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Abstract— New analytical results are given for the stability and
performance of the exponential backoff (EB) algorithm. Previous
studies on the stability of the (binary) EB have produced contradic-
tory results instead of a consensus: some proved instability, others
showed stability under certain conditions. In these studies, sim-
plified and/or modified models of the backoff algorithm were often
used to make analysis more tractable. In this paper, care is taken to
use a model for backoff that reflects the actual behavior of backoff
algorithms. We show that EB is stable under a throughput def-
inition of stability; the throughput of the network converges to a
non-zero constant as the offered load N goes to infinity. We also
obtain the analytical expressions for the saturation throughput and
the medium access delay of a packet for a given number of nodes,
N . The analysis considers the general case of EB with backoff fac-
tor r, where BEB is the special case with r = 2. The accuracy of the
analysis is checked against simulation results.

I. INTRODUCTION

Random access schemes for packet networks featuring dis-
tributed control require algorithms and protocols for resolving
packet collisions that occur as the uncoordinated terminals con-
tend for the channel. A widely used collision resolution pro-
tocol is the binary exponential backoff (BEB), forms of which
are included in Ethernet [1] and Wireless LAN [2] standards. In
this paper, we assess the stability of BEB and analyze its perfor-
mance using a model that closely resembles practical network
transmission schemes and therefore is useful for system plan-
ning and analysis.

A. Stability of Backoff Algorithms

Many papers study the stability of backoff algorithms, includ-
ing BEB, in terms of their effect on network performance as the
offered load increases. However, these studies have produced
contradictory results instead of a consensus: some prove insta-
bility, others show stability under certain conditions. The mixed
results are due to differences in the analytical models and the
definitions of stability used in the analysis.

Simplified and/or modified models of the backoff algorithm
are often used to make analysis more tractable. However, sim-
plification or modification can lead to very different analytical
results. For example, Aldous [3] proved that BEB is unstable
for an infinite-node model (a simplified model) for any non-zero
arrival rate, while Goodman et al. [4] showed using a modified
finite-node model that BEB is stable for sufficiently small ar-
rival rates. Also, while modification of the model can make the

analysis much simpler, the analytical result may have limited rel-
evance because it cannot be guaranteed that the modified model
exhibits the same behavior as the actual algorithm.

The various definitions of stability used in the studies of back-
off algorithms can be classified into two groups. One group of
studies uses a definition based on throughput and the other uses
delay to define stability. Under the throughput definition, the
algorithm is stable if the throughput does not collapse as the of-
fered load goes to infinity [3] or is an increasing function of the
offered load [5]. Under the delay definition, the protocol is sta-
ble if the waiting time is bounded. Systems that are stable under
the delay definition can be characterized by bounded backlog of
packets in the queue, or recurrent property of Markov chain [6].

Most of the analytical and simulation studies on stability treat
BEB in the context of a specific network medium access con-
trol (MAC) protocol such as Ethernet etc. [10], [11], [12], [13],
[14]. However, the characteristics of this protocol seem to have
as much or more effect on the network performance results than
the intrinsic behavior of BEB. Some of the analytical works that
focus on BEB itself are summarized as follows:

Kelly and MacPhee [7] prove that “for a general acknowledg-
ment based random access scheme there exists a critical value
νc ∈ [0,∞], with the property that the number of packets suc-
cessfully transmitted is finite with probability 0 or 1 according
as ν < νc or ν > νc,” where ν is the arrival rate of the sys-
tem. It is also shown that νc = 0 for any scheme with slower
than exponential backoff, and νc = log 2 for BEB. They use an
infinite-node model with Poisson arrivals, assuming that no node
ever has more than one packet arrive at it. This result proves that
BEB is unstable for ν > νc, but leaves open the stability for
ν < νc.

In [3], Aldous shows that, with infinite-node and Poisson ar-
rival assumptions, BEB is unstable in the sense that N(t)/t con-
verges to zero as t goes to infinity for any non-zero arrival rate,
where N(t) is the number of the successful transmissions made
during the time [0, t]. This result solves the open problem left in
[7], but the model Aldous uses is slightly different from Kelly
and MacPhee’s model.

Goodman et al. prove in [4] that BEB is stable if the arrival
rate of the system is sufficiently small in the sense that the back-
log of packets awaiting transmission remains bounded in time.
More specifically, they show that BEB is stable if the arrival rate
is smaller than λ∗(n), where λ∗(n) ≥ 1/nα log n for some con-
stant α and n is the number of nodes. They assume that each of



the finite number of nodes n has a queue of infinite capacity.
In [8], Al-Ammal et al. give a tighter (greater) upper bound

of the arrival rate than that given in [4] for the stability of BEB
under the delay definition of stability. By using the same ana-
lytical model as in [4], they show that there is positive constant
α such that, as long as n is sufficiently large and the system ar-
rival rate is smaller than 1/αn0.9 then the system is stable for
the n-user system. The upper bound in [8] is further improved in
[9], where it is proved that BEB is stable for arrival rate smaller
than 1/αn1−η , where η < 0.25. The main point of their work is
that BEB is stable for an arrival rate that is inverse of a sublinear
polynomial in n.

Finally, in [6], Håstad et al. show, using the same analytical
model as in [4], that BEB is unstable whenever λi ≥ λ/n for
1 ≤ i ≤ n and λ > 0.567 + 1/(4n − 2), or when λ > 0.5 and n
is sufficiently large under the delay definition of stability, where
λ is the system arrival rate and λi is the arrival rate at node i.

In summary, these representative analyses indicate that BEB is
unstable for an infinite-node model, and for a finite-node model
it is stable if the system arrival rate is small enough but unstable
if the arrival rate is too large. We note that they all assume slot-
ted transmissions. While these analytical results are well estab-
lished, because they are contradictory and do not represent the
actual system, there remains doubt about the stability of BEB so
that this question continues to be an open problem. As noted
in [6] and [15], the infinite node model used in [7] and [3] is a
mathematical abstraction with limited practical application, and
except for [7], all of the studies cited actually analyze a modi-
fied version of BEB. For example, in BEB, after i consecutive
packet transmission failures (collisions) a node selects for the
next transmission a single random slot from the next 2i slots
with equal probability, while in the modified versions after i col-
lisions a node is assumed to transmit in each slot with probability
2−i. Clearly, it is easier to analyze such a modified version of
BEB because of its memoryless nature, but it is not guaranteed
that it has the same stability characteristics as BEB.

B. Approach of This Paper

In this paper, we analyze the stability of the original BEB al-
gorithm by showing that the network throughput continues to be
non-zero even when the number of nodes goes to infinity. The
analysis considers the general case of exponential backoff (EB)
with factor r; BEB is the special case with r = 2. In the nota-
tion of [3], we show that N(t)/t converges to a non-zero value
as t goes to infinity, and we show that pc, the probability that a
transmitted packet will experience a collision, is always smaller
than 1/r.

Network performance measures are usually given as a func-
tion of the offered load. A commonly used definition of offered
load is N , the number of nodes waiting to transmit; this con-
cept underlies EB [10], which indirectly estimates the number
of nodes contending by counting consecutive collisions. A sec-
ond definition of offered load is the total packet arrival rate of
the system, relative to the channel capacity. Since the purpose
of EB is to alleviate the effects of contention among the nodes

and to adapt the system to the number of nodes, the first defi-
nition of offered load is more appropriate for analyzing EB and
is used in this paper. For the same reason, the performance of
EB should be evaluated based on its effect on the measures of
network efficiency, such as throughput.

In this paper, we assume a fixed number of nodes N in sat-
uration condition. Here saturation condition means that each
node always has a packet to transmit. Thus, N represents the
offered load of the network. We also assume no errors on the
channel. Under this assumption, we analyze network through-
put and medium access delay for a slotted system with EB and
compare the analytical results with simulation. Note that all the
previously cited works do not evaluate delay, even though some
of the papers define stability in terms of delay. The saturation
condition assumption is also made by Bianchi in [16], where
he used his own approach to analyze the throughput of the dis-
tributed coordination function (DCF) mode of the IEEE 802.11
wireless LAN standards.

This paper is organized as follows. In Section II, we analyze
EB to obtain the performance measures and establish stability.
The analysis is carried out in several steps, which consists of
modeling of EB, analysis of saturation throughput and medium
access delay, and analysis of asymptotic behavior. Section III
discusses some aspects of the simulation used to validate the an-
alytical results. Section IV is the conclusion of the paper.

II. ANALYSIS OF EB

In our analysis, the time is divided into time slots of equal
length, and all packets are assumed to be of the same duration,
equal to the slot time. Furthermore, all nodes are assumed to be
synchronized so that every transmission starts at the beginning
of a slot and ends before the next slot. At its first transmission, a
packet is transmitted after waiting the number of slots randomly
selected from {0, 1, · · · ,W0 − 1}, where W0 ≥ 1 is an integer
representing the minimum contention window size. Every time
a node’s packet is involved in a collision, the contention window
size for that node is multiplied by the backoff factor r and a ran-
dom number is generated within the contention window for the
next transmission attempt. Thus, on a packet’s i-th retransmis-
sion, a random number is selected from {0, 1, · · · , riW0 − 1}
with equal probability, where i = 0 represents the first trans-
mission attempt. With r = 2, this procedure is called binary
exponential backoff.

A. Analytical Model of EB

The characteristic behavior of a backoff algorithm is critical
when the channel is heavily loaded, and in fact, the very idea of
EB is to cope with the heavily loaded channel condition. Thus,
we analyze EB under saturation conditions. The saturation con-
dition represents the largest possible load offered by the given
number of nodes, which is a reasonable assumption for investi-
gating EB.

We model the operation at an individual node using the state
diagram in Fig. 1, in which each node is in one of an infi-
nite number of backoff states and pc denotes the probability
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Fig. 1. State transition diagram in a node for exponential backoff (EB).

that a transmission experiences a collision. In backoff state
i, i = 0, 1, 2, · · · , the contention window size for a node is
Wi = riW0, where W0 is the minimum contention window size.
As the diagram in Fig. 1 indicates, after a successful transmis-
sion, which occurs with probability 1 − pc, from any other state
a node enters backoff state i = 0 with contention window size
W0. While in backoff state i = k, after an unsuccessful trans-
mission, a node enters backoff state i = k + 1 with probability
pc.

Denote Bk as the k-th state that a node enters. Then, Bk

is a Markov chain with the transition probabilities pi,j , i, j =
0, 1, · · · , given as follows.

pi,0 = Pr{Bk+1 = 0 | Bk = i} = 1 − pc, (1)

pi,i+1 = Pr{Bk+1 = i + 1 | Bk = i} = pc, (2)

pi,j = 0, j 
= 0, j 
= i + 1. (3)

Define a probability Pi = limk→∞ Pr{Bk = i}, i = 0, 1, · · · ,
then Pi is the relative frequency that a node will enter state i in
the steady state. Since

∑∞
i=0 Pi = 1, from Fig. 1, Pi can be

obtained as follows

Pi = (1 − pc)pi
c, i = 0, 1, · · · . (4)

B. Throughput

The main performance measure in evaluating a network is its
throughput. We analyze the saturation throughput by calculating
the probability that there is a successful transmission in a time
slot.

The probability Pi given in (4) is the relative frequency that a
node enters state i. However, the average time a node stays in a
state is different for each state and is a function of the contention
window size of the state. As illustrated in Fig. 2, if a node enters
state i, an integer random variable Di of uniform distribution
between 0 and Wi − 1 including the boundaries is generated
and after waiting for Di time slots, the node will (re-)transmit
the packet, after which the success or failure of the transmission
will determine the next state of the node. Note that the node
will stay in state i for Di + 1 time slots until the node moves
to the next state. On average, a node will stay in state i for
di = E[Di+1] = (Wi+1)/2 time slots. Let Si be the probability
that a node is in state i at a given time; then Si specifies the
distribution of nodes over the states. Since Si is proportional to
Pidi, it is given by

Si =
Pidi∑∞

j=0 Pjdj

=
(1 − pc)pi

c(1 − rpc)(Wi + 1)
W0(1 − pc) + 1 − rpc

, (5)

Enter state i

Generate a RV Di ∼ U [0, Wi − 1]
t = Di : set backoff timer

t ?
t = 0 1 Wi − 2 Wi − 1

Z−1;
t--;

Z−1;
t--;

Z−1;
t--;

Z−1;
t--;

· · ·

Exit state i

Fig. 2. Procedure taken by a node in state i. U [0, Wi − 1] represents a uniform
distribution of integer over the interval [0, Wi − 1], Z−1 means time delay by
one time slot, and t-- is a decrement operation on the backoff timer.

where the summation in the denominator does not exist if rpc ≥
1. In fact, rpc < 1 is a necessary condition for the system to
reach steady state. Note that Si is given as a function of pc and
W0. Later, we show that the value of pc is determined when the
value of W0, and the number of nodes N are given.

Define Pr{t = k | i} as the conditional probability that a
node’s backoff timer t will have value k given that the node is in
state i. Since

∑Wi−1
k=0 Pr{t = k | i} = 1, it follows that

Si =
Wi−1∑

k=0

Si · Pr{t = k | i} =
Wi−1∑

k=0

si,k, (6)

where si,k is the probability that the node is in state i and the
backoff timer has value k. Since the backoff timer is decreased
by one every slot time, si,k satisfies

si,k = si,Wi−1 · (Wi − k), k = 0, 1, · · · ,Wi − 1. (7)

By substituting (7) into (6), it can be shown that si,Wi−1 =
Si/(di Wi), and thus,

si,k =
2(1 − pc)pi

c(1 − rpc)
W0(1 − pc) + 1 − rpc

· Wi − k

Wi
. (8)

When k = 0, we have si,0, the probability that a node is in state
i and the backoff timer is expired, that is, a node will transmit a
packet in state i.

Let pt be the probability that a given node will transmit in an
arbitrary time slot. Then, since si,0, i = 0, 1, · · · , are the proba-
bilities of mutually exclusive events, pt =

∑∞
i=0 si,0. From (8),

si,0 = si−1,0pc, i = 1, 2, · · · . Thus,

pt =
s0,0

1 − pc
=

2(1 − rpc)
W0(1 − pc) + 1 − rpc

. (9)

Note that pt is a function of pc and W0, but also related to N
through the value of pc as will be shown later. As we shall see
in the following, since pc goes to 1/r as N goes to infinity, pt

converges to zero as the number of nodes goes to infinity.
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As noted in [16], the numerical value of pt is also constrained
by the fact that pc can be expressed in terms of pt, that is

pc = 1 − (1 − pt)N−1, (10)

where (1−pt)N−1 is the probability that none of the other N −1
nodes transmits. Solving (10) for pt, we have

pt = 1 − (1 − pc)1/(N−1). (11)

Since (9) and (11) are two constraining equations for pt as a
function of pc, the unique intersection of these two equations
gives us the values of pc and pt for given N and W0. Note
that pc is always less than 1/r, which is the requirement for the
existence of the summation in equation (5). Fig. 3 shows plots
of pt as a function of pc given in equation (9) (dashed lines) for
r = 2 and various values of W0, and in equation (11) (solid
lines) for various values of N . The probability of collision pc

and the probability of transmission pt obtained numerically from
(9) and (11) by calculating the intersection are plotted in Fig. 4.
The plot shows pc and pt converging to 1/r (= 0.5) and zero,
respectively, as the number of nodes increases. The circles and
bullets drawn along the curves are simulation results obtained
for W0 = 16 and W0 = 32. Fig. 4 shows that the analytical and
simulation results agree extremely well. (More discussion on the
simulation is given in Section III.)

Since the channel is busy for a given time slot when there is at
least one transmitting node in the slot time, the probability that
the channel will be busy in a time slot is

Pbusy = 1 − (1 − pt)N = 1 − Pidle, (12)

where Pidle is the probability that a time slot is idle. On the
other hand, a successful transmission occurs when there is only
one transmitting node. Thus, the probability that there will be a
successful transmission in a time slot is defined as

Psucc = NC1 pt (1 − pt)N−1 = Npt(1 − pt)N−1, (13)

where NC1 is the number of ways of choosing 1 out of N nodes.
Note that a collision occurs if there are multiple nodes transmit-
ting in the same time slot. Thus, the probability that a collision
will occur in a time slot is given by Pcoll = Pbusy − Psucc.

If we normalize the slot time as the unit time, in any given
unit time duration, the average number of frames that are suc-
cessfully transmitted is Psucc. If we ignore the packet overhead,
the normalized throughput is simply Psucc. In the notation of [3],
Psucc = limt→∞ N(t)/t. Fig. 5 shows plots of Psucc, the normal-
ized throughput, for various values of W0. Note that Psucc con-
verges to a non-zero constant ( 1

2 ln 2 to be precise when r = 2),
which does not depend on W0, as the number of nodes increases.
Even when there are a lot of nodes contending for the medium
access, BEB manages to control the transmission attempts in a
slot to guarantee sustained probability of successful transmis-
sion. In fact, it is shown below in Section II-D that the average
number of nodes that transmit in a slot converges to a constant
less than 1 as the number of nodes goes to infinity. Note that,
for a small number of nodes and large W0, Psucc increases as
the number of nodes increases. This behavior occurs because of
the large number of idle time slots on the channel, and increas-
ing the number of nodes increases the efficiency of the channel
usage leading to a higher Psucc.

C. Expected Medium Access Delay

Delay is another key element in evaluating the performance
of a network. We define the medium access delay as the time
from the moment a packet is ready to be transmitted to the mo-
ment the packet starts its successful transmission. The medium
access delay is obtained by analyzing the expected total number
of backoff time slots.

Pi defined in (4) gives information regarding the behavior of
a node. But the state transition information of a packet trans-
mitted by a node is necessary to analyze the backoff profile of
the packet. Let Qi be the probability that a packet enters state i,
i = 0, 1, · · · , in steady state. Then Q0 = 1 because every packet
starts at state 0, and Qi = pcQi−1 since a packet enters state i
when it experiences a collision in state i − 1. Thus, by mathe-
matical induction, Qi is given by Qi = pi

c, i = 0, 1, 2, · · · . Note
that Qi is numerically identical to Pi after normalization, that is
Pi = Qi /

∑∞
j=0 Qj . Define Tn as the probability that a packet

will be successfully transmitted on exactly the n-th retransmis-
sion, then

Tn = Qn − Qn+1 = (1 − pc)pn
c , n = 0, 1, 2, · · · , (14)



where T0 is the probability that a packet will be successfully
transmitted without retransmission. Let NR be a random vari-
able representing the number of retransmissions until success;
then Tn is the probability mass function of NR, and the average
number of re-transmissions per packet is given by

nR = E[NR] =
∞∑

n=0

nTn =
pc

1 − pc
. (15)

On average, it requires nR + 1 = 1/(1 − pc) transmissions per
packet. If a packet is retransmitted NR times, then the packet
will be delayed by

∑NR−1
i=0 (Di + 1) + DNR

time slots, where
Di is an integer random variable of uniform distribution between
0 and Wi−1. Thus, the expected number of time slots of backoff
per packet is given by

DΣ = E

[
NR−1∑

i=0

(Di + 1) + DNR

]

= ENR

[
1
2

(
NR + 1 +

W0(1 − rNR+1)
1 − r

)]
− 1

=
1
2

(
1

1 − pc
+

W0

1 − rpc

)
− 1 =

nR + 1
pt

− 1, (16)

where ENR
[·] is an ensemble average over the random variable

NR. Since it takes on average DΣ time slots for a packet until
successful transmission, DΣ is the medium access delay in time
slots. Fig. 6 shows the expected medium access delay in time
slots for various values of W0 obtained by analysis as well as
by simulation. It shows that the medium access delay increases
almost linearly with the number of nodes N . It is shown in Sec-
tion II-D that the medium access delay approaches a linear func-
tion of N as the number of nodes goes to infinity.

D. Stability and Asymptotic Behavior of EB

Now we investigate the asymptotic behavior of EB observed
when the number of nodes N goes to infinity. As shown in Fig. 4,
pt converges to zero as the number of nodes increases, due to
the increased contention window sizes which causes a smaller
probability of transmission in a given time slot. The following
theorem describes the asymptotic behavior of pt.

Theorem 1: Define nt = N · pt as the expected number of
nodes that will transmit in an arbitrary time slot. Then, nt con-
verges to the non-zero value ln[r/(r−1)] as the number of nodes
N goes to infinity.

The theorem can be proven first by showing that
limN→∞ pc = 1/r, and limN→∞ pt = 0, then using
them in (9) and (10). This theorem tells us two very important
facts. First, nt converges to a finite positive constant. In fact,
with r = 2, nt converges to ln 2 < 1. Thus, no matter how
many nodes the network contains, it can be expected that, on
average, less than one node will try to transmit in any time slot,
which in turn guarantees non-zero throughput of the network
regardless of the number of the nodes in the network as shown in

the following corollary. Secondly, limN→∞ nt is not a function
of W0. Thus, the minimum contention window size does not
affect the asymptotic behavior of the network.

Fig. 7 shows the plots of Npt vs. N along with simulation
results. With a larger minimum contention window size W0,
the expected number of transmitting nodes in a slot is smaller
because of the longer average backoff by each node. But as the
number of nodes increases, all curves converge to the asymptote
limN→∞ nt = ln 2, which is shown with a thin line in Fig. 7.

Corollary 2: The probability Pbusy that channel is busy, and
the probability Psucc that there will be a successful transmission
in a time slot converge as the number of nodes N goes to infinity
as follows:

lim
N→∞

Pbusy =
1
r
, lim

N→∞
Psucc =

r − 1
r

ln
r

r − 1
. (17)

The proof of Corollary 2 is straightforward from Theo-
rem 1. As noted in Section II-B, Psucc represents the normalized
throughput. Thus, the asymptote of Psucc in (17), drawn in Fig. 5
with thin solid line, shows that EB is stable under the through-
put definition. Note that even with a large number of nodes, the
channel is idle about 50% of the time (for r = 2), which guaran-
tees sustained non-zero probability of successful transmission.
This is due to the backoff mechanism controlling transmission
attempts by the nodes. Consequently, as the number of nodes in-
creases, the medium access delay also increases; each node has
to wait longer to have its turn. In Section II-C, DΣ, the expected
medium access delay was derived. To see the asymptotic behav-
ior of DΣ, note that (16) can be written as DΣ = N

(1−pc) Npt
−1.

Since, limN→∞ Npt = ln(r/(r − 1)) and limN→∞ pc = 1/r,
DΣ approaches an asymptote that is, a linear function of N , as
N goes to infinity:

lim
N→∞

DΣ =
N

r−1
r ln r

r−1

− 1 =
1

limN→∞ Psucc
N − 1 (18)

Note that (18) is not a function of W0. The thin solid line in
Fig. 6 shows a plot of the asymptote (18).

III. SIMULATION

To support our analysis, simulation results are added in Fig-
ures 4–7, which are represented by circles and bullets, along
with the curves of analytical results. The simulator is written
in the C++ programming language, and simulation results were
obtained by running 500,000 time slots after 10,000 time slots
of warming up for W0 = 16, 32, and N = 5, 10, · · · , 50.

The simulation results in Figures 4–7 agree with those ob-
tained from our analysis. However, when there are relatively
many nodes, slight differences between the analytical and sim-
ulation results are observed which can be attributed to a starva-
tion effect. A starvation effect is different from a capture effect.
A capture effect makes only a few nodes consume the whole
transmission channel, but a starvation effect gives a few nodes
little chance to transmit their packets while most of nodes have
fairly good chances. For example, for N = 50 and W0 = 16,
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while most nodes tried between 7,000 and 8,000 packet trans-
missions during 500,000 time slots, there was a node with only
5 transmission tries. Also, there were several nodes with less
than 3,000 transmission attempts. For smaller W0, however, a
capture effect [17] was observed instead of starvation, whose re-
sult is not included in the figures. The reason for these effects is
the necessarily finite observation time of the simulation.

IV. CONCLUSION

We analyzed the performance of EB to obtain the saturation
throughput and the medium access delay. The stability of EB
was also established by showing the asymptotic behavior of EB
when the number of nodes goes to infinity. From the analy-
sis results, we showed that EB guarantees a certain amount of
throughput no matter how many nodes are present in the net-
work. Also shown was that the medium access delay has a lin-
ear asymptotic behavior with respect to the number of nodes in
the network. The performance of EB with maximum retry limit
(known as truncated EB) is also analyzed in [18], where it is
shown that EB with maximum retry limit is unstable due to the
transmission retry limit.

In this paper, a new and efficient analytical method was used
to analyze the characteristics of EB. This analytical method can
also be applied to analyze network protocols using EB, such as
IEEE 802.11 DCF.
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