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To identify strains of Mycobacterium bovis circulating in Iran, we used region of difference, spoligotypes, 

and variable number tandem repeats to genotype 132 M. bovis isolates from Holstein Friesian cattle. 

Despite wide geographic origins, the strains were genetically homogeneous. Increased distribution of 

cattle herds and inadequate control measures may have contributed to strain dispersion. 

Estimates suggest that globally >50 million cattle are infected with Mycobacterium bovis, 

causing an annual loss of ≈$3 billion US (1). In Asia, 94% of the 460-million cattle herd (33% of 

the world’s cattle) are in areas with either no or only partial tuberculosis (TB) control programs 

(2). In 2006, the prevalence of bovine TB in Iran was 0.12% (Iranian Veterinary Organisation 

[IVO], unpub. data), yet few studies have been conducted on M. bovis in Iran (3–5). To identify 

the strains of M. bovis in Iran, we used region of difference (RD) typing, spoligotyping, and 

variable number tandem repeats (VNTR) typing. 

The Study 

From 1996 through 2003, we collected necropsy specimens from TB-test reactor cattle 

from abattoirs in 21 of the 28 Iranian provinces where bovine TB has been reported. Specimens 

were all respiratory and gastrointestinal lymph nodes and any lungs, spleens, or livers that were 

visibly affected. All specimens were cultured for M. tuberculosis complex bacteria and incubated 
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for >10 weeks. Of the 470 animals tested, results were positive for 216; however, because of 

delays in exporting samples to the United Kingdom, only 132 samples contained reculturable 

isolates with sufficient growth for DNA extraction. Molecular speciation was determined by RD-

PCR (RD1, RD5, RD9, RD10, and RD11) (6). Spoligotyping was conducted according to the 

method of Kamerbeek et al. (7). VNTR-PCR was conducted according to the 6-locus method of 

Frothingham and Meeker-O’Connell (exact tandem repeat [ETR]-A through ETR-F loci) (8) plus 

QUB11B and VNTR3232 loci (9). 

RD-PCR showed that all 132 isolates were M. bovis. Spoligotyping identified 8 types 

(Figure 1). SB0120 was the most common, and 5 others (SB1167–SB1171) were novel patterns 

and, thus, were specific to Iran. VNTR typing identified 23 profiles (Figure 2). 

Conclusions 

RD typing of the 132 isolates confirmed that they were all wild type M. bovis; none were 

the M. bovis BCG vaccine strain because they carried the RD1 region. This finding is noteworthy 

because unauthorized vaccination of cattle with BCG has been reported in Iran (IVO, unpub. 

data). Although previous studies in Iran have reported the isolation of M. tuberculosis from 

tuberculin-positive cattle (3), our RD9 and RD10 analyses indicated that no isolates were M. 

tuberculosis. This finding suggests that M. tuberculosis is unlikely to be abundant, if even 

present, on cattle farms of Iran. Similarly, RD5 and RD11 analyses indicated that no isolates 

were M. africanum or M. microti. 

The spoligotypes were either identical to the BCG-like (SB0120) pattern (41% of 

isolates) or were simple variants of it by the deletion of 1 or occasionally 2 single or contiguous 

blocks of spacers (Figure 1). Because spoligotype changes have been attributed solely to the 

deletion of spacer units, the BCG-like strains here are believed to be ancestral (11). 

VNTR typing of the 132 M. bovis isolates at 8 loci identified 23 different profiles (Figure 

2), 4 of which represented 80% of the isolates. The homogeneity of M. bovis isolates in Iran was 

further exemplified by the low diversity seen at ETR-E (2 alleles, 1 allele represented by only 1 

isolate) and VNTR3232 (1 allele); these findings contrast with findings of greater heterogeneity, 

particularly at VNTR3232, reported elsewhere (12). Given the large geographic area covered by 

cattle in the present study, this level of homogeneity was unexpected. This finding is paralleled 
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in the United Kingdom, where ETR-E is virtually monotypic and is believed to indicate a 

minimal effect of penetrating exotic strains (11). 

In combination, spoligotyping and VNTR typing stratified the 132 isolates into 26 groups 

(Figure 2). Most isolates with a particular VNTR profile were found to be a subset of isolates 

with a specific spoligotype. Thus, VNTR could be used to subtype isolates identified by 

spoligotyping; presumably because of the more rapid rate of polymorphism changes in VNTR 

than in spoligotype. 

Spoligotyping and VNTR typing showed high similarities for all isolates. Such 

homogeneity, in combination with the geographic restriction of several of the spoligotypes to 

Iran (at least in current databases), does not easily support the hypothesis that most strains 

currently circulating in Iran have been imported from abroad. Since the introduction of European 

breeds in the 1930s, Iran’s cattle herd has expanded constantly; expansion during the past 4 

decades has been ≈1.8% annually (IVO, unpub. data). Given the susceptibility of these European 

breeds to bovine TB and the initial absence of effective disease control, as the Holstein Friesian 

herd increased in number, infections with M. bovis likely increased in parallel. The homogeneity 

and localization of the M. bovis strains to Iran would be a direct consequence of this dramatic 

increase in number of bovine TB–susceptible cattle from what has effectively been a genetic 

bottleneck for M. bovis. 

The subsequent test-and-slaughter program in Iran may have contributed to the clonality 

of the M. bovis population. This situation would be similar to that in the United Kingdom, where 

typing of M. bovis strains from human patients (presumably infected with M. bovis from cattle) 

suggests that M. bovis was more diverse 50 years ago than it is  today (13,14). It is believed that 

bovine TB control measures throughout the United Kingdom over the past 100 years reduced the 

M. bovis population size and diversity and led to geographic localization of M. bovis strains 

(9,11). The lower heterogeneity of isolates in Iran perhaps reflects a shorter timescale of events 

there than in the United Kingdom. Spoligotypes are reported to change over timescales as long as 

60 years (15); the expansion of the M. bovis population in Iran over ≈50 years and the generation 

of 2–3 sequential spoligotype changes during this time is certainly compatible with these 

timescales. The absence of geographic regionalization of strains in Iran may also reflect the 

shorter timescale of events in Iran than in the United Kingdom and insufficient time for 
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significant diversification of new strains. The extensive movement of cattle around Iran would 

also be expected to reduce regionality of strains. 

What then is the origin of the currently circulating strains in Iran? Some of the 

spoligotypes found in Iran have been reportedly found elsewhere in the world; however, given 

the simplicity of many of the profiles from the Iran strains, homoplasy may well account for 

these, usually rarer, spoligotypes.  Of the 55 isolates with the SB0120 profile, 42 had a common 

VNTR profile (Figure 2), which suggests that this strain, or perhaps 1 of the VNTR variants, 

would have been the progenitor strain from Iran. Whether such an ancestral strain originated in 

Iran or had been imported into Iran is a yet-unanswered question. 

In a relatively short time, M. bovis has emerged as a major cause of cattle illness and 

economic loss in Iran, notably as a result of the ever-increasing numbers of susceptible hosts.  

Other causes may be changes in farming practices, such as intensification, and the continued 

escape of M. bovis from the test-and-slaughter scheme, possibly as a result of selection for less 

easily detectable strains. Without strengthened control measures, M. bovis is unlikely to 

disappear. Indeed, more infective animals in a growing population of susceptible animals 

increase the risk for other species and for humans. 
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Figure 1. Spoligoprofiles of Iranian isolates and dendrogram of profile relatedness by the Dice and 

unweighted pair group method with arithmetic mean and previously published locations of profiles. The 

three spoligotypes from Iran were previously reported by Cousins et al. (10). 
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Figure 2. Variable number tandem repeat (VNTR) profiles and their abundance and distribution with 

spoligotypes. VNTR profiles are listed in the following order: exact tandem repeat (ETR)-A, B, C, D, E, F, 

QUB11B. The number of isolates of each spoligotype and of each VNTR profile are indicated by the 

subscript number; “a” indicates 42 SB0120 isolates, 1 SB1169 isolate, and 1 SB1170 isolate; “b” indicates 

1 SB0120 isolate and 1 SB0934 isolate. 
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