
Design Issues for Numerical Libraries

on Scalable Multicore Architectures

Michael A. Heroux

Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.



Preliminaries



About MPI

MPI will be the primary inter-node programming model.

Very few people program in MPI: Abstractions.

Right ingredients:

Portable, ubiquitous.

Forced alignment of work/data ownership and transfer.

Matches architectures:

Interconnects of best commercial node parts.

New languages:

Big fan of Co-Array Fortran (Have been for 15 years: F--).

Chapel looks good.

But tough uphill climb.

Real question: How do we program the node?



Codes Discussed Here

HPCCG:

“Closest thing to an unstructured FEM/FVM code in 500 semi-colons or fewer.”

pHPCCG:

Compile-time parameterized FP (float, double, etc) and int (32, 64, etc).

Trilinos/Epetra Benchmark Tests:

Trilinos Performance-determining kernels.

phdMesh Vector Multi-update:

Basic kernel in explicit dynamics (generalized DGEMV).

Tramonto:

Polymer test case.

LAMMPS: Molecular Dynamics.

Trilinos/Tpetra, Trilinos/Kokkos:

New multicore-aware packages.



Trilinos Package Summary
http://trilinos.sandia.gov

StokhosStochastic PDEs

RythmosTime Integration

AmesosDirect sparse linear solvers

Epetra, Teuchos, PlirisDirect dense linear solvers

AnasaziIterative eigenvalue solvers

Epetra, Jpetra, TpetraLinear algebra objects

Core

Thyra, Stratimikos, RTOpAbstract interfaces

Zoltan, IsorropiaLoad Balancing

PyTrilinos, WebTrilinos, Star-P, ForTrilinos, CTrilinos“Skins”

Teuchos, EpetraExt, Kokkos, Triutils, TPIC++ utilities, I/O, thread API

MOOCHO, AristosOptimization (SAND)

NOX, LOCANonlinear system solvers

MerosBlock preconditioners

ML, CLAPSMultilevel preconditioners

AztecOO, IFPACKILU-type preconditioners

AztecOO, Belos, KomplexIterative (Krylov) linear solvers

Solvers

MoertelMortar Methods

SacadoAutomatic Differentiation
Methods

phdMesh, Intrepid, Pamgen, SundanceMeshing & Spatial Discretizations
Discretizations

Package(s)Objective



Node Classification

Homogeneous multicore:

SMP on a chip.

NUMA nodes.

Varying memory architectures.

Heterogeneous multicore:

Serial/Controller processor(s).

Team of identical, simpler compute
processors.

Varying memory architectures.



Why Homogeneous vs.

Heterogeneous?

Homogeneous:

Out-of-the-box: Can attempt single-level MPI-only.

m nodes, n cores per node: p = m*n

mpirun -np p …

Heterogeneous:

Must think of compute cores as “co-processors”.

mpirun -np m …

Something else on the node.

Future:

Boundary may get fuzzy.

Heterogenous techniques can work well on
homogeneous nodes.



Homogeneous Multicore Issues



Single Core Performance:

Still improving for some codes

HPCCG microapp.

Clock speeds stable:

~ 2GHz.

FP-friendly

computations stalled.

Memory-intensive

computations still

improving.
50822.3Intel Core

Duo

2007

47642.1AMD

Opteron

2007

40141.9Intel

Woodcrest

2007

35922.2AMD

Opteron

2006

31012.1Intel Pentium

M

2005

28211.6AMD

Opteron

2004

17811.9AMD Athlon2003

MFLOPS

/sec

Cores

per

socket

Clock

(GHz)

ProcessorYear



MPI-Only
(Intel Clovertown)

The incumbent: Always present.

Sometimes sufficient.



Programming Model Translation
(courtesy H.C. Edwards)

Been here before:

12-15 years ago: SMP

nodes.

MPI vs.

MPI/OpenMP/Pthreads

.

Lesson learned:

1. Nothing magic about

programming model.

2. For SMP model to

matter: Algorithms

must exploit shared

memory.



A Few HPCCG Multicore Results
Float useful:

Mixed precision algorithms.

Memory system performance even more important:

Saturation means loss of core use.

Memory placement a concern:

Shared memory allows remote placement.

NiagaraT2 threads hide latency:

Easiest node to program.



Epetra Benchmark

Tests

Focused on core Epetra kernels:

Sparse MV, MM.

Dot products, norms, daxpy’s.

spMM:

Better performance.

Better core utilization.



Epetra Kernels on Niagara2

26.1Update

14.9Dot

28.7Norm2

22.3SpMM4

31.0SpMM2

36.0SpMV

Speedup 60 vs 1



Tramonto Clovertown Results
Super-linear speedup

(Setup phase)

Sub-linear speedup

(Solve phase)

Setup (The application code itself): Excellent MPI-only.

Solve (libraries): Much poorer. Inherent in algorithms.



Tramonto Niagara2 Results
Super-linear/linear speedup

(Setup phase)

Linear/sublinear speedup

(Solve phase)



Vector Multi-update
(courtesy H.C. Edwards)

Cores compete for access to main memory

Consider: x[i] = f( a[i], b[i], c[i], d[i], … ); parallel on ‘i’

Compare performance of ‘Array’ versus ‘Chunk’ data structures

x a b c d

x a b c d

x a b c d

x a b c d

x a b c d

Partitioned data for

parallel processing

Chunked

column

data

x a b c d
x a b c d
x a b c d

x a b c d
x a b c d
x a b c d

x a b c d
x a b c d
x a b c d

x a b c d
x a b c d
x a b c d

Chunked

row data



Chunked Data Structures Experiment

Clovertown – Scaling
Flat-Array 1,4,8 threads vs. Chunk-Row 1,4,8 threads

1.00E-05

1.00E-04

1.00E-03

1.00E-02

G
ri

n
d

 T
im

e

2 5 10 20 50 100

Number of Arrays

Multiarray Add "Grind Time" on Clovertown

Chunk Size = 500

Flat-Array / 1 Thread

Flat-Array / 4 Thread

Flat-Array / 8 Thread

Chunk-Row  / 1 Thread

Chunk-Row  / 4 Thread

Chunk-Row  / 8 Thread

log scale

Chunk-Row / 1 core

better than

Flat-Array / 8 cores



Chunked Data Structures Experiment

Barcelona – Scaling

 Flat-Array 1,4,8 threads vs. Chunk-Row 1,4,8 threads

1.00E-05

1.00E-04

1.00E-03

1.00E-02

G
ri

n
d

 T
im

e

2 5 10 20 50 100

Number of Arrays

Multiarray Add "Grind Time" on Barcelona

Chunk Size = 500

Flat-Array / 1 Thread

Flat-Array / 4 Thread

Flat-Array / 8 Thread

Chunk-Row  / 1 Thread

Chunk-Row  / 4 Thread

Chunk-Row  / 8 Thread

log scale

Chunk-Row / 1 core

nearly same as

Flat-Array / 8 cores



Unnatural Data Layouts: Observations
Unnatural layouts are troublesome.

Have been around a long time: Dense BLAS

Actual compute layout different than user’s

Compute rich: Translation done in real time.

Sparse, vector computations much
more challenging:

Translation (from natural to unnatural)
cannot be done in real time.

Forces:

• User to deal with unnatural layout or

• Abstraction layer with temporal or spatial
overheads.

Unnatural layout may have fastest kernel
performance, but:

• Overhead of translation.

• Complexity of use.

Require careful interface design.

x a b c d

Natural layout

x a b c d
x a b c d
x a b c d

x a b c d
x a b c d
x a b c d

x a b c d
x a b c d
x a b c d

x a b c d
x a b c d
x a b c d

Chunked

row layout

(unnatural)



Observations (So Far) for MPI

Applications
1. MPI-only is a legitimate approach and the default.

2. Multicore will change how we program the node,
eventually.

Opinions on time frame vary greatly.

Uncomfortable defending MPI but: Bold predictions of MPI-only
demise so far have proved false.

3. Simple programming model translation is ineffective.

4. Runtime environment is fragile: process/memory placement.

5. Memory-system-intensive code problematic: Ineffective
core use.

6. Multithreading helps us: performance and simpler code.

7. Data placement: Huge performance impact, abstraction a
challenge.



Library Efforts for Multicore



Library Preparations for New Node

Architectures (Decision Made Years Ago)

We knew node architectures would change…

Abstract Parallel Machine Interface: Comm Class.

Abstract Linear Algebra Objects:

Operator  class: Action of operator only, no knowledge of how.

RowMatrix class: Serve up a row of coefficients on demand.

Pure abstract layer: No unnecessary constraints at all.

Model Evaluator:

Highly flexible API for linear/non-linear solver services.

Templated scalar and integer types:

Compile-time resolution float, double, quad,… int, long long,…

Mixed precision algorithms.



Library Effort in Response to

Node Architecture Trends
Block Krylov Methods (Belos & Anasazi):

Natural for UQ, QMU, Sensitivity Analysis…

Superior Node and Network complexity.

Specialized sparse matrix data structures:

Sparse diagonal, sparse-dense, composite, leverage OSKI.

Templated Kernel Libraries (Tpetra & Tifpack):

Choice of float vs double made when object created.

High-performance multiprecision algorithms.

Shared memory node-only algorithms:

Triangular solves, multi-level preconditioner smoothers.

Kokkos Node class

Intel TBB support, compatible with OpenMP, Pthreads, …

Clients of Kokkos::TbbNode can access static, ready-to-work thread pool.

Code above the basic kernel level is unaware of threads.

MPI-only+MPI/PNAS

Application runs MPI-only (8 flat MPI processes on dual quad-core)

Solver runs:

• MPI-only when interfacing with app using partitioned nodal address space (PNAS).

• 2 MPI processes, 4 threads each when solving problem.



C++ Templates

Standard method prototype for apply matrix-vector multiply:

template<typename OT, typename ST>

CisMatrix::apply(Vector<OT, ST> const& x, Vector<OT, ST>& y)

Mixed precision method prototype (DP vectors, SP matrix):

template<typename OT, typename ST>

CisMatrix::apply(Vector<OT, ScalarTraits<ST>::dp()>  const& x,   

Vector<OT, ScalarTraits<ST>::dp()> & y)

Sample usage:

Tpetra::Vector<int, double> x, y;

Tpetra::CisMatrix<int, float> A;

A.apply(x, y);  // Single precision matrix applied to double precision vectors



C++ Templates

Compile time polymorphism.

True generic programming.

No runtime performance hit.

Huge compile-time performance hit:

But this is OK: Good use of multicore :)

Can be reduced for common data types.

Example was for float/double but works for:

complex<float>/complex<double>.

Arbitrary precision.



Shared Memory

Algorithms



Programming Models for Scalable

Homogeneous Multicore

(beyond single-level MPI-only)



Threading under MPI

Default approach: Successful in many applications.

Concerns:

Opaqueness of work/data pair assignment.

• Lack of granularity control.

Collisions: Multiple thread models.

• Performance issue, not correctness.

Bright spot: Intel Thread Building Blocks (TBB).

Iterator (C++ language feature) model.

Opaque or transparent: User choice.

App

LibA
(OpenMP)

LibB
    (TBB)    



MPI Under MPI

Scalable multicores:

Two different MPI architectures.

Machines within a machine.

Exploited in single-level MPI:

Short-circuited messages.

Reduce network B/W.

Missing some potential.

Nested algorithms.

Already possible.

Real attraction: No new node programming model.

Can even implement shared memory algorithms

(with some enhancements to MPI).

11447.5Intra-node

machine

10820.71Inter-node

machine

Bandwidth

(MB/sec)

Latency

(microsec)

“Ping-pong”

test



MPI-Only + MPI/Threading: Ax=b

App
Rank 0

App
Rank 1

App
Rank 2

App
Rank 3

Lib
Rank 0

Lib
Rank 1

Lib
Rank 2

Lib
Rank 3

Mem
Rank 0

Mem
Rank 1

Mem
Rank 2

Mem
Rank 3

Multicore: “PNAS” Layout

Lib
Rank 0

Thread 0   Thread 1   Thread 2  Thread 3

App passes matrix and vector values to library data 

classes

All ranks store A, x, b data in memory visible to

rank 0

Library solves Ax=b using shared memory algorithms

on the node.



Heterogeneous Multicore Issues



Excited about multimedia processors

Inclusion of native double precision.

Large consumer market.

Qualitative performance improvement over

standard microprocessors…

If your computation matches the architecture.

Many of our computations do match well.

But a long road ahead…



APIs for Heterogeneous Nodes

(A Mess)

SequoiaMost/All?

APIProcessor

RapidMind (Proprietary)Most

OpenCLApple/All

CtIntel Larrabee

ALFSTI Cell

Brook+AMD/ATI

CUDANVIDIA

Commonality: Fine-grain functional programming.

Our Response: A Library Node Abstraction Layer



Epetra Communication Classes

Epetra_Comm is a pure virtual class:
Has no executable code: Interfaces only.

Encapsulates behavior and attributes of the parallel machine.

Defines interfaces for basic services such as:

• Collective communications.

• Gather/scatter capabilities.

Allows multiple parallel machine implementations.

Implementation details of parallel machine

confined to Comm classes.

In particular, rest of Epetra (and rest of Trilinos)

has no dependence on any particular API, e.g. MPI.



Comm Methods

•CreateDistributor() const=0 [pure virtual] 

•CreateDirectory(const Epetra_BlockMap & map) const=0 [pure virtual] 
•Barrier() const=0  

•Broadcast(double *MyVals, int Count, int Root) const=0  

•Broadcast(int *MyVals, int Count, int Root) const=0  

•GatherAll(double *MyVals, double *AllVals, int Count) const=0  

•GatherAll(int *MyVals, int *AllVals, int Count) const=0  

•MaxAll(double *PartialMaxs, double *GlobalMaxs, int Count) const=0  

•MaxAll(int *PartialMaxs, int *GlobalMaxs, int Count) const=0  

•MinAll(double *PartialMins, double *GlobalMins, int Count) const=0  

•MinAll(int *PartialMins, int *GlobalMins, int Count) const=0  

•MyPID() const=0  

•NumProc() const=0  

•Print(ostream &os) const=0  

•ScanSum(double *MyVals, double *ScanSums, int Count) const=0  

•ScanSum(int *MyVals, int *ScanSums, int Count) const=0  

•SumAll(double *PartialSums, double *GlobalSums, int Count) const=0  

•SumAll(int *PartialSums, int *GlobalSums, int Count) const=0  

•~Epetra_Comm() 



Comm Implementations

Three implementations of Epetra_Comm:
Epetra_SerialComm:

• Allows easy simultaneous support of serial and parallel version of user code.

Epetra_MpiComm:

• OO wrapping of C MPI interface.

Epetra_MpiSmpComm:

• Allows definition/use of shared memory multiprocessor nodes.



Abstract Node Class

Trilinos/Kokkos: Trilinos compute node package.

Abstraction definition in progress: Will look a lot like TBB.

Composition needed:

Node with quadcore and GPU.

Kokkos::TbbNode uses Kokkos::SerialNode.

Trilinos/Tpetra:

Tpetra::Comm constructor takes Kokkos::Node object.

Kokkos::Node

Kokkos::SerialNode Kokkos::CudaNodeKokkos::TbbNode …



Going Forward:

Changing the Atomic Unit

Now:

Single-level MPI-only OK for many apps.

Future:

Hiding network heterogeneity beneath single MPI

level too hard.

Philisophical approach:

Node becomes the new atomic unit.

Key Requirement:

Portable standard node API.

Hard work:

Changes are ubiquitous (unlike MPI).



Summary
Exciting times: for architecture and software design.

MPI-only sufficient:

3-5 years for many existing apps.

Except for Roadrunner apps, and similar.

Reducing B/W requirements: even more important.

C++ is the right language for new development:

Templates, compatibility with node SDKs, advanced features.

Fortran still OK for single core performance.

Fortran apps should be linkable with C++.

If Libs do a good job: Some Apps can delay multicore awareness.

Multimedia processors: seem to have right mix for next qualitative
performance improvement.

Possible scenario for some apps/libs:

Heterogenous API superior on homogeneous nodes.

Go directly from single-level MPI-only to MPI+heterogenous node?

A common, standard API for multicore: Most critical need.


