
System-Level Fault-Tolerance in Large-Scale Parallel Machines with Buffered
Coscheduling

Fabrizio Petrini, Kei Davis and José Carlos Sancho

Performance and Architecture Laboratory (PAL)
Computer and Computational Sciences (CCS) Division

Los Alamos National Laboratory, NM 87545, USA
{fabrizio, kei, jcsancho}@lanl.gov

Abstract

As the number of processors for multi-teraflop systems
grows to tens of thousands, with proposed petaflops systems
likely to contain hundreds of thousands of processors, the
assumption of fully reliable hardware has been abandoned.
Although the mean time between failures for the individual
components can be very high, the large total component
count will inevitably lead to frequent failures. It is therefore
of paramount importance to develop new software solutions
to deal with the unavoidable reality of hardware faults. In
this paper we will first describe the nature of the failures of
current large-scale machines, and extrapolate these results
to future machines. Based on this preliminary analysis we
will present a new technology that we are currently devel-
oping, buffered coscheduling, which seeks to implement
fault tolerance at the operating system level. Major design
goals include dynamic reallocation of resources to allow
continuing execution in the presence of hardware failures,
very high scalability, high efficiency (low overhead), and
transparency—requiring no changes to user applications.
Preliminary results show that this is attainable with current
hardware.

Keywords: Failure characterization, fault-tolerance,
checkpointing, large-scale parallel computers, operating
systems, communication protocols.

1 Introduction

The insatiable demand for ever more computational
capability—computational power available to a single
application—for scientific computing has driven the cre-
ation of ever larger parallel machines, these now achiev-
ing tens of teraflops (Tflops). To achieve such performance

these machines comprise thousands of computing nodes1

with large memories and storage capacities on the order of
tens of terabytes (Tbytes). As an example, the ASCI Q ma-
chine [4] at Los Alamos National Laboratory (LANL) has
8192 processors and delivers 20 Tflops.

Several projects have been recently launched by the
U.S. Department of Energy (DOE), in concert with com-
puter manufacturers, to develop much larger machines to
meet the requirements of larger and higher-fidelity simu-
lations. For example, the BlueGene/L [2] supercomputer
is a jointly funded research partnership between IBM and
the Lawrence Livermore National Laboratory (LLNL) de-
signed to deliver 360 Tflops peak performance. On the
horizon are massively parallel machines intended to deliver
petaflop (Pflop) or multi-Pflop performance, for example
the machines of the DARPA HPCS projects [7].

It is clear that future increases in performance in excess
of those resulting from improvements in single-processor
performance will be achieved through corresponding in-
creases in size, that is, component count. For example,
the BlueGene/L supercomputer will have 65,536 nodes con-
taining 608,256 DRAM memory modules. The large total
component count of these massively parallel systems will
make any assumption of complete reliability entirely unre-
alistic: though the mean time between failure (MTBF) for
the individual components (e.g., processors, disks, memo-
ries, power supplies, and networks) and the physical con-
nections between them may be very high, the large count
of the components in the system will inevitably lead to fre-
quent individual failures.

Unfortunately the current state of practice for fault tol-
erance in such systems is such that the failure of a single
component usually causes a significant fraction of the sys-
tem to fail, and any application using that part of the system
to fail. There are two reasons for this: (1) the components

1See www.top500.org.

1

http://www.c3.lanl.gov/
http://www.ccs.lanl.gov/
http://www.lanl.gov/
mailto:fabrizio@lanl.gov
mailto:kei@lanl.gov
mailto:jcsancho@lanl.gov

of the system are strongly coupled, for example, the fail-
ure of a fan is likely to lead to other catastrophic failures
due to overheating; (2) application state is not stored re-
dundantly, and loss of any state is catastrophic. With the
MTBF for today’s 10-20 Tflops machines on the order of
10-40 hours [15] and application running times on the order
of days or weeks, multiple failures can be expected during
a single execution of a single application. The implication
of all of this is that the usability of proposed, much larger
multi-Pflops systems is highly questionable.

Effective mechanisms for system-wide fault tolerance
will become of increasingly critical importance for mak-
ing the next generations of extreme-scale supercomputers
useful and productive. Taking as a premise that massive
hardware redundancy is economically unfeasible, and, we
posit, unnecessary, and similarly that application software
redundancy is unnecessarily wasteful of resources, the re-
sponsibility falls entirely to the system software.

The system software must be resilient to failures, provid-
ing dynamic reallocation of resources to allow continuing
execution of applications in the presence of hardware fail-
ures. Other considerations include cost of development (i.e.
not attempting to write an operating system from scratch),
cost of maintenance, transparency to the application pro-
grammer (and so directly supporting legacy codes), very
high scalability, and high efficiency—low overhead in terms
of both resource utilization and degradation of system per-
formance. Our contribution is the demonstration that these
goals are attainable with current hardware and without re-
quiring user intervention. We anticipate that this will be
feasible to implement at the system level with a very low
overhead. Two recent publications provide the basis for
this claim. One [19] demonstrates the feasibility of im-
plementing incremental checkpointing and rollback mecha-
nisms within the limitations imposed by current hardware.
The other [10] showcases the new proposed communica-
tion technique, Buffered CoScheduling (BCS), that simpli-
fies the production-level MPI implementations.

The rest of this paper is organized as follows. In Sec-
tion 2 we describe the nature of the failures of current
large-scale machines. Section 3 summarizes the current
approaches to ameliorating or avoiding failures in clusters.
Section 4 describes our proposed solution to provide fault-
tolerant capabilities to large-scale machines. Section 5 pro-
vides some concluding remarks.

2 Failure Characterization

Improvements in design, manufacturing techniques and
quality control, and testing of computer components have
made for a historical trend of increased reliability concomi-
tantly with increased performance and capacity. Compo-
nents of commodity computers, such as processors, DRAM

modules, large capacity disks, power supplies, and fans
have an operational lifetime measured in years. Perhaps the
extreme example of increased reliability (and capacity) are
today’s processors: the MTBF for a high-quality unit is on
the order of 1,000,000 hours (110 years).

Regardless of nominal MTBF, typically there is a phase
in component lifetime where failure rates can be higher.
Generally, the failure rate model for components follows a
bathtub curveas shown in Figure 1. As can be shown, there
are three different phases: component burn in, normal ag-
ing, and late failure. Failures are frequent during the burn in
and the late failure phases due to defects in the components,
and component aging, respectively.

Elapsed Time

F
ai

lu
re

R
at

e

Late FailureNormal AgingBurn in

Figure 1. Component failure model.

For the sake discussion the MTBF of individual compo-
nents is defined as:MTBF = 1/λ, where the parameter
λ is called the failure rate of the component.2 In a system
where the failure of a single component results in the failure
of the entire system the MTBF of the system is given by:

MTBF = 1∑i=N

i=1
λi

Figure 2 shows the expected system MTBF obtained
from this model for system for three different component
reliability levels: MTBFs of104, 105, and106 hours. As
can be seen, when increasing the number of components
in the system the MTBF of the entire system dramatically
decreases. For projected Pflop systems the MTBF is only
a few hours even whenall components are of very high
reliability (MTBF 106 hours). In particular, for a system
with 100,000 nodes the MTBF would be 10 hours. The
BlueGene/L system with 65,536 nodes is expected to have
an MTBF of less than 24 hours. In reality these numbers
are optimistic for several reasons: MTBF numbers for indi-
vidual components assume ideal environmental conditions,
components will not generally have uniformly high MTBFs,

2This assumes that the lifetime of components is exponentially dis-
tributed.

2

and failure of some components can damage others, reduc-
ing their MTBFs.

1000 10000 100000

System Size (number of nodes)

0

20

40

60

80

100

120

140

160

M
T

B
F

(h
ou

rs
)

10,000
100,000
1,000,000

TeraFLOPS

PetaFLOPS

Figure 2. System MTBF as a function of sys-
tem size and component MTBF.

Factors contributing to failures in a computer system can
be roughly divided into three main categories (1)hardware
failures, on processing nodes or in the network, for exam-
ple, failures in the CPU, memory modules, PCI bus, and
interconnection network; (2)software errors, comprising
failures in the cluster file system, compilers, libraries, op-
erating system, MPI, and user code; and (3)other failures,
such as human (operator) errors, environmental (cooling,
power), soft errors, and miscellaneous undetermined errors.

Studies of the distribution of failures in current systems,
such as the ASCI Blue Mountain [3] (3072 processors)
and CPLANT [6], show that hardware failures predominate.
Figure 3 shows the distribution of the factors contributing to
system downtime for the ASCI Blue Mountain. Hardware
failures account for80.5 percent of the incidents resulting in
downtime, whereas software failures and other causes rep-
resent only 4.9 and 15.1 percent, respectively. The hard-
ware components failing most frequently are the memory
modules, accounting for 37.8 percent, and the node boards
and power supplies, at 14.5 and 11.7 percent, respectively.
A similar distribution of failures has been reported for the
CPLANT [8]. Figures for ASCI Q are qualitatively similar.

The profile of failure modes for supercomputers is con-
sistent and distinct from other large computing systems. For
example, in Internet services infrastructure, operator and
software errors are the major contributor to system down-
time [16]. We claim that not only will hardware failures be
the major cause of failure in the next generation of super-
computers, but their contribution (as a percentage of all fail-
ures) will likely be greater, making effective mechanisms

for fault tolerance yet more important.

Hardware Others Software

Factors Contributing to Failure

0

10

20

30

40

50

60

70

80

90

100

D
is

tr
ib

ut
io

n
of

F
ai

lu
re

(%
) Memory modules

Other hardware
Node board
Power supplpy

Factors of Hardware Failure

Figure 3. Failure distribution for the ASCI Blue
Mountain during 2003.

3 Dealing with Faults

Fault tolerance has become a central issue in the procure-
ment of large-scale parallel machines. In fact, it is perceived
that machines with tens of thousands of processors will not
be able to effectively devote all of their processing power to
large user applications.

Two commonly used measures of the overall productiv-
ity of large-scale parallel platforms arecapability andca-
pacity. The first measure, capability, refers to the maximum
processing power that can be brought to bear on any one
job. The second, capacity, represents the total processing
power (possibly by more than one machine) available for
running (multiple) applications. A given amount of capa-
bility implies at least as much capacity, but the converse
is not generally true: to achieve full capacity may require
running multiple jobs simultaneously. Today the ASCI plat-
forms of highest capability are LLNL’s White at 12.3 Tflops
and LANL’s Q at 20 Tflops. The next planned acquisitions
are Sandia National Laboratory’s Red Storm, projected to
deliver 40 Tflops, and LLNL’s Purple C at 100Tflops.

A recent report from the JASONs, a committee of distin-
guished scientists chartered by the Department of Defense
(DoD) to advise the agencies of the US government on sci-
entific issues, raises the sensitive question of whether future
ASCI machines can be used as capability engines. For that
to be possible major advances in fault tolerance are needed.
Scaling to Pflop performance using present machine archi-
tectures implies that a very large number of processors, on

3

the order of 100,000, might be needed. Such large num-
bers raise questions of both scalability of application perfor-
mance and of machine reliability. So, while there is a per-
ceived need for Pflop capability within a decade, it appears
that there is no clear path to Pflop software and hardware
architecture. To the forward looking it is painfully obvious
that research in these areas, or lack thereof, will predicate
success or failure.

Notwithstanding the complexity of these problems, the
ASCI program has managed to achieve a degree of fault
tolerance through a set post-hoc measures.

User-Initiated Checkpointing. The typical approach to
guaranteeing an acceptable level of fault tolerance is for the
programmer to save the relevant state (data) of the appli-
cation at regular intervals. This approach is rather simple,
it only requires a parallel file system, but has several dis-
advantages. First of all, it requires effort and care by the
programmer who must know the structure and properties of
the parallel application and so opportunistically checkpoint
the state during the execution of the program. This infor-
mation is specific to each program and the transformation
cannot be applied automatically.

Full checkpoints are in general very inefficient. They
block the entire application for the potentially long time that
is needed to save to nonvolatile storage the important part
of the memory image of each process, which can amount
to several GB. Also, full checkpoints stress the I/O subsys-
tem in a bursty way, because the information is sent syn-
chronously to storage. It is worth noting that the I/O gen-
erated by checkpointing, calleddefensive I/O, accounts for
almost 80% of all I/O on ASCI class machines, and there-
fore influences the design of the machine by elevating the
relative importance (size, speed, cost) of the I/O subsystem.

Finally, user-initiated checkpoints tend to exhibit coarse
granularity, occurring every few hours. Thus, in the pres-
ence of a fault, the rollback can loose hours of useful work.
With larger machines and decreased MTBF, to be effective
checkpointing would need to occur more frequently; it is
not hard to see that this could degenerate to an application
spending all of its time just checkpointing.

Segmentation of the Machine. A procrustean approach
to bounding the impact of faults is to segment a large-scale
machine into independent subsets that are used by distinct
applications. Obviously capability is correspondingly di-
vided.

Removal of fault-prone components. Another approach
is to eliminate components that are not absolutely neces-
sary. Cluster management software utilizing a control net-
work eliminates the need for floppy or optical drives on
every node. More recent has been the elimination of hard

disks [12, 11]. However, lack of local non-volatile storage
makes checkpointing yet more expensive. Also, one of the
main culprits, DRAM, cannot be eliminated, and the ab-
sence of disks means that either ordinary caching to disk
becomes more expensive or more DRAM must be present.

4 Proposed Solution

Our proposed solution is based on an automatic, fre-
quent, user-transparent, and coordinated checkpoint and
rollback-recovery mechanism. In essence, compute nodes
are coordinated globally in order to checkpoint the compu-
tation state of the parallel program. In case of failure the
non-functional portion of the machine is identified, a real-
location of resources is made, the compute nodes roll back
to the most recently saved state, and the computation is con-
tinued.

A new and key aspect of this approach is that by enforc-
ing global coordinationthe potentially undesirabledomino
effect[9], wherein the consistent recovery state may be very
far from the current computation state, may be avoided.

Automatic and user-transparentcheckpointing mech-
anisms are increasing in importance in large-scale par-
allel computing because the problems with user defined
and managed checkpointing techniques only become worse
with increasing system size. These problems are strongly
interrelated but may be roughly divided into the categories
of complexity, granularity, resource cost, programmer cost,
and correctness.

Complexity. The complexity of the checkpoint state of a
system consisting of thousands of processors is huge be-
cause of the large count of the computational states dis-
tributed between all the processors in the system; the com-
plexity of the communication state can be exponential in
the system size when processors are communicating asyn-
chronously with one another.

Granularity. User-defined mechanisms are by practi-
cal necessity opportunistic—checkpointing is performed at
program points where the state is most easily codified by the
programmer; for adaptive codes, for example (e.g. AMR),
these may be few and far between on a time scale, resulting
in very coarse granularity.

Resource cost. User-defined mechanisms typically
record states in their entirety at every step; user-defined
incremental checkpointing is usually impractical.

Correctness. An automatic checkpointing mechanism, if
correct, will be correct for all applications. User-defined
mechanisms are error-prone, difficult to debug, and must be

4

crafted for every application and potentially tuned for every
architecture.

We claim that highly scalable, highly efficient, transpar-
ent, and correct fault tolerance may be obtained using two
mechanisms:

• Buffered CoScheduling.that enforces a sufficient de-
gree of determinism on communication to make the
design of efficient, scalable checkpointing algorithms
tractable; and,

• Incremental checkpointing. that exploits the deter-
minism imposed by Buffered CoScheduling.

4.1 Buffered CoScheduling

Buffered CoScheduling MPI (BCS-MPI) [10] is a new
approach to the design of the communication layer for large
scale parallel computers. The innovative contribution of
BCS-MPI is that it imposes a specific degree of determinism
on the scheduling of the communication in parallel applica-
tions.

BCS-MPI orchestrates all communication activities at
fixed intervals (timeslices) of a few hundreds of microsec-
onds. At each interval communication is strictly scheduled:
only the messages that can be delivered in a given inter-
val and have been globally scheduled are injected to the
network. Messages that require more than one interval are
chunked in segments and scheduled over multiple intervals.
The important aspect of this approach is that at the end of
each interval the network is empty of messages. This guar-
antees that at certain known times during program execu-
tion there are no messages in transit; it is in this sense that
determinism is imposed.

From the point of view of a checkpointing and rollback
recovery mechanism this vastly simplifies the network state:
the network is empty, all pending (portions of) messages are
known, the remaining state is the set of memory images of
the processes of the application, and the checkpointed data
itself.

Figure 4 outlines the steps taken during a timeslice to
perform scheduling of global communication.

There are two main phases:

1. Global message scheduling phase.The global com-
munication scheduling for the next timeslice based on
all the communication requests (message descriptors)
generated by each application process and posted to
the network interface card (NIC) during the previous
timeslice. The scheduling is performed in twomi-
crophases: a descriptor-exchange microphase wherein
a partial exchange of information between remote
NICs is performed, and a message scheduling mi-
crophase wherein point-to-point and collective opera-

Global
Message

Scheduling
Phase

Message
Transmission

Phase

NIC

Time slice i

Descriptor
Exchange

MicroPhase
(DEM)

Message
Scheduling
MicroPhase

(MSM)

Point-to-point
MicroPhase

(PM)

Broadcast
and Barrier
MicroPhase

(BBM)

Reduce
MicroPhase

(RM)

Figure 4. Global synchronization protocol of
the BCS-MPI mechanism.

tions are scheduled using information obtained in the
previous microphase.

2. Message transmission phase.The point-to-point and
collective operation scheduled in the previous phase
are actually performed. At the end of this phase all
transmissions have been completed; no messages are
in transit in the network.

The implementation of this mechanism is based on a set
of communication primitives (BCS core) which are tightly
coupled with the primitives provided at hardware level by
the network. For example, the Quadrics network provides
these primitives at the hardware level [17]. The hardware
characteristics are such that these primitives, and BCS core,
have very high scalability.

Figure 5 shows the library hierarchy of BCS-MPI. The
BCS-MPI runtime system is implemented in terms of the
BCS API, which in turn uses the BCS core primitives. The
BCS API simply maps MPI calls to BCS calls. This ap-
proach enormously simplifies the design and maintainabil-
ity of BCS-MPI.

The performance and feasibility of this mechanism has
been evaluated and validated on a preliminary prototype im-
plemented at user (i.e. not OS) level with most of the code
running on the NICs. It is expected that implementation
at the system level, e.g. by a Linux kernel module, will be
faster.

Despite the constrained communication of BCS-MPI,
preliminary results reported for synthetic benchmarks
shows that the loss of performance of the application is less
than 7.5 percent with a computation granularity of 10ms on
62 processors. Moreover, the slowdown significantly de-
creases when the computation granularity is increased be-
cause the delay introduced in communication is more than
made up by increased time for computation.

Evaluation of the scalability of this mechanism has
shown that the slowdown is almost unchanged by the num-

5

BCS API

BCS-MPI

BCS Core

Quadrics Network

qsnetlib

MPI User Applications

Figure 5. Library hierarchy of the BCS-MPI
mechanism.

ber of processors in the system. The importance of this re-
sult is that it provides convincing evidence that BCS-MPI
will exhibit very high scalability.

Evaluation of relative performance for real scientific
applications shows that for some applications, such as
Sage [14] and Sweep3D [21], the performance penalty is
negligible, though for some NAS parallel benchmarks [5]
the performance penalty may be as high as15 percent.
Nonetheless these results are very encouraging because
Sage and Sweep3D are representative of a large class of
ASCI production codes at LANL.

4.2 Incremental Checkpointing

The primary potential problem of frequent, automatic,
and user-transparent checkpointing and rollback recovery is
the quantity of generated checkpoint data. Frequent check-
pointing of the large memory footprints of scientific ap-
plications can quickly saturate available bandwidth and fill
nonvolatile storage.

Incremental checkpointing [18] is a well-known opti-
mization to reduce checkpoint data. The optimization is
achieved by only saving that part of the memory footprint
that has changed since the previous checkpoint. Recent
work [19] has shown that frequent, automatic, and user-
transparent incremental checkpointing and rollback recov-
ery mechanisms are achievable within the limitations of cur-
rent hardware. That work evaluates the bandwidth, thein-
cremental bandwidth(IB), required to save the changes to
the memory, at the granularity of the operating system page,
during the course of program execution. A major contri-
bution of this work is the demonstration that incremental
checkpointing may be realized without special hardware
and without changes to application source code.

Preliminary experimental results have shown that the IB
is sensitive to the checkpoint interval. The encouraging re-
sult is that larger checkpoint intervals substantially decrease

the IB requirement. To illustrate this Figure 6 shows the av-
erage and maximum IB reported for Sage using a memory
footprint size of 1000MB with checkpoint intervals between
1s and 20s. The explanation for these results is that scien-
tific applications tend to frequently reuse a small subset of
pages of the memory footprint, hence longer checkpoint in-
tervals result in a reduction in IB. Even for short check-
pointing intervals the average IB reported is 78.8MB/s,
which is a small fraction of the bandwidth of the intercon-
nection network (900MB/s) [1], PCI-X busses (1GB/s) and
hard disks (320MB/s) [20].

0

50

100

150

200

250

300

350

400

0 5 10 15 20
 I

B
 (

M
B

/s
)

 Timeslice (s)

Average
Maximum

Figure 6. Maximum and minimum IB required
for checkpointing Sage-1000MB.

Table 1. Bandwidth Requirements

Application Maximum Average
(MB/s) (MB/s)

Sage-1000MB 274.9 78.8
Sage-500MB 186.9 49.9
Sage-100MB 42.6 15
Sage-50MB 24.9 9.6
Sweep3D 79.1 49.5

SP 32.6 32.6
LU 12.5 12.5
BT 72.7 68.6
FT 101 92.1

Similar results were achieved for other applications and
memory footprint sizes, even with a relatively frequent
checkpoint interval of 1s, as shown in Table 1 [19]. More-
over, that work shows that incremental checkpointing is
scalable in terms of bandwidth requirements. Experiments
performed for weak scaling, wherein the problem size
grows proportionally with the number of processors, shows
that the bandwidth requirements are almost invariant with
respect to processor count; for large processor count the

6

bandwidth requirements are slightly lower.

Another important issue affecting scalability is the ef-
fect of increasing the memory footprint of a given appli-
cation. Experimental results showed that the IB increases
sublinearly with the memory footprint size. This result is
illustrated in Table 1 for Sage. For example, the average
IB obtained for Sage-500MB is 49.9 MB/s while that for
Sage-1000MB is only 78.8MB/s. Note that employing a
full checkpointing technique would result in bandwidth re-
quirements increasing linearly with memory footprint size,
so that not only does incremental checkpointing require less
bandwidth and storage than full checkpointing, it is also
more scalable.

Finally, it is worth pointing out that checkpointing tech-
niques will become more efficient in the future because the
speeds of networks, I/O busses, and storage devices are in-
creasing at greater rates than main memory [13].

5 Conclusions

In this paper we outlined a new software solution
for fault tolerance that will allow the next generation of
extreme-scale parallel computers to be used as full-capacity
capability machines. Our solution is based on recent work
that provides strong evidence that a frequent, automatic,
transparent, and incremental checkpointing and rollback re-
covery technique is realizable with current hardware.

First, experimental results indicated that the implemen-
tation of frequent, automatic, user-transparent incremental
checkpointing is a viable technique within the current tech-
nology without requiring the support of specialized hard-
ware and without changing the structure of the application
source code. They also provide enough robustness to gen-
eralize the results to future large scale parallel computers
because of the technological trends of networks and stor-
age devices and the scalability properties of the incremental
checkpoint technique.

Finally, BCS provides a solid infrastructure on which
to implement scalable checkpointing mechanisms. BCS
greatly simplifies the complexity of the communication
state of parallel applications providing a scheduled, deter-
ministic communication behavior. Indeed, the prototype
implementation of this system software support proofs that
those advances can be achieved with a negligible perfor-
mance penalty.

The fault tolerant software solution consisting of incre-
mental checkpointing and BCS can be implemented at sys-
tem level with minimal intrusiveness (low overhead) and
complete transparency.

Acknowledgments

This work was supported in part by the U.S. Department
of Energy through the project LDRD-ER 2001034ER “Re-
source Utilization and Parallel Program Development with
Buffered Coscheduling” and Los Alamos National Labora-
tory contract W-7405-ENG-36.

References

[1] D. Addison, J. Beecroft, D. Hewson, M. McLaren, and
F. Petrini. Quadrics QsNet II: A network for Super-
computing Applications. InProceedings of the Hot
Chips 14, Stanford University, California, August 18–
20, 2003. Available fromhttp://www.c3.lanl.
gov/~fabrizio/talks/hot03.ppt.

[2] N. R. Adiga and et al. An Overview of the BlueGene/L
Supercomputer. InProceedings of the Supercomput-
ing 2002, also IBM research report RC22570 (W0209-
033), Baltimore, Maryland, November 16–22, 2002.
Available fromhttp://sc-2002.org/paperpdfs/
pap.pap207.pdf.

[3] ASCI Blue Mountain. Available fromhttp://www.
lanl.gov/asci/bluemtn.

[4] ASCI Q machine. Available fromhttp://www.
lanl.gov/asci/.

[5] D. Bailey, T. Harris, W. Saphir, R. van der Wijn-
gaart, A. Woo, and M. Yarrow. The NAS Parallel
Benchmarks 2.0. NAS 95-020, NASA Ames Re-
search Center, Moffett Field, California, December
1995. Available from http://www.nas.nasa.
gov/Research/Reports/Techreports/1995/
nas-95-020-abstract.html.

[6] CPLANT. Available fromhttp://www.cs.sandia.
gov/cplant/.

[7] High Productivity Computing Systems (HPCS)
initiative in DARPA. . Available fromhttp://http:
//www.darpa.mil/ipto/programs/hpcs/index.
html.

[8] D. Doerfler. Architectural considerations in delivering
a balanced linux cluster. InProceedings from the Con-
ference on High Speed Computing, Gleneden Beach,
Oregon, April 22–25, 2002. Available fromhttp://
www.ccs.lanl.gov/salishan02/doerfler.pdf.

[9] E. N. Elnozahy, L. Alvisi, D. B. Johnson, and
Y. M. Wang. A Survey of Rollback-Recovery Pro-
tocols in Message-Passing Systems.ACM Comput-
ing Surveys, 34(3):375–408, September 2002. Avail-

7

http://www.c3.lanl.gov/~fabrizio/talks/hot03.ppt
http://www.c3.lanl.gov/~fabrizio/talks/hot03.ppt
http://sc-2002.org/paperpdfs/pap.pap207.pdf
http://sc-2002.org/paperpdfs/pap.pap207.pdf
http://www.lanl.gov/asci/bluemtn
http://www.lanl.gov/asci/bluemtn
http://www.lanl.gov/asci/
http://www.lanl.gov/asci/
http://www.nas.nasa.gov/Research/Reports/Techreports/1995/nas-95-020-abstract.html
http://www.nas.nasa.gov/Research/Reports/Techreports/1995/nas-95-020-abstract.html
http://www.nas.nasa.gov/Research/Reports/Techreports/1995/nas-95-020-abstract.html
http://www.cs.sandia.gov/cplant/
http://www.cs.sandia.gov/cplant/
http://http://www.darpa.mil/ipto/programs/hpcs/index.html
http://http://www.darpa.mil/ipto/programs/hpcs/index.html
http://http://www.darpa.mil/ipto/programs/hpcs/index.html
http://www.ccs.lanl.gov/salishan02/doerfler.pdf
http://www.ccs.lanl.gov/salishan02/doerfler.pdf

able fromftp://ftp.cs.cmu.edu/user/mootaz/
papers/S.ps.

[10] J. Ferńandez, E. Frachtenberg, and F. Petrini. BCS
MPI: A New Approach in the System Software De-
sign for Large-Scale Parallel Computers. InProceed-
ings of SC2003, Phoenix, Arizona, November 10–16,
2003. Available fromhttp://www.c3.lanl.gov/
~fabrizio/papers/sc03_bcs.pdf.

[11] Manish Gupta. Challenges in developing scalable
scalable software for bluegene/l. InScaling to New
Heights Workshop, Pittsburgh, PA, May 2002.

[12] Erik Hendriks. BProc: The Beowulf distributed
process space. InProceedings of the16th Annual
ACM International Conference on Supercomputing
(ICS ’02), New York, NY, June 22–26, 2002.

[13] J. L. Hennessy, D. A. Patterson, and D. Goldberg.
Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, 3rd edition, 2002.

[14] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J.
Wasserman, and M. Gittings. Predictive Performance
and Scalability Modeling of a Large-Scale Applica-
tion. In Proceedings of the IEEE/ACM Supercomput-
ing, Denver, Colorado, November 10–16, 2001. Avail-
able fromhttp://www.sc2001.org/papers/pap.
pap255.pdf.

[15] D. J. Kerbyson, A. Hoisie, and H. J. Wasserman. Use
of Predictive Performance Modeling During Large-
Scale System Installation. InProceedings of the First
Internnational Workshop on Hardware/Software Sup-
port for Parallel and Distributed Scientific and Engi-
neering Computing, Charlottesville, Virginia, Septem-
ber 22–25, 2002. Available fromhttp://www.c3.
lanl.gov/par_arch/pubs/KerbysonSPDEC.pdf.

[16] D. Oppenheimer, A. Ganapathi, and D. A. Patter-
son. Why do Internet Services Fail, and What can be
done about it? InProceedings of Usenix Symposium
on Internet Technoloies and Systems, Seattle, Wash-
ington, March 26–28, 2003. Available fromhttp:
//roc.cs.berkeley.edu/papers/usits03.pdf.

[17] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Fracht-
enberg. The Quadrics Network (QsNet): High-
Performance Clustering Technology. IEEE Mi-
cro, 22(1):46–57, January-February 2002. Avail-
able fromhttp://www.c3.lanl.gov/~fabrizio/
papers/ieeemicro.pdf.

[18] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:
Transparent Checkpointing under Unix. InProceed-
ings of the Usenix Winter 1995 Technical Confer-
ence, New Orleans, Louisiana, January 16–20, 1995.

Available fromhttp://www.cs.utk.edu/~plank/
plank/papers/USENIX-95W.html.

[19] J. C. Sancho, F. Petrini, G. Johnson, J. Fernández,
and E. Frachtenberg. On the Feasibility of Incre-
mental Checkpointing for Scientific Computing. In
Proceedings of the 18th International Parallel & Dis-
tributed Processing Symposium, Santa Fe, New Mex-
ico, April 26–30, 2004. Available fromhttp://www.
c3.lanl.gov/~fabrizio/papers/ipdps04.pdf.

[20] SCSI hard drive Seagate model Cheetah. Avail-
able from http://www.seagate.com/docs/pdf/
datasheet/disc/ds_cheetah15k.3.pdf.

[21] The ASCI Sweep3D Benchmark Code. Available
from http://www.llnl.gov/asci_benchmarks/
asci/limited/sweep3d/.

8

ftp://ftp.cs.cmu.edu/user/mootaz/papers/S.ps
ftp://ftp.cs.cmu.edu/user/mootaz/papers/S.ps
http://www.c3.lanl.gov/~fabrizio/papers/sc03_bcs.pdf
http://www.c3.lanl.gov/~fabrizio/papers/sc03_bcs.pdf
http://www.sc2001.org/papers/pap.pap255.pdf
http://www.sc2001.org/papers/pap.pap255.pdf
http://www.c3.lanl.gov/par_arch/pubs/KerbysonSPDEC.pdf
http://www.c3.lanl.gov/par_arch/pubs/KerbysonSPDEC.pdf
http://roc.cs.berkeley.edu/papers/usits03.pdf
http://roc.cs.berkeley.edu/papers/usits03.pdf
http://www.c3.lanl.gov/~fabrizio/papers/ieeemicro.pdf
http://www.c3.lanl.gov/~fabrizio/papers/ieeemicro.pdf
http://www.cs.utk.edu/~plank/plank/papers/USENIX-95W.html
http://www.cs.utk.edu/~plank/plank/papers/USENIX-95W.html
http://www.c3.lanl.gov/~fabrizio/papers/ipdps04.pdf
http://www.c3.lanl.gov/~fabrizio/papers/ipdps04.pdf
http://www.seagate.com/docs/pdf/datasheet/disc/ds_cheetah15k.3.pdf
http://www.seagate.com/docs/pdf/datasheet/disc/ds_cheetah15k.3.pdf
http://www.llnl.gov/asci_benchmarks/asci/limited/sweep3d/
http://www.llnl.gov/asci_benchmarks/asci/limited/sweep3d/

	Introduction
	Failure Characterization
	Dealing with Faults
	Proposed Solution
	Buffered CoScheduling
	Incremental Checkpointing

	Conclusions
	Acknowledgments

