
Effective Dynamic Voltage Scaling

through CPU-Boundedness Detection ∗

Chung-Hsing Hsu and Wu-chun Feng

{chunghsu,feng}@lanl.gov

Advanced Computing Laboratory

Los Alamos National Laboratory

Los Alamos, NM 87545

Keywords: Power-aware computing, dynamic voltage
scaling, interval-based voltage scheduling, performance
modeling, power-performance tradeoff.

Abstract

Dynamic voltage scaling (DVS) allows a program to ex-
ecute at a non-peak CPU frequency in order to reduce
CPU power, and hence, energy consumption; however,
it is done at the cost of performance degradation. For
a program whose execution time is bounded by periph-
erals’ performance rather than the CPU speed, apply-
ing DVS to the program will result in negligible per-
formance penalty. Unfortunately, existing DVS-based
power-management algorithms are conservative in the
sense that they overly exaggerate the impact that the
CPU speed has on the execution time, e.g., they assume
that the execution time will double if the CPU speed is
halved. Based on a new single-coefficient performance
model, we propose a DVS algorithm that detects the
CPU-boundedness of a program on the fly (via a re-
gression method on the past MIPS rate) and then ad-
justs the CPU frequency accordingly. To illustrate its
effectiveness, we compare our algorithm with other DVS
algorithms on real systems via physical measurements.

1 Introduction

Dynamic voltage and frequency scaling (DVS) is a
mechanism whereby software can dynamically adjust
CPU voltage and frequency. This mechanism allows
systems to address the problem of ever-increasing CPU
power dissipation and energy consumption, as they are
both quadratically proportional to the CPU voltage.
However, reducing the CPU voltage may also require
the CPU frequency to be reduced and results in de-

∗This work was supported by the DOE ASC Program through
Los Alamos National Laboratory contract W-7405-ENG-36.

graded CPU performance with respect to execution
time. In other words, DVS trades off performance for
power and energy reduction.

The performance loss due to running at a lower CPU
frequency raises several issues. First, a user who pays to
upgrade his/her computer system does not want to see
performance degradation. Second, running programs
at a low CPU frequency may end up increasing total
system energy usage [1, 2, 3, 4]. In order to control
(or constrain) the performance loss effectively, a model
that relates performance to the CPU frequency is essen-
tial for any DVS-based power-management algorithm
(shortened as DVS algorithm hereafter).

A typical model used by many DVS algorithms pre-
dicts that the execution time will double if the CPU
speed is cut in half. Unfortunately, this model overly
exaggerates the impact that the CPU speed has on the
execution time. It is only in the worst case that the ex-
ecution time doubles when the CPU speed is halved; in
general, the actual execution time is less than double.
For example, in programs with a high cache miss ra-
tio, performance can be limited by memory bandwidth
rather than CPU speed. Since memory performance
is not affected by a change in CPU speed, increasing
or decreasing the CPU frequency will have little effect
on the performance of these programs. We call this
phenomenon — sublinear performance slowdown. Con-
sequently, researchers have been trying to exploit this
program behavior in order to achieve better power and
energy reduction [5, 6, 7, 8]. One common technique de-
composes program workload into regions based on their
CPU-boundedness. The decomposition can be done
statically using profiling information [5, 6] or dynam-
ically through an auxiliary circuit [9, 10, 11] or through
a built-in performance monitoring unit (PMU) [7, 8].
In this paper, we propose a new PMU-assisted, on-line
DVS algorithm called beta that provides fine-grained,
tight control over performance loss as well as takes the
advantage of the sublinear performance slowdown. The
new beta algorithm is based on an extension of the the-

1

chunghsu
Text Box
PACS 2004: The Fourth Workshop on Power-Aware Computer Systems.Portland, Oregon, December 2004, LA-UR 04-7195.



oretical work developed by Yao et al. [12] and by Ishi-
hara and Yasuura [13]. Via physical measurements, we
will demonstrate the effectiveness of the beta algorithm
when compared to several existing DVS algorithms for
a number of applications.

The rest of the paper is organized as follows: Section 2
characterizes how current DVS algorithms relate perfor-
mance to CPU frequency. With this characterization as
a backdrop, we present a new DVS algorithm (Section 3)
along with its theoretical foundation (Section 4). Then,
Section 5 describes the experimental set-up, the imple-
mented DVS algorithms, and the experimental results.
Finally, Section 6 concludes and presents some future
directions.

2 Related Work

CPU utilization is often used to relate performance to
the CPU frequency. While it is generally defined as the
fraction of time that the CPU spends non-idle, CPU
utilization may also be interpreted as the normalized
workload (e.g., [14, 15, 16]). This particular interpreta-
tion has a nice property that there is a one-to-one corre-
spondence between the desired normalized CPU speed
and CPU idle time. Thus, if CPU utilization is 0.5
on a 2-GHz machine, then setting the CPU frequency
to 1 GHz is predicted to eliminate all CPU idle time.
Clearly, CPU utilization (or the normalized workload)
follows the assumption that the execution time doubles
when the CPU speed is halved. This type of model is
popular because the metric is easy to derive at run time
and it does not require application-specific information.

However, CPU utilization by itself does not provide
enough information about system timing requirements,
and DVS algorithms based on such information can only
provide loose control over performance loss [17, 18, 19].
Thus, DVS algorithms with application-specific infor-
mation have been proposed in order to provide tighter
control over performance loss. For example, an applica-
tion (or task or thread) can be associated with a dead-
line, in terms of seconds, as well as a CPU work require-
ment, in terms of CPU cycles. In this setting, perfor-
mance is usually formulated as a linear function of the
CPU speed. This type of performance model predicts
that the execution time doubles when the CPU speed
is halved. Other approaches use a target IPC (instruc-
tions per cycle) rate as the system timing requirements
[20, 21]. Their performance model falls into the same
category too.

There have been some attempts to exploit the sublin-
ear performance slowdown to achieve more power and
energy reduction. For example, Marculescu [9] proposed
to set the CPU to a low speed whenever an L2 cache
miss occurs. Li et al. [11] improved the algorithm by

taking into account the transition overhead and scaling
the CPU frequency and voltage according to the level of
parallelism between the CPU and the memory subsys-
tem. Stanley-Marbell et al. [10] designed an auxiliary
hardware unit to detect loop-based, memory-bound ex-
ecution phases.

The PMU-assisted “process cruise control” developed
by Weissel and Bellosa [5] relies on a pre-computed ta-
ble of optimal CPU speeds to direct the CPU speed
change. The table is indexed by the run-time instruc-
tion counts per cycle and memory requests per cycle.
Although the algorithm requires neither source code nor
compiler support, it is inflexible in the sense that the ta-
ble is obtained through extensive experiments of micro-
benchmarks for a given performance loss (e.g., 10% in
[5]). In other words, the algorithm does not allow for
dynamic, application-specific control over performance
loss.

Hsu and Kremer [6] use off-line profiling to identify
memory-bound program regions, coupled with compiler
transformations, to facilitate the setting of the CPU
frequency. However, the need for source code and com-
piler support makes this approach more difficult to im-
plement in practice. In general, compiler-directed DVS
algorithms have the benefit of only requiring the host
processor to export a DVS interface and does not re-
quire support from the OS scheduler. They also allow
DVS scheduling decisions to be made in a global man-
ner and to be in combination with performance-oriented
optimization. On the other hand, savings are limited as
speed-set instructions are inserted statically, and thus,
apply to all execution of a specific memory reference,
both cache misses as well as hits [22]. Moreover, in-
put data sets may change program behavior that makes
profile-based DVS algorithms less attractive.

Our work is closest to Choi et al.’s recent work
[7, 8]. Both use a regression method and PMU sup-
port to perform on-line DVS scheduling through CPU-
boundedness detection. However, the two works differ
in their definition of CPU-boundedness, and thus, the
detection mechanism. Choi et al.’s work is based on the
ratio of the on-chip computation time to the off-chip
access time. In contrast, our algorithm defines CPU-
boundedness as the fraction of program workload that
is CPU-bound. Because of the different definitions, the
set of events monitored by the PMU for each algorithm
is different. In Section 5.5, we argue that our DVS al-
gorithm is equally effective but has a simpler imple-
mentation. Moreover, in contrast to [7, 8], we provide
a theoretical foundation of why our DVS algorithm is
effective in achieving energy optimality. The same the-
oretical result can be applied to their work as well.

In general, PMU-assisted DVS algorithms will en-
counter a couple of challenges. The PMU is notorious

2



for its incomplete set of event counting, inconsistency
across generations of the CPU, and counters do not
function as advertised. For example, Choi et al. pre-
sented two platform-dependent implementations [7, 8] of
the same DVS algorithm because the PMUs of these two
platforms count different sets of events. In addition, the
correlation of event counts to power and performance is
not yet clear and has been an ongoing research focus
(e.g., [23, 24]).

3 A New DVS Algorithm

Here we describe a new interval-based PMU-assisted
DVS algorithm that provides fine-grained, tight control
over performance loss as well as exploits the sublinear
performance scaling in memory-bound and I/O-bound
programs. The theoretically-based heuristic algorithm
is based on an extension of the theoretical work devel-
oped by [12] and [13] (details in Section 4):

If the CPU power dissipation is a convex func-
tion of the CPU frequency, then for any pro-
gram whose performance is an affine function
of the CPU frequency, running at a constant
CPU speed and meeting the deadline just in
time will minimize the energy usage of execut-
ing the program. If the desired CPU frequency
is not directly supported by the system, the
two immediately-neighboring CPU frequencies
can be used to emulate the desired CPU fre-
quency and result in an energy-optimal DVS
schedule.

To account for the sublinear performance slowdown,
the following model that relates performance to the
CPU frequency is often used [25, 7, 8]:

T (f) = Wcpu ·
1

f
+ Tmem (1)

The total execution time T (f) at frequency f is decom-
posed into two parts. The first part models on-chip
workload in terms of CPU cycles. Its value is affected
by the CPU speed change. The second part models the
time due to off-chip accesses and is invariant to changes
in the CPU speed. Note that this breakdown of the total
execution time is inexact when the target processor sup-
ports out-of-order execution because on-chip execution
may overlap with off-chip accesses [26, 22]. However, in
practice, the error tends to be quite small [7, 8].

The model T (f) treats program performance as an
affine function of the CPU frequency f and thus allows
us to apply the aforementioned theoretical result. We
simply execute a program at CPU frequency f∗ such
that D = T (f∗) where D is the deadline of the program.
However, there are two challenges in using the theorem

this way. First, in many cases there is no consensus on
how to assign a deadline to a program, e.g., scientific
computation. Second, in order to use the model T (f),
we need to know the values of the coefficients, Wcpu and
Tmem. These coefficients are oftentimes determined by
the hardware platform, program source code, and data
input. Thus, calculating these coefficients statically is
very difficult.

We address these challenges by defining a deadline as
the relative performance slowdown and by estimating
the model’s coefficients on the fly (without any off-line
profiling nor compiler support). The relative perfor-
mance slowdown δ

δ =
T (f)

T (fmax)
− 1 (2)

where fmax is the peak CPU frequency, as has been
used in previous work [26, 7]. It is widely accepted in
programs that are difficult to assign deadlines in terms
of absolute execution time. It also carries more timing
requirement information than CPU utilization and IPC
rate. Providing this user-tunable parameter δ in our
DVS algorithm allows fine-grained, tight control over
performance loss.

To estimate the coefficients, we first re-formulate
the original two-coefficient model in Equation (1) as a
single-coefficient model:

T (f)

T (fmax)
= β ·

fmax

f
+ (1 − β) (3)

with

β =
Wcpu

Wcpu + Tmem · fmax

(4)

The coefficient β is, by definition, a value between 0 and
1. It was introduced by one of the authors in [6] to quan-
tify the CPU-boundedness of a program and its perfor-
mance impact to the CPU speed change. The metric
represents the fraction of the program workload that
scales linearly with the CPU frequency. If a program
has β = 1, it means the execution time of the program
will double when the CPU speed is halved. In contrast,
memory-bound and I/O-bound programs have their β
values close to zero, indicating that their execution time
will remain the same even running at the slowest CPU
speed. The single-coefficient model instead of the orig-
inal two-coefficient model facilitates the calculation of
the coefficient values in an efficient manner.

The coefficient β is computed at run time using a
regression method on the past MIPS rates reported from
the PMU. Specifically, our DVS algorithm keeps track of
the average MIPS rate for each executed CPU frequency
and applies the least-square fitting at each interval to

3



For every I seconds, doing the following:

1. Use Equation (5) to compute β.

2. Compute the ideal frequency f∗.

f∗ =

{

fmin if β ≤ δ
fmax/(1 + δ/β) otherwise

3. Figure out fj and fj+1.

fj ≤ f∗ < fj+1

4. Compute the ratio r

r =
(1 + δ/β)/fmax − 1/fj+1

1/fj − 1/fj+1

5. Run r · I seconds at frequency fj .

6. Run (1−r)·I seconds at frequency fj+1.

7. Update mips(fj) and mips(fj+1).

Figure 1: Algorithm beta. Parameter δ is the rela-
tive performance slowdown and and parameter I is the
length of an interval in seconds.

dynamically re-compute the new β value:

β =

∑

i(
fmax

fi
− 1)(

mips(fmax)

mips(fi)
− 1)

∑

i(
fmax

fi
− 1)2

(5)

where mips(f) is the average MIPS rate for CPU fre-
quency f . Note that our mechanism assumes a constant
number of total instructions in a program, regardless of
the running CPU frequency. This assumption has been
verified through extensive experiments. In practice, the
value of β converges very quickly for the benchmarks
we tested.

The rest of the algorithm simply applies the theo-
retical result to compute the desired CPU frequency
f∗ for each interval, once the coefficient β is updated,
plus some bookkeeping on mips(f). The derivation of
f∗ comes by equating Equation (2) with Equation (3).
Figure 1 outlines the entire algorithm.

Finally, we note that Choi et al.’s recent work on DVS
algorithms [7, 8] is based on the on-line calculation of
ratios αf , one for each frequency f , that are also derived
from Equation (1). There, αf is defined as the ratio of
on-chip computation time to off-chip access times

αf = f ·
Tmem

Wcpu

(6)

Using this αf , the desired CPU frequency for the next
interval can be computed. The detailed comparison of
both works is presented in Section 5.5.

4 Theoretical Foundation

In the previous section, we claim a theoretical result for
energy-optimal DVS scheduling which extends both Yao
et al.’s work in [12] and Ishihara and Yasuura’s work in
[13]. In this section we provide evidence to support our
claim. However, due to the limit of paper length, all the
proofs are left in the appendix.

The energy-optimal DVS scheduling problem consid-
ered here is taken from [6]. That previous work only
provides a problem formulation. In this paper we pro-
vide two new theorems that characterize the energy-
optimal DVS schedule for the problem. The two theo-
rems are also closely related to some previous work such
as Miyoshi et al.’s “critical power slope” [3].

A DVS system is assumed to export n settings
{(fi, Pi)}, where Pi is the CPU power dissipation (in
watts) at CPU frequency fi. Without loss of generality,
we assume 0 < f1 < · · · < fn. We also denote the total
execution time of a program running at setting i as Ti.
Finally, to facilitate discussion, we define Ei = Pi · Ti.

The DVS scheduling problem is formulated as follows:
given a program and a deadline D (in seconds), find a
DVS schedule (t∗1, · · · , t

∗

n) such that if the program is
executed for t∗i seconds at setting i, the total energy
usage E is minimized, the deadline D is met, and the
required work is completed. Mathematically speaking,

min E =
∑

i Pi · ti (7)

subject to

∑

i ti ≤ D (8)
∑

i ti/Ti = 1 (9)

ti ≥ 0 (10)

To simplify the discussion of the main theorems, we
handle a few corner cases first. The condition D ≥
mini Ti has to be satisfied so that the problem is feasi-
ble. If the condition D ≥ maxi Ti, the problem becomes
the classical fractional Knapsack problem [27] because
Equation (8) can be removed. In this case, the energy-
optimal DVS schedule will execute the entire program
at setting i∗ where i∗ = argi min{Ei}. Similarly, for the
case of T1 = · · · = Tn, the above DVS schedule is also
energy-optimal. In the following, we will focus on cases
where T1 6= · · · 6= Tn and mini Ti < D < maxi Ti.

Theorem 1 If

T1 > T2 > · · · > Tn

4



and

0 ≥
E2 − E1

T2 − T1
≥

E3 − E2

T3 − T2
≥ · · · ≥

En − En−1

Tn − Tn−1

then

t∗i =







D−Tj+1

Tj−Tj+1
· Tj i = j

D − t∗j i = j + 1
0 otherwise

where
Tj+1 < D ≤ Tj

Theorem 1 says that if the piecewise-linear function that
connects points {(Ti, Ei)} is convex and non-increasing
on [Tn, T1], then running at a CPU frequency that fin-
ishes the execution right at the deadline is the most
energy-efficient. If the desired CPU frequency is not
directly supported, it can be emulated by the two
immediately-neighboring CPU frequencies and result in
the energy-optimal DVS schedule.

Theorem 2 If

Ti = T (fi) =
c1

f
+ c0, c1 6= 0

and
P1 − 0

f1 − 0
≤

P2 − P1

f2 − f1
≤ · · · ≤

Pn − Pn−1

fn − fn−1

then

0 ≥
E2 − E1

T2 − T1
≥

E3 − E2

T3 − T2
≥ · · · ≥

En − En−1

Tn − Tn−1

Theorem 2 says that, for any program whose execu-
tion time is an affine function of the CPU frequency,
if the DVS settings in a CPU are well-assigned, then
we can apply Theorem 1 to derive the energy-optimal
DVS schedule. Theorem 2 apparently builds a bridge in
using Theorem 1.

The DVS settings are considered well-designed if for
any setting, it has the lowest power dissipation com-
pared to the best possible combination of all other set-
tings that emulates its frequency [19]. Equivalently, the
DVS settings are well-designed if the CPU power dis-
sipation is a convex function of the CPU frequency on
[0, fmax] (in contrast to convex on [fmin, fmax]). This
is why Miyoshi et al. [3] found that in a few real-
istic CPUs, completing a task far before its deadline
and putting the CPU into sleep mode is more energy-
efficient than running the task as slow as possible to
barely make the deadline. In these realistic CPUs, the
CPU frequency f1 can be emulated by the combination
of CPU frequency 0 (i.e., the CPU in sleep mode) and
a higher frequency with a lower power dissipation.

Finally, Theorem 2 extends the work presented by
Yao et al. [12] and by Ishihara and Yasuura [13]. First,

Profiling 
Computer

Tested
Computer

Digital
Power Meter

Wall 
Power Outlet

Po
w

er
 S

tr
ip

AC Adapter

Figure 2: The experimental setup.

both works assume that c0 = 0. Second, Ishihara and
Yasuura’s work assumes a fixed relationship between f
and V in a DVS setting; namely,

f = k · (V − VT )α/V

where k, VT , α are positive constants. Unfortunately,
today’s DVS processors may not be able to support such
an assumption. This is because these processors only
provide a discrete set of CPU frequencies and voltages,
whereas the above equation requires a continuous range
of CPU frequency i to be supported for a discrete set
of voltages. Theorem 2 loosens these assumptions to
facilitate DVS algorithms on realistic processors.

5 Experiments

In this section, we describe our experimental environ-
ment in which we evaluate and compare algorithm beta
with several other DVS algorithms. We also discuss in
depth the experimental results.

5.1 Experimental Setup

In order to get the high-fidelity experimental data, we
set up our experiments using physical measurements, as
shown in Figure 2. The experimental results were col-
lected through a Yokogawa WT210 digital power meter
[28]. The power meter continuously samples the instan-
taneous wattage at every 20 µs. The computer runs the
Linux 2.4.18 kernel. All the benchmarks were compiled
by GNU compilers with optimization level -O2. All the
benchmarks were run to completion; each run took over
a minute.

The benchmarks are taken from SPEC’s CPU95 bench-
mark suites. The SPEC benchmarks [29] emphasize the
performance of the CPU and memory, but not other
computer components such as I/O (disk drives), net-
working or graphics. We chose to use SPEC benchmarks

5



f (MHz) V
1067 1.15
1333 1.25
1467 1.30
1600 1.35
1800 1.45

Table 1: The five settings on AMD’s mobile Athlon XP.

because they demonstrate a range of performance sen-
sitivity to the CPU frequency change, i.e., they have a
wide range of β values [6]. The experimental data are
collected by running these SPEC benchmarks with the
reference data input.

The hardware platform in our experiments is an HP
NX9005 notebook computer. This computer includes
a mobile AMD Athlon XP 2200+ processor, 256-MB
DDR SDRAM, 266-MHz front-side bus, a 30-GB hard
disk, and a 15-inch TFT LCD display. The mobile AMD
Athlon XP processor has been used in Sun’s Fire B100x
blade servers [30]. It has a 128-KB L1 cache and a 256-
KB L2 exclusive cache, making a total of 384-KB cache
space. The processor exports two registers that the soft-
ware can write the target frequency and voltage values
into. In our experiments, we restrict the processor to
have five settings as shown in Table 1. The transition
time from one setting to another is 100 microseconds.
During the measurements, the battery was removed and
the monitor was turned off.

Finally, when presenting the experimental results,
we associate with each application its β value. Re-
call that the metric β represents the fraction of the
program workload that is very sensitive to the CPU
speed change. That is, the higher the β of a program,
the more CPU-bound its performance. The β value for
each benchmark was derived by profiling total execution
times for all settings and then applying the least-square
fitting on Equation (3).

5.2 Implemented DVS Algorithms

To evaluate the effectiveness of our DVS algorithm beta,
we have implemented a number of other DVS algo-
rithms. The experiments by no means represent a com-
prehensive comparison among all existing approaches.
Nevertheless, we feel that the range is wide enough to
evaluate the effectiveness of our algorithm and to gain
new insights from the experimental results. The follow-
ing is a brief description of each algorithm we imple-
mented.

2step This algorithm assumes dual CPU speeds in the
processor and monitors the CPU utilization percentage

periodically. If the percentage is higher than a pre-
defined threshold, the algorithm will set the CPU to the
fast speed; if it is lower than another pre-defined thresh-
old, the algorithm will set the CPU to the low speed.
This DVS algorithm is considered the best algorithm in
Grunwald et al.’s empirical study on several interval-
based algorithms using CPU utilization [18]. In our
implementation, the two thresholds are 50% and 10%
and the two speeds are the maximum CPU speed and
the minimum CPU speed in the processor, respectively.

nqPID This algorithm was proposed by Varma et al.
[15] as a refinement of the 2step algorithm. Recogniz-
ing the similarity of the DVS scheduling and a classi-
cal control-systems problem, the authors took the equa-
tion describing a PID controller (Proportional-Integral-
Derivative) and modified it to suit the DVS scheduling
problem. This algorithm improved a lot on the control
over performance loss that the 2step algorithm lacks
of. In addition, the authors found out that the algo-
rithm’s effectiveness does not depend on careful tun-
ing of parameters, which is a nice feature given that
2step’s effectiveness is critically dependent on the choice
of application-specific threshold values [18].

freq This algorithm is similar to strategies that reclaim
the slack time between the actual processing time and
the worst-case execution time (e.g., [31, 32, 33, 34]).
Specifically, the algorithm keeps track of the amount of
remaining CPU work Wleft and the amount of remain-
ing time before the deadline Tleft. The desired CPU
frequency fnew at each interval is simply

fnew =
Wleft

Tleft

.

The algorithm assumes that the total amount of work
in CPU cycles is known a priori, which, in practice, is
often unpredictable [2] and not always a constant across
frequencies [25].

mips This algorithm is taken from [21] that represents
the DVS strategy guided by an externally specified per-
formance metric. Specifically, the new frequency fnew

at each interval is computed by

fnew = fprev ·
MIPStarget

MIPSobserved

where fprev is the frequency for the previous interval,
MIPStarget is the externally specified performance re-
quirement, and MIPSobserved is the real MIPS rate ob-
served in the previous interval. In our experiments, each
benchmark has its own MIPStarget, which is derived by
measuring the MIPS rate for the entire application and
then dividing it by (1 + δ).

6



program β 2step nqPID freq mips beta
swim 0.02 1.00/1.00 1.04/0.70 1.00/0.96 1.00/1.00 1.04/0.61

tomcatv 0.24 1.00/1.00 1.03/0.69 1.00/0.97 1.03/0.83 1.00/0.85
su2cor 0.27 0.99/0.99 1.05/0.70 1.00/0.95 1.01/0.96 1.03/0.85

compress 0.37 1.02/1.02 1.13/0.75 1.02/0.97 1.05/0.92 1.01/0.95
mgrid 0.51 1.00/1.00 1.18/0.77 1.01/0.97 1.00/1.00 1.03/0.89
vortex 0.65 1.01/1.00 1.25/0.81 1.01/0.97 1.07/0.94 1.05/0.90
turb3d 0.79 1.00/1.00 1.29/0.83 1.03/0.97 1.01/1.00 1.05/0.94

go 1.00 1.00/1.00 1.37/0.88 1.02/0.99 0.99/0.99 1.06/0.96

Table 2: The effectiveness of 5 different DVS algorithms. Each table entry is in the format of relative-time/relative-
energy with respect to the total execution time and system energy usage when running the application at the
highest setting throughout the entire execution.

5.3 Experimental Results

Table 2 presents the experimental results for the 5
interval-based DVS algorithms. It can be seen that
when a program’s performance is toward memory-
bound or I/O-bound (β close to zero), there is a great
potential in reducing a significant amount of CPU en-
ergy with negligible performance loss. In contrast, when
a program is CPU-bound, there is little opportunity in
reducing CPU power and energy within a tight perfor-
mance loss bound of 5%. Moreover, none of the algo-
rithms we tested was able to produce a DVS schedule
that has the exact performance degradation of 5%. The
actual performance loss varies from one benchmark to
another.

Among the 5 tested interval-based DVS algorithms,
algorithm beta outperforms others. In a sense, it verifies
that our mechanism for computing CPU boundedness
on the fly is of low overhead and that the algorithm
is effective in providing tight control over performance
loss due to DVS as well as exploiting the sublinear per-
formance slowdown for a significant more CPU power
and energy savings. Algorithms mips and nqPID are
arguably ranked the second. Algorithm mips has bet-
ter control over performance loss for all 8 benchmarks
we tested, whereas algorithm nqPID has more power
and energy reduction but at the cost of loose control
over performance loss. This is especially obvious for
CPU-bound benchmarks. Algorithms freq and 2step are
ranked the last.

So, what have we learned from this experiment?
First, the number of instructions is a better metric for
specifying the CPU work requirement than the num-
ber of CPU cycles. For the benchmarks we tested, we
found that the number of instructions tends to remain
constant across all settings. In contrast, the number of
CPU cycles varies significantly depending on the exe-
cuted DVS schedule. For example, the swim benchmark,
when running at the lowest setting, has only 60% of the

CPU execution cycles running at the highest setting.
Typically, algorithm freq uses the worst-case execution
cycles which in our case is the number of CPU cycles
at the highest setting. This approach exaggerates the
amount of the CPU work to be done and results in less
effective energy reduction. This explains why algorithm
mips performs better than algorithm freq.

The second point we have learned from the experi-
ment is that a large window size of past PMU reports
is better than a small window size of past PMU re-
ports. In the experiments we found that the MIPS rate
varies significantly from interval to interval, especially
for CPU-intensive applications. However, the accumu-
lated MIPS rate converges quickly, Thus, the use of the
MIPS rate in a global manner seems to be more effective
than the use of the rate in a local manner. This partially
explains the effectiveness of algorithm beta comparing to
algorithm mips. One concern for using a large window
size is that the DVS algorithm may be less responsive
for programs that exposes multiple execution phases of
various degree of CPU-boundedness. For SPEC bench-
marks, which are known to have the aforementioned
behavior, this does not seem to be a problem. More
details can be found in Section 5.4.

Finally, it is re-confirmed that CPU utilization by it-
self does not provide enough information about system
timing requirements. As a result, the control over per-
formance loss is unsatisfactory. This can be seen from
the experimental results of algorithm 2step and algo-
rithm nqPID. Algorithm 2step does not seem to perform
any DVS scheduling. This is because the CPU for SPEC
benchmarks is active almost all the time; That is, its
CPU utilization is always full. In this case, there exists
no optimal threshold values for 2step to make it more
effective. Algorithm nqPID refines algorithm 2step by
removing the threshold mechanism from the end-user.
While it is more effective than algorithm 2step in terms
of CPU power and energy reduction, the lack of enough
information about deadline makes it impossible to pro-

7



vide tight control over performance loss.

5.4 Discussion

To better address the impact of multiple-phase pro-
grams to the DVS algorithm beta, we compare it with
a profile-based, off-line DVS algorithm called hsu [6].
The algorithm hsu uses PMU-assisted off-line profiling
and source code analysis to identify the most energy-
profitable region in a program to slow down without
causing the performance loss to surpass a pre-defined
level. Off-line profiling is performed on a section-by-
section basis while the DVS scheduling decisions are
made in a global manner, competitively comparing the
different sections. This global view of the impact of
DVS on different code sections allows more effective
DVS scheduling, especially for multiple-phase programs
such as SPEC benchmarks.

Algorithm hsu also uses the relative performance
slow-down δ to specify the control over performance
loss. Thus, it allows us to compare the two algorithms
on a fair basis. In the experiments we executed the
profile-based algorithm hsu with two different training
inputs, denoted as hsu(train) and hsu(ref) respectively.
The two set of training inputs are provided along with
the SPEC benchmark codes. Table 3 shows the experi-
mental results of both algorithms for the CFP95 bench-
mark suite.

We conclude that the effectiveness of algorithm beta
is comparable to that of algorithm hsu. Both algo-
rithms achieve a significant amount of CPU power and
energy reduction with tightness of performance loss con-
trol. It is interesting to note that the two algorithms
seem to complement each other. Algorithm beta per-
forms better in CPU-bound benchmarks from mgrid
to fpppp, whereas algorithm hsu performs better in
memory-bound benchmarks from swim to hydro2d. We
are in the process of investigating the causes for this
phenomenon.

As mentioned in Section 2, the effectiveness of profile-
based DVS algorithms is highly determined by its train-
ing data input. In our experiments, we found out that
algorithm hsu chose different program regions to slow
down in 7 of the 10 benchmarks. Running the reference
data input as the training input does not necessarily
yield a better result, for example, apsi. We suspect
that the instrumented program for profiling has some-
what altered the instruction access pattern and is con-
siderably different from the original code. According to
Hsu’s dissertation [35], the SUIF2 compiler infrastruc-
ture, on which algorithm hsu was built, also has a big
impact on the experimental results.

5.5 Further Discussion

In this section, we compare and contrast our work with
Choi et al.’s work in [7, 8]. Recall that both works are
based on the same Equation (1). The difference is in the
calculation of equation coefficients. Our work calculates
β defined in Equation (4), whereas Choi et al.’s work
calculates αf defined in Equation (6).

Analytically, the two metrics are equivalent:

β =
1

1 + αf · fmax/f

However, there are several major differences in terms
of implementation. First, metric β is invariant to the
CPU speed change, whereas metric αf is defined with
respect to a particular CPU frequency f . Thus, the
number of coefficients calculated in Choi et al.’s work
is more than the number of coefficients calculated in
algorithm beta. Second, the formula in calculating αf is
more complex. This is due to the two-coefficient model
they use, in contrast to the one-coefficient model we
use. Finally, the number of PMU event counts needed
for calculating β is smaller than that for calculating αf .
Since a CPU can simultaneously count a finite number
of events, counting too many events may introduce a
larger time overhead.

We feel that our new DVS algorithm has a simpler im-
plementation than Choi et al.’s work. However, we can-
not do an empirical comparison given the current set-
ting we have. Choi et al. implemented their DVS algo-
rithms on Intel Xscale-based processors which does not
provide counting for the number of retired instructions.
On the other hand, our hardware platform, Athlon XP
processor, does not provide counting for the number of
executed instructions. In fact, this is one of the big is-
sues in using PMU to assist DVS scheduling — the CPU
events may not be compatible nor consistent across dif-
ferent hardware platforms. This is also why Choi et
al. presented two platform-dependent implementations
[7, 8] of the same DVS algorithm [7].

6 Conclusions and Future Work

In this paper we have proposed a new PMU-assisted
interval-based DVS algorithm that detects the CPU-
boundedness of a program on the fly and adjust the
CPU speed accordingly. The algorithm is no arbitrary
heuristic. It is based on an extension of the previ-
ous theoretical work for energy-optimal DVS schedul-
ing problem. The algorithm has also been proved to
be effective in comparison with a number of DVS al-
gorithms through physical measurements. That is, the
new algorithm provides fine-grained, tight control over
performance loss as well as exploits the sublinear per-

8



program β hsu(train) hsu(ref) beta
swim 0.02 1.01/0.75 1.04/0.59 1.04/0.61

tomcatv 0.24 1.03/0.70 1.06/0.60 1.00/0.85
hydro2d 0.19 1.03/0.75 1.03/0.79 1.02/0.84

su2cor 0.27 1.01/0.88 1.02/0.83 1.03/0.85
applu 0.34 1.03/0.87 1.03/0.87 1.04/0.85

apsi 0.37 1.03/0.85 1.04/0.91 1.05/0.83
mgrid 0.51 1.01/1.00 1.01/1.00 1.03/0.89
wave5 0.52 1.00/1.00 1.00/1.00 1.04/0.87

turb3d 0.79 1.04/0.95 1.04/0.95 1.05/0.94
fpppp 1.00 1.00/1.00 1.00/1.00 1.06/0.95

Table 3: The comparison of our new on-line DVS algorithm beta with an off-line DVS algorithm hsu. Each table
entry is in the format of relative-time/relative-energy with respect to the total execution time and system energy
usage when running the application at the highest setting throughout the entire execution.

formance slowdown. Finally, the algorithm is simple to
implement.

Our new DVS algorithm can be refined in various
ways. One particular direction is to use compiler hints
as additional scheduling support. While this idea is not
new (e.g., [36, 34, 37]), the type of hint that the com-
piler should provide so that the overall DVS algorithm
is effective is still a research topic for general-purpose
systems. To relieve the compiler from the difficulty of
giving exact timing information off line, we could have
the compiler to simply identify and distinguish execu-
tion phases of a program in terms of CPU-boundedness
in an approximate manner. Algorithm beta can then
be refined to compute the β value for each of these
phases in the hope to further improve its effectiveness
for memory-bound programs.

References

[1] T. Martin and D. Siewiorek. Nonideal battery and main
memory effects on cpu speed setting for low power. IEEE
Transactions on Very Large Scale Integration (VLSI) Sys-
tem, 9(1):29–34, February 2001.

[2] J. Lorch and A. Smith. Improving dynamic voltage algo-
rithms with PACE. In Proceedings of the International Con-
ference on Measurement and Modeling of Computer Systems
(SIGMETRICS), June 2001.

[3] A. Miyoshi, C. Lefurgy, E. Hensbergen, and R. Rajkumar.
Critical power slope: Understanding the runtime effects of
frequency scaling. In Proceedings of the 16th Annual ACM
International Conference on Supercomputing (ICS), June
2002.

[4] W. Kim, J. Kim, and S. Min. Preemption-aware dy-
namic voltage scaling in hard real-time systems. In Inter-
national Symposium on Low Power Electronics and Design
(ISLPED), August 2004.

[5] Andreas Weissel and F. Bellosa. Process cruise control:
Event-driven clock scaling for dynamic power management.
In Proceedings of the International Conference on Com-
pilers, Architecture and Synthesis for Embedded Systems
(CASES), August 2002.

[6] C.-H. Hsu and U. Kremer. The design, implementation, and
evaluation of a compiler algorithm for cpu energy reduction.
In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Languages Design and Implementation (PLDI),
June 2003.

[7] K. Choi, R. Soma, and M. Pedram. Fine-grained dynamic
voltage and frequency scaling for precise energy and per-
formance trade-off based on the ration of off-chip access to
on-chip computation time. In Design Automation and Test
in Europe (DATE), February 2004.

[8] K. Choi, R. Soma, and M. Pedram. Dynamic voltage and fre-
quency scaling based on workload decomposition. In Inter-
national Symposium on Low Power Electronics and Design
(ISLPED), August 2004.

[9] D. Marculescu. On the use of microarchitecture-driven dy-
namic voltage scaling. In Workshop on Complexity-Effective
Design, June 2000.

[10] P. Stanley-Marbell, M. Hsiao, and U. Kremer. A hard-
ware architecture for dynamic performance and energy adap-
tation. In Workshop on Power-Aware Computer Systems
(PACS’02), 2002.

[11] H. Li, C.-Y. Cher, T. Vijaykumar, and K. Roy. VSV: L2-
miss-driven variable supply-voltage scaling for low power. In
The 36th Annual ACM/IEEE International Symposium on
Microarchitecture, December 2003.

[12] F. Yao, A. Demers, and S. Shenker. A scheduling model
for reduced cpu energy. In IEEE Annual Symposium on
Foundations of Computer Science, October 1995.

[13] T. Ishihara and H. Yasuura. Voltage scheduling problem
for dynamically variable voltage processors. In Interna-
tional Symposium on Low Power Electronics and Design
(ISLPED), August 1998.

[14] A. Sinha and A. Chandrakasan. Dynamic voltage scheduling
using adaptive filtering of workload traces. In Proceedings of
the 14th International Conference on VLSI Design, January
2001.

[15] A. Varma, B. Ganesh, M. Sen, S. Choudhary, L. Srinivasan,
and B. Jacob. A control-theoretic approach to dynamic volt-
age scaling. In Proceedings of the International Conference
on Compilers, Architectures, and Synthesis for Embedded
Systems (CASES), October 2003.

[16] K.-Y. Mun, D.-W. Kim, D.-H. Kim, and C.-I. Park. dDVS:
An efficient dynamic voltage scaling algorithm based on the

9



differential of CPU utilization. In The 9th Asia-Pacific Com-
puter Systems Architecture Conference (ACSAC), Septem-
ber 2004.

[17] T. Pering, T. Burd, and R. Brodersen. The simulation and
evaluation of dynamic voltage scaling algorithms. In Pro-
ceedings of 1998 International Symposium on Low Power
Electronics and Design (ISLPED), August 1998.

[18] D. Grunwald, P. Levis, K. Farkas, C. Morrey III, and
M. Neufeld. Policies for dynamic clock scheduling. In Pro-
ceedings of the 4th Symposium on Operating System Design
and Implementation (OSDI), October 2000.

[19] J. Lorch and A. Smith. Operating system modifications for
task-based speed and voltage scheduling. In The First Inter-
national Conference on Mobile Systems, Applications, and
Services (MobiSys), May 2003.

[20] S. Ghiasi, J. Casmira, and D. Grunwald. Using IPC variation
in workloads with externally specified rates to reduce power
consumption. In Workshop on Complexity Effective Design,
June 2000.

[21] B. Childers, H. Tang, and R. Melhem. Adapting processor
supply voltage to instruction-level parallelism. In Kool Chips
Workshop, December 2000.

[22] F. Xie, M. Martonosi, and S. Malik. Compile time dynamic
voltage scaling settings: Opportunities and limits. In Pro-
ceedings of the ACM SIGPLAN Conference on Program-
ming Languages Design and Implementation (PLDI), June
2003.

[23] C. Isci and M. Martonosi. Runtime power monitoring in
high-end processors: Methodology and empirical data. In
The 36th Annual ACM/IEEE International Symposium on
Microarchitecture, December 2003.

[24] C. Gniady, Y. Hu, and Y.-H. Lu. Program counter based
techniques for dynamic power management. In Interna-
tional Symposium on High-Performance Computer Archi-
tecture (HPCA), February 2004.

[25] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg.
FAST: Frequency-aware static timing analysis. In The 24th
IEEE International Real-Time Systems Symposium (RTSS),
December 2003.

[26] C.-H. Hsu, U. Kremer, and M. Hsiao. Compiler-directed
dynamic frequency and voltage scheduling. In Workshop on
Power-Aware Computer Systems (PACS), November 2000.

[27] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorithms. MIT Press, Cambridge, MA, 1990.

[28] N. Hirofumi, N. Naoya, and T. Katsuya. WT210/WT230
digital power meters. Yokogawa Technical Report 35, 2003.

[29] The Standard Performance Evaluation Corporation.
http://www.spec.org.

[30] Sun Fire B100x Blade Server.
http://www.sun.com/servers/entry/b100x/.

[31] S. Lee and T. Sakurai. Run-time voltage hopping for low-
power real-time systems. In Proceedings of the 37th Confer-
ence on Design Automation (DAC), June 2000.

[32] D. Mossé, H. Aydin, B. Childers, and R. Melhem. Compiler-
assisted dynamic power-aware scheduling for real-time appli-
cations. In Workshop on Compiler and Operating Systems
for Low Power (COLP), October 2000.

[33] N. AbouGhazaleh, D. Mossé, B. Childers, and R. Mel-
hem. Toward the placement of power management points
in real time applications. In Proceedings of the Workshop on
Compilers and Operating Systems for Low Power (COLP),
September 2001.

[34] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt,
A. Veidenbaum, and A. Nicolau. Profile-based dynamic volt-
age scheduling using program checkpoints in the COPPER
framework. In Proceedings of Design, Automation and Test
in Europe Conference (DATE), March 2002.

[35] C.-H. Hsu. Compiler-Directed Dynamic Voltage and Fre-
quency Scaling for CPU Power and Energy Reduction. PhD
thesis, Department of Computer Science, Rutgers University,
New Brunswick, New Jersey, June 2003.

[36] Cooperative voltage scaling (CVS) between OS and appli-
cationsfor low-power real-time systems. In IEEE Custom
Integrated Circuits Conference (CICC), May 2001.

[37] N. AbouGhazaleh, D. Mossé, B. Childers, R. Melhem, and
M. Craven. Collaborative operating system and compiler
power management for real-time applications. May 2003.

Appendix

Theorem 3 If T1 > T2 > · · · > Tn and 0 ≥ E2−E1

T2−T1
≥ E3−E2

T3−T2
≥

· · · ≥
En−En−1

Tn−Tn−1
, then

t∗i =







D−Tj+1

Tj−Tj+1
· Tj i = j

D − t∗
j

i = j + 1

0 otherwise

where
Tj+1 < D ≤ Tj

Proof (Sketch) To facilitate the proof, we define ri = ti/Ti and
introduce a new function Emin(d) as follows.

Emin(d) = min{
∑

i

ri · Ei :
∑

i

ri · Ti = d,
∑

i

ri = 1, ri ≥ 0}

If sequence {
Ei+1−Ei

Ti+1−Ti
} is non-increasing, then function Emin(d)

is equivalent to the piecewise-linear function that connects points
{(Ti, Ei)}. Since the slopes of chords in this piecewise-linear func-
tion are all non-positive, Emin(d) is non-increasing. Thus, we seek
for the solution {ri} of Emin(D) as Emin(D) = min{Emin(d) :
d ≤ D}. For Tj+1 < D ≤ Tj , Emin(D) is the function value at
D in the chord connecting points (Tj , Ej) and (Tj+1, Ej+1). The
proof is completed by solving the linear system of t∗

j
+ t∗

j+1
= D

and t∗
j
/Tj + t∗

j+1
/Tj+1 = 1.

Theorem 4 If Ti = T (fi) = c1
f

+ c0, c1 6= 0 and P1−0

f1−0
≤

P2−P1

f2−f1
≤ P3−P2

f3−f2
≤ · · · ≤

Pn−Pn−1

fn−fn−1
, then

0 ≥
E2 − E1

T2 − T1

≥
E3 − E2

T3 − T2

≥ · · · ≥
En − En−1

Tn − Tn−1

Proof

Ei − Ei−1

Ti − Ti−1

−
Ei+1 − Ei

Ti+1 − Ti

= fi ·

(

Pi+1 − Pi

fi+1 − fi

−
Pi − Pi−1

fi − fi−1

)

+fi ·
c0

c1
·

(

Pi+1 − Pi

fi+1 − fi

· fi+1 −
Pi − Pi−1

fi − fi−1

· fi−1

)

≥ 0

and

Ei+1 − Ei

Ti+1 − Ti

=
fifi+1

fi − fi+1

·

[(

Pi+1

fi+1

−
Pi

fi

)

+
c0

c1
(Pi+1 − Pi)

]

≤ 0

10




