modest even for the largest practical polynomial degree imagined, a factorization
method for computing xj is the best option.

The linear forms in (4.13) and (4.14) are computed by Gauss quadrature. If linear
polynomials are used (P1), the integrands become polynomials with degree less than
or equal to 2, therefore 2 Gauss points per direction in phase space, that is a total of
4 Gauss points per quadrilateral finite element, is of sufficient accuracy.

Finally the wave front solution of (4.10) is summarized in the following algorithm
which replaces step 8 in algorithm (3.1).

Algorithm 4.1. Computational wave front sweeping algorithm

1. Partition T h =
⋃Nf

i=1 T h
i (preprocessing step done only once)

2. I∗h(r, µ) and J(r) are available (see step 8 in algorithm 3.1)

3. For i = 1, . . . , Nf Do:

4. ∀ Ke ∈ T h
i Do: (simultaneously for each Ke)

5. Form eAi,j and ebi in (4.13) and (4.14)
6. Solve (4.12) for exj and construct δIh|Ke

7. Update element solution Ih|Ke ≡ I∗h|Ke + δIh|Ke

8. EndDo

9. EndDo

4.3 Finite element computation of moments

Careful evaluation of moments of the radiative specific intensity (energy density, en-
ergy flux, and pressure) in steps 12–13 of algorithm 3.1 is critical to obtaining accu-
rate solutions. Also, on the practical side, naive implementations of the algorithm
for computing moments can easily dominate the total computing time. The essential
quantities to be computed are the pth moments mp(r) :=

∫ +1

−1
I(r, µ′) (µ′)p dµ′, for

p = 0, 1, 2. This radial function needs to be available for computing the vector ebi

(4.14) at all Gauss points gi
e of every element Ke ∈ T h. The appropriate approach is

to compute the moments using the available finite element structure. Given a finite
element Ke, and a Gauss point gi

e, the first step is to find a (linked) list of long-range
moment-neighbors Ne

i ⊂ T h indicated by the elements traversed by the dashed line
r = (gi

e)r in figure 4.3. The search process starts by inserting Ke into the list Ne
i

and finding the intersections of the dashed line with the edges of Ke. If there is a
valid intersection, the neighbor elements sharing that edge are inserted in the list Ne

i.
By finding the intersections of the neighbors with the dashed line recursively, Ne

i is
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quickly filled. As a bonus, the limits of the intervals `i
e (fig. 4.3) are automatically

found and used, in companion with Ne
i, to compute the pth moment

mp

(
r = (gi

e)r

)
:=

∑
Kf ∈Ne

i

∫
`i
f

I(gi
e)

(
(gi

e)µ′
)p

dµ′. (4.15)

The above value can be saved into yet another conveniently searchable data structure
to avoid re-computing the moment mp(r) at a radial point coincident with the radial
component of the Gauss point belonging to a previously visited finite element.

r

µ
+1

−1

Ri Ro

ith Gauss ptgi
e

`i
e

Moment-neighbor of Ke at gi
e

Ke

Fig. 4.3: Finite element computation of moments of the radiative intensity. The
long-range moment-neighbors of an element at its ith Gauss point are all the elements
intersected by the dashed line passing through that point.

5 The radiative momentum problem

The solution of the governing equation for radiative pressure (3.2) at the kth iteration
in algorithm (3.1) can also be constructed by the discontinuous Galerkin method
(sec. 4.1). For this one-dimensional problem, the method simplifies greatly (Lasaint
and Raviart, 1974) and the element ordering and direction of sweeping is Ro → Ri.
A detail of practical importance is the definition of the finite element partition of the
interval [Ro, Ri] in configurational space. It is advantageous to inherit the partition
from the collection of underlying Gauss points used in phase space (fig. 5.1), and
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to use piecewise constant basis P0 for the finite element approximation of (3.2).
Therefore one algebraic equation per element in the radial direction is obtained, and
the solution is straightforward. As a result, step 15 (algorithm3.1), which computes
the energy density field from the pressure field in preparation for the solution of
the radiative transfer equation (3.1), turns into a simple matter of distributing the
computed values directly into the elemental data required to compute the first term
of ebi in (4.14).

rRi Ro
Inherited element

Phase space partition T h

Inherited configurational space partition

Fig. 5.1: Inherited-by-projection pressure mesh on the interval [Ro, Ri]. Pressure
mesh element boundaries are defined by the r coordinates of all Gauss points of ele-
ments in the phase space.

6 Results and discussion

Four sizes of stellar atmosphere were studied with power law scattering exponents
n = 2, 3, 4, 6, 8, and 10. In all cases (table 6.1) the inner boundary was placed
at Ri = 10−3, measured in units of α1/(n−1) (refer to scaling in sec. 2.3), where
the optical depth was large enough (τ(Ri) > 1000) to justify the diffusive inner
boundary condition (sec 2.2). The length of the outer radius was varied three orders
of magnitude (fig. 6.1) to examine diffusively dominated atmospheres (case 1) up
to point-source extended atmospheres (case 4). The diffusive-transparent transition
region is indicated by rt (2.22) values in parenthesis in table 6.1. Note that the
position of the transition region has a minimum for the range of n studied when
Ro ≥ 1. By virtue of the scaling adopted, the significance of a particular radial value
r is that the mean free path of a photon emitted at that position is rn.
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Table 6.1: Order of magnitude of the optical depths of inner boundaries τ(Ri),
and radius of transition region τ(rt) = 1 (truncated value in parenthesis), for various
scattering power law indices n. Radius measured in units of α1/(n−1). See section 2.3.5
for formulae.

Case Ri Ro n = 2 n = 3 n = 4 n = 6 n = 8 n = 10

1 10−3 0.1 103(.09) 105(.09) 108(.09) 1014(.09) 1020(.09) 1026(.09)

2 10−3 1 103(.50) 105(.57) 108(.62) 1014(.69) 1020(.74) 1026(.77)

3 10−3 10 103(.90) 105(.70) 108(.69) 1014(.72) 1020(.75) 1026(.78)

4 10−3 100 103(.99) 105(.70) 108(.69) 1014(.72) 1020(.75) 1026(.78)

CPU time and memory requirement data presented in table 6.2 (n = 2), obtained
through POSIX functions, indicate computational resources required in various com-
puter platforms. No elaborated implementation/optimization of the algorithm was
advanced beyond what is naturally induced by the solution method. The solution of
the elemental linear systems (4.12) was computed with the LAPACK library routine
dgesvx.

6.1 Phase space finite element partition

A bi-linear quadrilateral (Me = 4) partition of Ω with 150 000 elements (600 000
algebraic equations) was created for all cases (fig. 6.2) with attention to clustering
elements in regions of singularity and/or steep gradients. In the radial direction
elements were clustered near the diffusive-transition region (τ(rt) = 1) where the ra-
diative intensity decays exponentially, and near the inner boundary. In the angular
direction, elements were accumulated in the region near θ = 0 for extended atmo-
spheres (fig. 6.3) to capture the forward peaking of the radiative intensity. Elements
were also clustered near θ = π for “cosmetic” reasons when creating a polar mapping
of the phase space (figs. 6.5 and 6.6).

6.2 Specific radiative intensity

The radiative specific intensity is a highly exponentially decaying function of the ra-
dial position. Qualitative features of the solution can be promptly observed by map-
ping the phase space into a polar region where the interval [Ri, Ro] is conveniently
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hi!

Fig. 6.1: Stellar atmosphere sizes analyzed. Far left, Ro = 0.1; far right, Ro = 100;
in between (from left to right), Ro = 1, and Ro = 10. In table 6.1, rt indicates the
radius of the diffusive-transparent transition region.

stretched via a logarithm-based function (fig. 6.4). Additional visual insight is ob-
tained by wrapping the phase space around using the reflected mirror image in the
lower half of the polar region. This mapping is particularly effective if the radiative in-
tensity I(r, µ) is normalized by its value in the forward radial direction, that is I(r, 1).
This is an extension of the normalization used to evaluate the law of darkening of
the emergent radiation (limb darkening curves) I(Ro, µ)/I(Ro, 1) (Chandrasekhar,
1960) to the entire radiation field; the end effect is shown in figure 6.5. The radiative
intensity is shown as a continuous function by performing a simple average of the
computed discontinuous values at the corners of the elements. In those images red is
the maximum, one, and blue is the minimum, zero. Colors at points with different
radii cannot be compared since they are normalized by different values. Therefore
one should fix a particular radius and vary the direction θ to make quantitative com-
parisons. When looking at the normalized radiative intensity in the log-polar domain
(fig. 6.5) one should keep in mind the “unstretched” configuration of figure 6.1.

The red colored region in the fairly flat top of the specific intensity surface (fig. 6.5)
within rt represents a diffusive dominated region. When the atmosphere is small and
essentially all diffusive (fig. 6.5a), the flat top accounts for most of the surface except
very near the outer boundary where non-isotropy induced by the boundary condition
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Fig. 6.2: Radial mesh distribution of finite elements for all study cases. (a) Linear
distribution of 1000 elements along r direction for case Ro = 0.1. (b) Case Ro = 1
with non-linear distribution of 700 elements within the diffusive region (r ≤ 0.5);
the remaining 300 elements linear distributed. (c) Diffusive region (r ≤ 0.9) in case
Ro = 10 meshed with 500 elements non-linearly distributed. (d) Case Ro = 100 with
diffusive region (r ≤ 0.9) meshed with 500 elements non-linear distributed.
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Fig. 6.3: Angular mesh distribution of finite elements for all study cases. The lower
half of the phase space was partitioned with 50 elements, while the upper half, with
100. Elements are clustered towards µ = 1 in extended atmospheres to resolve the
forward peaking behavior of the radiation intensity. (a) Ro = 0.1. (b) Ro = 1. (c)
Ro = 10. (d) Ro = 100.
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Ω→ Ω′

Fig. 6.4: Log-polar transformation of phase space provides visual insight into the
radiative specific intensity (refer to fig. 6.5 and text).

takes place. As the atmosphere grows, non-isotropy is induced by the increasing
transparency (inverse power law scattering) of the medium. For instance for Ro = 1
non-isotropy is observable (fig. 6.5b) near the outer boundary (red to blue region). In
larger atmospheres, Ro = 10 (fig. 6.5c), limb darkening (flat blue ring) and diffusive-
transparent transition (red to green steep gradient) is noticeable. The onset of forward
peaking is clear as indicated by the forming delta function (sec. 2.1.5, eq. 2.10) at
θ = 0 and r ≈ Ro. When the atmosphere is further extended (fig. 6.5d) these features
are enhanced; notably the forward peaking. Note however that the forward peaking
is a qualitative feature of the solution which would not be easily observable without
normalization since the magnitude of the peak vanishes with increasing radius (2.20).

Increasing the scattering exponent, a diffusive region becomes more diffusive,
hence the radiative intensity surface becomes flater. Concurrently, a transparent
region turns into more transparent, therefore the gradient of the radiative intensity
at the corresponding transition region becomes steeper (fig. 6.6).

A closer look at the results for limb darkening and forward peaking (fig. 6.7) shows
how critical is the distribution of mesh elements near θ ≈ 0 in extended atmospheres
in order to capture the forming delta-function behavior (fig. 6.7c–d). The graphs
show the portion of emitted radiation streaming from optical depths less than one as
a function of angular direction.
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(a) (b)

(c) (d)

Fig. 6.5: Specific intensity normalized by the local intensity in the forward radial di-
rection (n = 2). Lower left shows onset of forward peaking (θ = 0). Lower right shows
well developed forward peaking. Blue region in lower row indicates limb darkening.
Top row shows diffusive-dominated radiation (red) except at the outer boundary (rt

indicated by dotted circle) where the non-isotropic effect from the boundary condition
takes place. Center holes indicate the removal of the singularity at the origin. The
region of steep gradient (light green) lies in the transition radius rt. (a) Ro = 0.1. (b)
Ro = 1. (c) Ro = 10. (d) Ro = 100.
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Fig. 6.7: Limb darkening and law of darkening for n = 2. Graphs show normalized
radiative intensity in the free streaming region (τ < 1). Points on the curves indicate
the projection of Gauss points from the phase space onto the µ half-axis. Note that
τ = 0.1 is “near” the outer boundary and not on the outer boundary; at τ = 10−4

forward peaking is even more pronounced (not shown). (a) Ro = 0.1. (b) Ro = 1. (c)
Ro = 10. (d) Ro = 100.
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6.3 Energy and derived quantities

Energy density, energy flux (luminosity), and stress (pressure) are key quantities
derived from the specific radiative intensity; together they couple radiative trans-
fer to hydrodynamics and set the foundation of continuum stellar flow modeling.
Here asymptotic analytical results (sec. 2.1) are correctly obtained and deviations
from those results in the non-asymptotic limit are shown (all results are scaled as in
sec. 2.3).

Energy density and pressure are decreasing functions of radius (fig. 6.8), unlike
the undiluted energy flux (luminosity) which is a constant (fig. 6.9). The results
shown for luminosity are calculated from the computed specific radiative intensity.
Small (≤ 10 %) oscillations are observed (fig. 6.9) at optical depths greater than 100.
It is conjectured that the oscillations result from truncation errors obtained when
subtracting large numbers during the calculation of the first (odd) moment of the
radiative intensity at large optical depths (no oscillations are present in zeroth and
second moments).
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Fig. 6.8: Undiluted energy density and pressure (n = 2); measured in units of
L0/(4π c). Dashed line is the asymptotic diffusive limit at small radii. For extended
atmospheres the streaming limit value for large radii is one (sec. 2.3.3). The PSDG
method captures both limits accurately. The terminal point in each curve indicates
the atmosphere size. (a) Energy density. (b) Pressure.

The calculated state of stress as represented by the invariants of the stress tensor
(fig. 6.10) show the expected asymptotic behavior (2.9), namely, isotropic at large
optical depth, and singular at the outer boundary for extended atmospheres; note
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Fig. 6.9: Undiluted energy density and flux (luminosity) for n = 2; measured in units
of L0/(4π c). Computed luminosity is a constant equal to one. Diffusive behavior for
all atmospheres at large optical depths is correctly obtained, while streaming limit at
small optical depths for extended atmosphere is correctly approached as the atmosphere
grows. (a) Ro = 0.1. (b) Ro = 1. (c) Ro = 10. (d) Ro = 100.
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det T → 0 in figure 6.10(d) at r = Ro. The first invariant is identical to energy
density (2.9), thus the other two invariants measure the approach to singularity.
Yet another measure of isotropy is the ratio of pressure to energy density, known
as the Eddington factor (fig. 6.11). The variation from 1/3, in the diffusive limit,
to 1 at the outer boundary of extended atmospheres (sec. 2.1) is often used as a
measure of accuracy of calculations. The results obtained here compare well with
those (probably less accurate) in the literature (Chapman, 1966; Hummer and
Rybicki, 1971; Rampp and Janka, 2002; Schinder and Bludman, 1989).
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Fig. 6.10: Undiluted principal invariants of the radiative stress tensor (n = 2). (a)
Ro = 0.1. (b) Ro = 1. (c) Ro = 10. (d) Ro = 100. Principal invariants measured in
units of L0/(4π c), L0/(4π c α2/(n−1)), and L0/(4π c α4/(n−1)), respectively.
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Fig. 6.11: Eddington factors. Ratio of pressure to energy density varying with
radius. The end of each curve points to the radius of the outer boundary.

6.4 Convergence

Convergence of the iterative scheme (3.1) took place within thirteen iterations for
all cases (fig. 6.12). The inner iteration used for refinement resulted in a maximum
update norm of about 10−14. The norm of the first update (sec. 4), used to verify
convergence during iterations, dropped monotonically with average convergence order
approximately equal to 0.7 (fig. 6.13), implying a reduction of update and residual
norms by a factor of five per iteration. The order of convergence is defined as

− log

max
Ke ∈T h

∥∥δI
(k)
1 /I(k)

∥∥
H1(Ke)

max
Ke ∈T h

∥∥δI
(k−1)
1 /I(k−1)

∥∥
H1(Ke)

. (6.1)

7 Conclusions

An additional source of exploitation of parallelism is available in the computation of
the pth moment (4.15). The construction of the moment-neighbors list Ne

i (sec. 4.3)
can be done independently and in parallel for each Gauss point gi for all finite elements
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Fig. 6.12: Updates and Galerkin (weighted) residuals convergence for n = 2.
(a) Ro = 0.1. (b) Ro = 1. (c) Ro = 10. (d) Ro = 100.
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Fig. 6.13: First update norms and order of convergence (6.1) (inset graphs) for
algorithm (3.1) (average order of convergence ≈ 0.7). (a) n = 4. (b) n = 6. (c) n = 8.
(d) n = 2.
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Ke. Parallelism will certainly reduce the wall clock time required for computing the
moments, but it is unlikely that this step in algorithm 3.1 will ever be faster than
the solution of the homogeneous problem (4.1) also solved in parallel. Therefore, it
is anticipated that computing the moments of radiation will remain to be a task to
pay attention to.

The use of a structured quadrilateral partition of the phase space was instrumental
to simplify the solution of (4.10) via computational wave fronts perfectly perpendic-
ular to the radial axis. That was possible because all finite element edges enjoyed
the uniflow condition (sec. 4.2). Such condition will not exist for all elements in an
unstructured partition, say using triangles. The compelling reason for using unstruc-
tured partitions is that the real benefits of the PSDG method will only be realized
by taking advantage of the full adaptivity on such elements. Only this feature will
set the method apart from any other solution method currently in use for radiative
transfer analysis.

On an unstructured partition, some finite elements will have edges with simulta-
neous inflow and outflow of phase-space radiative flux. The implication is that the
solution of (4.10) will not follow from a simple ordering of T h with successive use of
(4.11) for each T h

i ⊂ T h. Some of the terms in the sum on the right side of (4.10)
will need to be moved back to the left side and treated as unknowns. Accordingly, the
equation will hold for the set of elements moved to left side as opposed to one single
element. The analogous geometric operation entails finding all “clusters” of elements
whose combined boundary only allows either inflow or outflow. These clusters will
need to be amalgamated into a macro element and treated as a single element. Note
that it is always possible to find clusters—the worst case scenario being a cluster with
all elements in the finite element partition. It is also noted that clusters will require
an implicit solution of the associated algebraic equations which will have an adverse
impact on exploitation of computational parallelism. In summary, when using un-
structured partitions suitable for adaptivity, a cluster version of (4.10) and (4.11)
will be required.

Several interesting investigations on extended atmosphere can follow from this
work with the use of a general adaptive PSDG method. In particular, cases incorpo-
rating absorption and emission, and polarization (Chandrasekhar, 1960). Another
challenging and interesting case is the incorporation of energy spectra which will in-
crease the dimension of the phase space to at least three and eventually to a full
six-dimensional phase space. In the above mentioned extensions, the corresponding
moments of the extended radiative transfer equation need to be used to correct for any
appearing integral term. Thus the iterative scheme (sec. 3) will need to be revisited.
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Wick, G. C. 1943 Über ebene diffusionsprobleme. Z. Phys. 120 702–18.

Woosley, S. E. and Heger, A. 2002 The evolution and explosion of massive
stars. Rev. Mod. Phys. 74 1015–71.

Oak Ridge National Laboratory Technical Report ORNL/TM-2003/072 pp. 1–44


	List of figures
	List of tables
	Introduction
	The spherical-geometry transfer problem
	Asymptotic analytical results
	Radiative equilibrium
	Luminosity
	Radiative Stress
	Diffusive limit
	Streaming limit

	The inner boundary condition
	Scaling and working formulae
	Transfer problem
	Luminosity and stress
	Streaming limit
	Diffusive limit
	Radial optical depth


	Radiative pressure iteration
	The homogeneous problem
	A discontinuous Galerkin finite element method
	Computational wave fronts and elemental linear systems
	Finite element computation of moments

	The radiative momentum problem
	Results and discussion
	Phase space finite element partition
	Specific radiative intensity
	Energy and derived quantities
	Convergence

	Conclusions
	Acknowledgments
	References

