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ABSTRACT

Adaptive optics (AO) systems currently under investigation will require at least two orders of magitude increase in the
number of actuators, which in turn translates to effectively a 104 increase in compute latency. Since the performance of
an AO system invariably improves as the compute latency decreases, it is important to study how today’s computer
systems will scale to address this expected increase in actuator utilization. This paper answers this question by
characterizing the performance of a single deformable mirror (DM) Shack-Hartmann natural guide star AO system
implemented on the present-generation digital signal processor (DSP) TMS320C6701 from Texas Instruments. We
derive the compute latency of such a system in terms of a few basic parameters, such as the number of DM actuators, the
number of data channels used to read out the camera pixels, the number of DSPs, the available memory bandwidth, as
well as the inter-processor communication (IPC) bandwidth and the pixel transfer rate. We show how the results would
scale for future systems that utilizes multiple DMs and guide stars. We demonstrate that the principal performance
bottleneck of such a system is the available memory bandwidth of the processors and to lesser extent the IPC bandwidth.
This paper concludes with suggestions for mitigating this bottleneck.
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1. INTRODUCTION

Adaptive optics (AO) systems are now considered standard instrument for all ground based telescopes. Using AO, the
effects of atmospheric turbulence can be corrected and the benefits of larger telescope apertures realized. Without the
benefits of AO, the typical size of an image is limited to the observing wavelength λ divided by the atmospheric
coherence length r0, where r0 is on the order of 75cm (at λ=1.5µm). However, using AO, diffraction limited images
(λ/D) are routinely achieved at wavelengths longer than 1µm. This results in over a factor of ten increase in resolution
and enables a factor of 2 (at Palomar) to 4 (at Keck) improvement over the Hubble space telescope resolution. Hence,
there is a desire to implement AO systems that operate on larger ground-based telescopes at shorter wavelengths that
provide wide fields of view of correction using multiple DMs and guide stars. As expected, these factors all contribute
to an increase in computational requirements.

AO systems currently under investigation [1,2] will require at least two orders of magnitude increase in the number of
DM actuators. This translates to a 104 increase in compute latency. Most of this latency is induced by the reconstruction
of the wavefront that is traditionally carried out by the manipulation of a matrix of size N by 2N, where N is the number
of actuators. Since the performance of an AO system improves as the compute latency decreases, it is important to
investigate how today’s computer systems will scale to address the expected increase in actuator utilization. This paper
answers this question by characterizing the performance of a single DM Shack-Hartmann natural guide star AO system
implemented on the present-generation DSPs TMS320C6701 from Texas Instruments (TI). We derive the overall
compute latency of such a system, assuming a simple 1D-mesh (linear array) interconnection topology, and show how
the results would scale for future systems with multiple DMs and guide stars.

The rest of this paper is organized as follows: In section 2, we briefly review the data flow and algorithms implemented
for the Shack-Hartmann AO system. Section 3 describes the hardware architecture selected to minimize the compute
latency and discusses limitations imposed by the hardware selected. Section 4 details the predicted and realized
performance of each algorithm and discusses the architectural constraints that limit its performance. Section 5 presents
the total system compute latency. Section 6 derives the latency for two sample AO systems. Section 7 presents the
conclusion of this paper.
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2. DATA FLOW

Figure 2.1 below depicts the dataflow of a wavefront processor. As shown, each frame of pixels is first split by the
camera hardware into equal and non-overlapping regions that are read out simultaneously using multiple dedicated
channels. The pixels at each channel are then distributed and processed in a pipelined fashion by the wavefront
processor using one or more DSPs (only one shown in Figure 2.1). Each DSP performs the same processing steps
needed in a Shack-Hartmann AO system which include sky-background subtraction, flat fielding, centroiding, and
wavefront reconstruction. The results from the reconstruction step are merged (summed), in a pipelined fashion, first
from all DSPs within the same channel, then across all the channels - to obtain the true DM residual vector from which
the servo commands to the DM and FSM (fast steering mirror) are constructed.

3. HARDWARE ARCHITECTURE

The wavefront processing algorithms are performed by a number of TMS320C6701 DSPs configured in groups of 4 per
board all housed in a VME-based control computer. In this section, we highlight the key architectural strengths of the
‘C6701 that enable the application's high performance as well as the constraints that limit it. We present what we called
the system-level constraints that are characteristic (and perhaps unique) of the boards we selected but that affect the
overall application performance. This section ends with a description of the DSP network topology.

3.1 TMS320C6701 DSP Architecture

The TMS320C6701 is TI’s first generation floating point processor to use the high performance VelociTI architecture
with its advanced very-long-instruction-word (VLIW) engine for instruction-level parallelism [3]. As shown in Figure
3.1, the 'C6701 core is divided into two data paths (A,B) each with the same set of four independent functional units, a
register file with sixteen 32-bit general-purpose registers, and paths for addressing and moving data between memory
and registers. All four functional units in each data path support integer operations. Except for the load/store unit (D),
the other units also support both 32-bit and 64-bit floating point operations. The L and M units, in particular, are
dedicated to floating point additions and multiplications, respectively, while the S unit is dedicated to floating point
reciprocal, and reciprocal square root estimation. With 3 floating point units per data path, the ‘C6701 is capable of up
to 6 floating point operations or 2 multiply-accumulates (MACs), per clock cycle, for a total of 1 giga FLOPS or 334
million MACs, at a clock rate of 167 MHz.

The 'C6701 has 128 Kbytes of on-chip memory, evenly divided between program and data space. The on-chip program
memory has a dedicated 256-bit path to the CPU core, allowing it to fetch an 256-bit VLIW instruction packet contained
eight 32-word instructions, one per functional unit, every clock cycle. In contrast, all off-chip memory access, be it
program or data fetch (or store), occurs over the 32-bit external-memory-interface (EMIF) bus, thus requiring at least

Figure 2.1: Data flow of a wavefront processor taking input from a camera with quad-channel readout. Though
figure shows only one, multiple DSPs per channel are often used to further reduce the compute latency.
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eight cycles to fetch the same VLIW packet. Since the off-chip access rate is at least one cycle per 32-bit word, the
‘C6701 must execute from on-chip program memory for good performance.

The ‘C6701 on-chip data memory has two 32K-byte blocks each is organized as eight 4K banks of 16-bit halfwords that
can be accessed simultaneously by both CPU and DMA without performance penalty, provided that different on-chip
memory banks (of the same block or not) are used [4]. Since each of the two data paths is connected to the data memory
by two 32-bit data buses, the ‘C6701 can load two 64-bit words per instruction cycle. Coupled this with the EMIF bus,
the maximum data accesses each cycle, defined herein as memory bandwidth, is one DMA access and two CPU
accesses, where each CPU access may be a 32-bit store, a 32-bit load, or a 64-bit load. Hence, to obtain maximum
memory bandwidth utilization, not only the 64-bit loads should be used (in place of the 32-bit loads), but concurrent
background DMA transfer of external (off-chip) data via the EMIF bus should also be exploited.

Figure 3.1: TMS320C670x Block Diagram. Courtesy of Texas Instruments,Inc. [4]

It is clear that off-chip memory accesses incur severe performance penalty. However paramount, avoiding them may be
impossible as the size of the data needed for the calculation increases (with more DM actuators or wavefront sensing
cameras). The on-chip memory will inevitably be insufficient in size and the slower external memory hierarchy will
need to be used. Once this occurs, the said memory bandwidth becomes the performance bottleneck. A simple way to
mitigate this bottleneck is to use multiple DSPs and partition the dataset among the available on-chip memory areas. As
the number of DSPs increases, the IPC bandwidth may become a limiting factor (as Section 5 shows). A tradeoff must
eventually be performed between the use of slower external memories and further increasing the number of processors.
The compute latency function derived in Section 5 simplifies this tradeoff process.

The 'C6701 provides 4 independent programmable DMA channels (each with separate context) allowing movement of
data to and from internal (on-chip) memory and external peripherals to occur entirely in the background of CPU
operation. Each DMA transfer (read or write) may be set up to synchronize separately with either an external signal
(such as the start of a frame) or an internal event (such as a timer expiration or another DMA completion). We exploit
this feature to avoid the high overhead of an interrupt service routine (ISR) traditionally associated with interrupting the
CPU, when possible, but also to realize the theoretical peak throughput. For instance, to maximize the on-chip memory
utilization, we pervasively load 64 bits of data at a time which required that interrupts be disabled for the duration of the
instruction execution. Since these 64-bit loads are issued every cycle, this potentially leads to a prolonged period of
interrupt lockout and hence high ISR dispatch latency. If the ISR had to execute to start another DMA transfer (such as
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in the case of pixel forwarding or when the FIFO buffer almost-full condition is detected and the pixels must be brought
on-chip), then the latter transfer will be delayed, resulting in a sub-optimal overall latency. By using the completion
event of one DMA transfer to automatically trigger the start of another without the CPU intervention of an ISR, we
avoided the unnecessary overhead. We also made use of the DMA autoinitialization feature that enables a channel to
automatically reinitialize itself for the next or repetitive transfers, with just an one-time setup. In short, we have found
these architectural supports critical to enabling maximum data throughput and CPU performance.

3.2 Pentek 4291 Board Architecture

For the platform, we selected the high-performance DSP boards (Model 4291) from Pentek Inc.[5] As Figure 3.2 shows,
each board has 4 identical DSPs each equipped with private and shared resources. The following paragraphs briefly
describe only the resources used in the application.

Figure 3.2: Functional Block Diagram – Model 4290/4291. Reprinted by permission of Pentek,Inc. [5]

1. The 512 KB synchronous burst SRAM (SBSRAM) with 1-clock access, or 667 MB/sec, is the fastest of
external memory available on the board, and is used to hold data that exceeds the available on-chip memory,
primarily the reconstruction matrix. Due to a design exception with the particular ‘C6701 silicon release used
by our boards (known in the ‘C6701 silicon errata datasheet as #2.0.4), full speed SBSRAM reads are 2 clocks.
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2. The 256 KB dual-port SRAM with 16-clock access (after arbitration which involves additional logic to obtain
the semaphore) provided that access is made via the EMIF bus or 40-clock access if made via the shared global
bus, is the fastest shared external memory accessible by both the VME host computer and the DSPs. We
organized this memory area like a ring buffer for any real-time DSP data (such as the raw pixels, flat fields, xy-
centroids, and DM residuals and positions) that we wish the VME host to save away for off-line analysis. We
chose not to use the 2 MB global SRAM, which is the other shared resource available, for this function because
of its slow access time (35 clocks) and of the potential bus contention created by multiple DSPs on writes.

3. The three bi-directional FIFOs (two IP bi-FIFOs and one VIM bi-FIFO) with 9-clock access on reads and 8-
clock access on writes, provide the fastest means of exchanging data with the two neighboring DSPs and a
VIM-compatible I/O device. On the 4291 Standard Model, only one bi-FIFO is accessible at anytime – thus, to
automatically store-and-forward the raw pixels using DMA, the VIM bi-FIFO must be used. Since our
purchase, Pentek has released a more versatile version of the 4291 board (Option 330) that permits not only
simultaneous access to all three bi-FIFOs but also features an access time of only 2 cycles for reads and writes.

4. We used the front-panel VIM-compatible I/O connector for interfacing to the quad-channel readout EEV
CCD39 wavefront sensing camera from SciMeasure, Inc. [6,7]

3.3 DSP Network Topology

To simplify the analysis, we used a simple 1D-mesh (linear array) topology to interconnect the DSPs. As shown in
Figure 3.3(a), we dedicated a board to interface to the camera and a processor to each readout channel. The raw pixels
from channels 1, 2, 3 and 4 are fed into the VIM FIFOs of processors A1, C1, D1, and B1, respectively. The start-of-
frame sync signal from the camera synchronizes the processing of these four DSPs. When multiple DSPs are used to
process a channel, these four are responsible for forwarding the pixels to the remaining DSPs. With this configuration,
multiple results from each channel are merged first using the VIM bi-FIFOs and then across all channels using the IP bi-
FIFOs of the last board in the daisy chain.
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One can extrapolate this interconnection to support multiple cameras with multiple channel readout. Figure 3.3(b)
shows a simple 1D-mesh setup consisted of N cameras each with C-channel readout and eight dedicated DSPs per
channel. Note that Option 330 of the 4291 is required for this setup (i.e., one with more than four channels total) or for
any setup with good scaling characteristic such as a tree or a 3D-hypercube.

4. ALGORITHM ANALYSIS

In this section, we present the detailed performance analysis of the real-time algorithms needed in a Shack-Hartmann
adaptive optics system. We show that our implementation of each algorithm is asymptotically optimal given the
architectural constraints described in Section 3.1. The proof is based on the following simple idea: Since each of the
eight functional units uses a 32-bit instruction and one 256-bit VLIW instruction packet is fetched every clock cycle, it
is beneficial to maximize the number of units executing useful operations per cycle. For this reason, we unrolled (i.e.,
software-pipelined) all of the compute-intensive loops. The optimal number of times to unroll depends on which of the
'C6701 architectural constraints dominates the loop calculation. On two occasions, we found the theoretical number
offered by the dominant constraint impossible to realize (with any valid sequence of instructions) due to two documented
(but unknown to us at the time) ‘C6701 silicon errata . For a list of constraints and known silicon errata, please see [3].

4.1 Centroiding

The quadcell centroiding algorithm consists of four loops described by Eqs. 4.1.1 through 4.1.4. The subscript i in these
equations represents the loop index that ranges from 1 to n, where n is the number of 2x2 subapertures processed by the
loop. The first loop denoted by Eq. 4.1.1 shows how each subaperture’s flat fields are calculated, given the input raw
pixels, the pixel offsets (sky background) and the pixel gains. To maximize the available on-chip memory bandwidth,
we unrolled the loop 3 times to allow 4 flat field values to be calculated in parallel per loop iteration hence requiring at
least 4*3*32 bits of input data be fetched and 4*32 bits of output data be stored. This can be scheduled using 5
instruction packets, one per cycle, where three of the packets each performed two 64-bit loads and the last two each
performed two 32-bit stores. This translates to the theoretical peak performance of 5 cycles per subaperature.

( ) gain
ki

offset
ki

raw
kiki pppp ,,,, ⋅−= for 1 ≤≤ k 4 (4.1.1)

The second loop denoted by Eq. 4.1.2 calculates the subaperture flux iw and partial x-y centroid values ( ii vu , ) given

the above four flat field values. For performance reason, we pushed the division by the subaperture flux out of Eq. 4.1.2
(where it is normally done) and into Eq. 4.1.4. To keep the two floating point adders busy every cycle, we unrolled the
loop 3 times to allow 4 subapertures to be calculated in parallel hence requiring 4*7 adds/subtracts per iteration which
can be scheduled with 14 instruction packets each performing 2 adds/subtracts per cycle.

( ) ( )
( ) ( )
( ) ( )3,4,1,2,

3,4,1,2,

3,4,1,2,

iiiii

iiiii

iiiii

ppppw

ppppv
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+++=
+++=
−+−=

(4.1.2)

The third loop denoted by Eq. 4.1.3 calculates nothing more than the reciprocal of a 32-bit floating point value. To
obtain the desired 23 bits mantissa accuracy for the reciprocal, the loop performs two iterations of the Newton-Rhapson
algorithm on an initial reciprocal estimate (of 8-bit mantissa accuracy) provided by the instruction _rcpsp. Then, by
vectorizing (i.e., software pipelining n reciprocal operations), we obtained the theoretical peak performance of 2 cycles
per reciprocal operation, which is significantly faster than the non-vectorized implementation of 27 cycles from TI.

2,
1

ii qw =− , where ( )1,1,, 2 −− ⋅−⋅= jiijiji qwqq and ( )ii wrcpspq _0, = ( 4.1.3)
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The fourth loop denoted by Eq. 4.1.4 calculates the x-y centroid offsets, given the fixed centroid references and previous
two loops’ results. By unrolling the loop 3 times, we obtained the peak performance of 9 cycles per 4 subapertures.

)),max(min(

)),max(,min(
1

minmax,

1
minmax

ref
iiii

ref
iiii

ywvyyy

xwuxxx

−⋅=

−⋅=
−

−

if minwwi >= , else == ii yx 0. (4.1.4)

Eq. 4.1.5 gives the combined performance of the four loops for n subapertures . The constant 48 is the total overhead
incurred by the filling and flushing of all four software pipelines. Eq. 4.1.6 gives the total time to load the required input

data (the pixel offsets, pixel gains, and the x-y centroid references) from external memory with memt denoting the

sustained transfer time per 32-bit word. Unlike Eq. 4.1.5, Eq. 4.1.6 does not include any software pipeline overhead
because the DMA setup code that loads the data executes only once per frame. It is assumed that the on-chip memory is
large enough to hold all of the raw pixels coming to each DSP.

+= nnT cent
cpu 4

51)( 48 cycles (4.1.5)

mem
cent

dma tnnT ⋅=10)( cycles (4.1.6)

4.2 Wavefront Reconstruction

Eq. 4.2.1 shows the pipelined implementation of the general matrix vector multiplication. By parameterizing the lower
and upper limits of the loop index k , the algorithm also supports vector multiplication with a band matrix efficiently.

The factor Df in the equation denotes the ratio of the diagonal band to the entire Mx2M matrix R area or loosely

speaking a measure of sparseness. By definition, the value ranges between 0 and 1, with 1 representing the general full
matrix. M denotes the number of actuators (which we assumed the same as the number of subapertures) in the system.

jjkjjkkk yRxRrr ⋅+⋅+= − 2,12, for 1 nj ≤≤ , 1 Mk ≤≤ (4.2.1)

To obtain the peak performance given by Eq. 4.2.2, we unrolled the loop 3 times resulting in 4 products computed in
parallel per iteration for which at least 4*3*32 bits must be fetched and 4*32 bits be stored. One can schedule these
memory accesses using 5 instruction packets, one per cycle, where three of the packets each perform two 64-bit loads
and the remaining two each perform two 32-bit stores.

Eq. 4.2.3 shows the total time required to fetch the matrix data from external memory via DMA for n subapertures.
Clearly, the performance of the wavefront reconstruction is limited by the external memory bandwidth. It is the
principal performance bottleneck, when compared to the rest of the application,

( ) 71225.1)( +⋅+= nMfnT D
recon

cpu cycles (4.2.2)

memD
recon

dma tMnfnT ⋅= 2)( cycles ⇒ )(2)( nTtnT recon
cpumem

recon
dma ≈ (4.2.3)

One possible way to mitigate this bottleneck is to decrease the size of data needed to be fetched for the calculation. This
can be done by quantizing the matrix data, i.e. by converting the matrix from the current 32-bit floating point
representation to groups of contiguous (memory-wise) 16-bit integer values where each group has an associated a 32-bit
floating point scale factor. A group might be a subcolumn of the original matrix, for instance. This quantization would
reduce the fetch time by ~50% (i.e., the factor 2 in Eq. 4.2.3 goes to unity) and increase the compute time by 20% (i.e.,
the factor 1.25 in Eq. 4.2.2 goes to 1.5), resulting in an overall 25% improvement over the original time.
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Eq. 4.2.4 shows the theoretical peak performance attained by our implementation for summing two residual vectors. Eq.

4.2.5 gives the total time to transfer an M-element vector between two DSPs’ on-chip memory areas. commt denotes the

sustained transfer time per 32-bit element; and since it is greater than 1, IPC bandwidth is the performance bottleneck.

+= MMT sum
cpu )( 13 cycles (4.2.4)

comm
sum

dma tMMT ⋅=)( cycles. ⇒ )()( MTMT sum
cpu

sum
dma > (4.2.5)

4.3 Servo Control

Eqs. 4.3.1-3 show all compute-intensive loops involved in servo control. The first loop denoted by Eq. 4.3.1 computes

the new DM position vector )(tdk from its current position )1( −tdk , for 1 Mk ≤≤ , given the new and current DM

residuals )1(),( −trtr kk and the two proportional-integral constants 0c and 1c . This loop also computes the new DM

average position which, for clarity reason, appears in Eq. 4.3.2 as the summation term. Dominated by additions, this
loop has nevertheless an attainable, theoretical peak performance of 3 cycles per pair of actuator values.

)()1()1()( 01 trctrctdts kkkk ⋅+−⋅+−= (4.3.1)

The second loop denoted by Eq. 4.3.2 ensures that the new DM position is valid, that is, ],[)( maxmin ddtdk ∈ .

)))(
1

)(,max(,min()( minmax ∑−+=
k

koffsetkk ts
M

dtsddtd (4.3.2)

The last loop (Eq. 4.3.3) converts the DM position vector into DM commands )(tzk for moving the actuators. )(kf

)&))(((|)()( 32 cctdkftz kk ⋅= (4.3.3)

represents the actuator map in this equation. Due to a design exception (known in TI silicon errata datasheet as #0.0.15)
with the particular ‘C6701 silicon release used by our boards, we could not realize what otherwise single-cycle
throughput performance for the last two loops. Summing up all three loops, we obtain 4.3.4 for the servo performance.

=servoT 50625.3 +M cycles ( 505.3 +M cycles for silicon release 1.x or later) (4.3.4)

5. LATENCY ANALYSIS

In this section we derive the total compute latency T of the system as a function of seven basic parameters shown
below. Due to the large number of actuators employed in future AO systems and insufficient total on-chip memory, we
can and will assume that the reconstructor matrix reside entirely off-chip. To further simplify the analysis, we will also
assume a simple 1D-mesh (linear array) topology for interconnecting the DSPs. When possible, a more scalable
topology should be used to reduce the latency.

M = # actuators in the system, which we assumed the to be equal to the number of subapertures.

C = # channels available for simultaneous readout of pixels from all constituent regions.

P = # DSP’s used for processing each channel.

Df = ratio of the band to the entire matrix area, a measure of sparseness due to the band, 0 ≤< Df 1

pixelt = # cycles between pixels (pixel readout period) -- C pixels (one per channel) are output every pixelt cycles.

commt = # cycle to send a 32-bit word between two DSPs’ on-chip memory at sustainable (pipelined) rate.
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memt = # cycles to load a 32-bit word on-chip from external memory at sustainable (pipelined) rate.

For clarity reason, the latency function is also expressed in terms of three additional variables defined below.

n = # subapertures processed (centroided, and wavefront-reconstructed) at a time by each DSP.
m = # actuator values computed and prefetched at a time during the residual merging.

Q = # of pixels comprised the first P subapertures from each channel for P DSPs to begin processing.

The optimal value of these last three variables can be derived analytically from the basic equations. However, their
values are much easier obtained after the system is built by either the direct, instrusive, “clear-box” instrumentation
method or the indirect, non-intrusive, “black box” measurement described in [8]. Regardless, they should be tuned to
minimize the total latency. We chose the experimental method because it is easier and more practical. The analytical
method would require a complete and accurate recount of all the cycles -- associated with software pipeline filling and
flushing, subroutine calls, and other in-between subroutine glue logic -- every time the affected source code changes.

servosumresid TTTT ++= (5.1)

As Eq. 5.1 shows, the total system latency is made up of three sequential components (i.e, they must be processed from
left to right in the order shown). The first component represents the processing time required to compute a DM residual
vector. The middle component represents the time required to sum up the DM residuals from all DSPs. The last
component represents the total time to generate the DM and FSM commands from the final DM residual vector. We
minimize the latencies of the first two components of Eq. 5.1 by pipelining each component’s processing steps (i.e., by
overlapping the calculation with background data prefetch via DMA).

Eq. 5.2 shows the total processing time taken by P processors per channel. The first two terms account for the time to
distribute the first Q pixels in a frame to all processors so they can begin the calculations. The third term is the total
DMA time taken by each DSP to load the non-pixel data from external memory for n subaperatures. These three terms
represent the total overhead incurred to fill up the DM residual processing pipeline. The middle part (the summation
term) denotes the total time expended given the sustainable bandwidth of the pipeline. The last term denotes the
overhead incurred to flush the pipeline.
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where )()()( nTnTnT recon
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resid
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)()()()( nTnTnTnT overhead
dma

recon
dma

cent
dma

resid
dma ++=

Eq. 5.2 assumes that the pixel rate of the camera is sufficiently fast to keep up with the external-to-internal memory
transfer of non-pixel data (pixel gains, pixel offsets, x-y centroid references, and the reconstruction matrix), i.e.,
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−+ 4

10
210 2
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In other words, the raw pixels must arrive on-chip in time to enable the centroid calculation to complete by the time the

DMA transfer of the matrix data finishes, for every n subapertures. Coupled this with )()( nTnT resid
dma

resid
cpu < which is

true for all M values (in practice) from Eqs. 4.1.5-6 and 4.2.2-3, Eq. 5.2 is now reduceable to Eq. 5.4.
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where 0=δ if all data required for centroiding could fit on-chip, otherwise M10=δ .

∑ )(nT overhead
dma represents the total intrinsic DMA transfer overhead incurred to bring external data on-chip and to

forward the raw pixels. It comprises the following delays – none was, however, included in this analysis since their exact
cycle counts were not available at the time:

1. The time used by the EMIF at the end of an external data access that is often referred to as the
CE_READ_HOLD cycle count for reads or the CE_WRITE_HOLD cycle count for writes.

2. The switching time between accesses by different external memory resources (SBSRAM,bi-FIFO) and
direction of accesses.

3. The switching time between external DMA accesses.
4. The time delay between the current DMA burst ends and a new burst begins.
5. The time delay from a DMA synchronization event to the beginning of a data access.

Using the interconnection topology in Figures 3.3(a,b), sumT can be decomposed into two terms. As shown in Eq. 5.5,
the first term represents the total time required to sum up the P residual vectors produced by P processors from each
channel. The second term represents the time to combine C vectors from the C channels. As usual, for performance
reason, we pipelined the processing required of each term. The last processor in a daisy-chain computes the sum of two
m-element sub-vectors while it prefetches the next m elements in the background via DMA. The rest of the processors
do nothing but forward its residual vector to the next in a daisy-chain.
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It is clear from Eqs. 5.6 that as the number of processors (P) and channels (C) increases, any interconnection topology
that scales better than 1D-mesh (Figures 3-3), such as a tree, ought to be used. Otherwise, Eq. 5.1 may be dominated by
the IPC bandwidth. Substituting Eqs. 5.4, 5.5 and 4.3.4 into Eq. 5.1, we obtain Eq. 5.6 for the total system latency.

(5.6)
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82 2

++++++⋅++⋅+⋅≅ δ

For Mm << and ,Mn << Eq. 5.6 can be approximated by Eq. 5.7.

(5.7)
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where 0=δ if all centroid input data fit on-chip, else .10M=δ Eqs 5.6 and 5.7 are valid as long as Eq. 5.3 holds.

6. LATENCY EXAMPLES

In this section, we present two concrete examples in which we work out the details of the latency function. In the first
example, we take the current compute problem for Keck or Palomar AO systems and apply Eq. 5.6 assuming the
standard 4291 board is used.

M = 256 actuators.

C = 4, for quad-channel readout, one channel per quadrant.

P = 1, for 1 DSPs per channel.

Df = 1, for a full matrix.

memt = 2 cycle, since the single-cycle throughput SBSRAM is large enough to hold all of the data.

commt = 9 cycles, since P=1 (and thus no pixel forwarding).

pixelt = ( )6
400 cycles, for 2.5Mpix/sec., 6 ns./cycle.

δ = 0, since all input data required for centroiding fit well within the total on-chip memory of P*C DSPs.
n = 1, since only 1 subaperture is processed at a time per DSP.
m = 32, since 32 actuator values are summed/sent at a time.

Q = 18, since the first P subapertures from each channel are made of this many pixels (2P+16) for our camera.

∴ T = 75461 cycles ~ 0.453 ms. ⇒ f =
T

1
~ 2.2 kHz.

Hence, the maximum frame rate for this example is 2.2 kHz, a factor of several better than the current systems, using
only 4 DSPs.

In the next example, we consider a 1600 actuator AO system in which we use a total of 16 DSPs and assume a
sparseness in the reconstructor of 25%. In this case, Mm << and ,Mn << and we apply Eq. 5.7 and remind

ourselves that Option 330 of the 4291 board is required for this configuration

M = 1600 actuators.

C = 4, for quad-channel readout, one channel per quadrant.

P = 4, for three DSPs per quadrant.

Df = .25, for a diagonally-banded reconstructor matrix of 25% denseness.

memt = 2 cycles (as we assumed that Option 330 and the Standard model use the same ‘C6701 silicon release).

commt = 4 cycles, for loading and forwarding the pixels since P>1.

pixelt = ( )6
400 cycles, for 2.5Mpix/sec., 6 ns./cycle.

δ = 0, since all input data required for centroiding fit well within the total on-chip memory of P*C DSPs.
n = 1, since only 1 subaperture is processed at a time per DSP.
m = 32, since 32 actuator values are summed/sent at a time.

Q = 24, since the first P subapertures from each channel consisted of this many pixels (2P+16) for our camera.

∴ T = 209516 cycles ~ 1.257 ms. ⇒ f =
T

1
~ 790 Hz. ( ~1.2 kHz if memt = 1)

The compute latency of this configuration can be improved by using a more scalable topology.
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7. CONCLUSION

In this paper, we have presented a computer architecture of a Shack-Hartmann AO system that is based on the present-
generation TMS320C6701 processors interconnected using a simple 1D-mesh topology. We analyzed the performance
of such a system by deriving the compute latency function. We proved that this latency is dominated by the
reconstruction of the wavefront and that it is limited by the available memory bandwidth of the processor. We also
showed that as the number of processors and channels increases, the interprocessor communication bandwidth may
become the limiting factor. We offered suggestions on how to improve the overall latency. To mitigate the memory
bandwidth bottleneck, we proposed data quantization. To reduce the communication latency, we suggested a more
scalable interconnection topology such as a tree. Finally, we pointed out how our analysis can be made more accurate
by accounting for the intrinsic DMA transfer overhead.
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