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Abstract
The problem of reconstructing underground obstacles from near-field, surface
seismic measurements is investigated within the framework of a linear sampling
method. Although the latter approach has been the subject of mounting
attention in inverse acoustics dealing with far-field wave patterns in infinite
domains, there have apparently not been any attempts to apply this new method
to the interpretation of near-field elastic wave forms such as those relevant
to the detection of subterranean objects. Aimed at closing this gap, a three-
dimensional inverse analysis of elastic waves scattered by an obstacle (or a
system thereof ), manifest in the surface ground motion patterns, is formulated
as a linear integral equation of the first kind whose solution becomes unbounded
in the exterior of the hidden scatterer. To provide a comprehensive theoretical
foundation for this class of imaging solutions, generalization of the linear
sampling method to near-field elastodynamics and semi-infinite domains is
highlighted in terms of its key aspects. A set of numerical examples is
included to illustrate the performance of the method. On replacing the featured
elastodynamic half-space Green function by its free-space counterpart, the
proposed study is directly applicable to infinite media as well.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Noninvasive identification of subterranean obstacles using elastic waves with frequencies
in the resonance region is a long-standing problem in mechanics and engineering driven
by its relevance to exploration seismology, nondestructive material testing, environmental
remediation, medical diagnosis and defence applications. For this class of inverse scattering
problems, employed imaging solutions are often based on nonlinear optimization which
requires an initial approximation of the geometry and topology of the scattering obstacle
[18, 28, 35, 38].

0266-5611/04/030713+24$30.00 © 2004 IOP Publishing Ltd Printed in the UK 713

http://stacks.iop.org/ip/20/713


714 S Nintcheu Fata and B B Guzina

Over the past decade, developments in sonar and radar technologies have led to
the introduction of an alternative technique for solving inverse scattering problems in
the resonance region called the linear sampling method. Originally proposed by Colton
et al in a series of papers [7, 8, 12, 13] for far-field acoustics, the linear sampling method
furnishes an explicit characterization of a hidden obstacle (provided that the far-field pattern
is known for all directions of incidence and observation), and is independent of geometry and
physical properties of the scattering object. To date, this new technique has been adapted to
electromagnetics [10, 11, 25] and to far-field elastic scattering problems [2–4, 20, 37].

Although the linear sampling method has received considerable attention in inverse
scattering theory dealing with far-field wave patterns in the free space, limited attention
has so far been paid to its application involving near-field elastic wave forms, especially those
arising in the half-space during active seismic imaging of underground obstacles (e.g., defence
facilities, buried waste and land mines). In particular, application of the former sonar and
radar solutions to seismic imaging has been impeded not only by the inherent heterogeneity
of geological profiles, but also by the fact that elastic waves, unlike their acoustic counterpart,
take many different forms (compressional, shear, Love, Rayleigh and Stoneley waves, see
[1, 21]), which renders their interpretation challenging. Aimed at bridging such a gap, this
investigation focuses on establishing a rigorous theoretical framework for the identification
of hidden obstacles in a uniform elastic half-space via the linear sampling method. To
this end, a three-dimensional inverse analysis of elastic waves scattered by a buried object,
manifest in the surface ground motion patterns, is formulated as a linear integral equation
of the first kind whose solution becomes unbounded in the exterior of an unknown scatterer.
The generalization of the linear sampling method to near-field elastodynamics and semi-
infinite domains is highlighted, including the necessary existence and uniqueness theorems.
Illustrative examples with ellipsoidal cavities are included to provide an insight into the
performance of the method.

2. Direct scattering problem

With reference to the Cartesian frame {O; ξ1, ξ2, ξ3} shown in figure 1, consider the scattering
of time-harmonic elastic waves by a bounded obstacle �C with boundary � of class C1,α, α ∈
(0, 1], strictly embedded in a homogeneous elastic half-space � = {(ξ1, ξ2, ξ3)|ξ3 > 0}.
The semi-infinite ‘matrix’ domain � is characterized by the Lamé constants λ and µ, mass
density ρ; its free surface {(ξ1, ξ2, ξ3)|ξ3 = 0} is denoted by S. For further reference,
let �− = �\ (�C ∪ �) denote the unbounded region surrounding the obstacle, and let ω

be the frequency of excitation.
With the time-harmonic factor eiωt omitted henceforth for brevity, the incident (or free)

field uFk
(·, ζ) used to illuminate the scatterer is generated by a point source acting on a planar

surface �1 ⊂S of finite extent so that

uFk
(ξ, ζ) = ûk(ξ, ζ), ξ �= ζ, ξ ∈ �, ζ ∈ �1, (1)

where ûk(ξ, ζ) denotes the elastodynamic displacement Green function for an isotropic
homogeneous half-space at ξ ∈ � due to a unit time-harmonic point force acting at ζ ∈ �1 in
the kth coordinate direction. By denoting the total displacement field at ξ ∈ �− due to a unit
point source acting at ζ ∈ �1 in the kth coordinate direction by uk(ξ, ζ), one can define the
scattered field uSk

(ξ, ζ) through the decomposition

uSk
(ξ, ζ) = uk(ξ, ζ) − uFk

(ξ, ζ), ξ ∈ �−, ζ ∈ �1. (2)



Elastodynamic obstacle identification in a semi-infinite solid 715

R

ΓR

ξ3

ξ1
xm

ΩR

ρ, ,λ µ
Ωc

o

n

n
Γ

1 2ζ ΓΓ

Figure 1. Point source excitation of an obstacle embedded in the half-space.

With reference to any smooth surface � in � with unit normal n, it is instructive to introduce
the traction vector t(·;u) associated with a displacement vector u as

t(ξ;u) = n(ξ) · C : ∇u(ξ), ξ ∈ �, (3)

where C = λI2 ⊗ I2 + 2µI4 denotes the isotropic elasticity tensor and Ik (k = 2, 4) is the
symmetric kth order identity tensor.

With such definitions, the forward elastodynamic problem for an obstacle �C can be
formulated as a task of finding the scattered field uSk ∈ C2(�−) ∩ C1(�− ∪ � ∪ S) that
satisfies the homogeneous Navier equation

LuSk
(ξ, ζ) + ρω2uSk

(ξ, ζ) = 0, ξ ∈ �−, ζ ∈ �1, (4)

with the Lamé operator L defined as

L = µ∇2 + (λ + µ)∇∇ ·, (5)

and boundary conditions

tSk
(ξ, ζ) = 0, ξ ∈ S, ζ ∈ �1,

uSk
(ξ, ζ) = −uFk

(ξ, ζ), ξ ∈ �, ζ ∈ �1 if �C is an immobile rigid body,

tSk
(ξ, ζ) = −tFk

(ξ, ζ), ξ ∈ �, ζ ∈ �1 if �C is a cavity.

(6)

In (4) through (6), the free field uFk
is provided beforehand, while tFk

and tSk
are the traction

vectors associated, respectively, with uFk
and uSk

on �∪S. To maintain the well posedness of
the forward scattering problem, it is assumed that uSk

conforms with the generalized radiation
condition

lim
R→∞

∫
�R

{ûj (ξ,x) · tSk
(ξ, ζ) − t̂j (ξ,x) · uSk

(ξ, ζ)} d�ξ = 0, x ∈ �−
R, j = 1, 2, 3,

(7)

where t̂j (ξ,x) is the traction vector at ξ ∈ �R associated with ûj (ξ,x), namely the half-space
traction Green’s function; �R is a hemisphere centred at the origin O, and �−

R is the subset of
�− bounded by �R (see figure 1).

A solution to (4) that satisfies (7) is called a radiating solution of the homogeneous Navier
equation in �−. In what follows, it is assumed that the forward scattering problem for the
semi-infinite solid �− given by (4), (6) and (7) admits a unique solution uSk ∈ H1

loc(�
−),

see [27].
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3. Inverse scattering problem

To formulate the inverse problem of elastic waves scattered by an obstacle �C within the
framework of near-field elastodynamics, let Û (ξ, ζ) denote the half-space displacement Green
tensor at ξ ∈ �\{ζ} due to a unit point source acting at ζ ∈ �1. In a Cartesian frame, Û (ξ, ζ)

can be synthesized via a 3×3 matrix as

Û (ξ, ζ) = (
û1(ξ, ζ), û2(ξ, ζ), û3(ξ, ζ)

) =




û1
1(ξ, ζ) û1

2(ξ, ζ) û1
3(ξ, ζ)

û2
1(ξ, ζ) û2

2(ξ, ζ) û2
3(ξ, ζ)

û3
1(ξ, ζ) û3

2(ξ, ζ) û3
3(ξ, ζ)


 . (8)

In what follows, the vector field u(x,z;d) = Û (x,z) · d defines the displacement at
x ∈ �\{z} due to a unit point source at z acting in the direction specified by the unit vector
d (d ∈ R

3, ‖d‖ = 1). Owing to the symmetry of the half-space displacement Green functions
[23], one can write[

Û (ζ, ξ)
]T = Û (ξ, ζ), (9)

where the superscript ‘T’ stands for matrix transpose. To aid the ensuing development, it is
also useful to establish the scattered tensor US(ξ, ζ) at ξ ∈ �− due to a unit point source
acting at ζ ∈ �1 through

US(ξ, ζ) = (uS1
(ξ, ζ),uS2

(ξ, ζ),uS3
(ξ, ζ)) =




uS
1

1
(ξ, ζ) uS

1
2
(ξ, ζ) uS

1
3
(ξ, ζ)

uS
2

1
(ξ, ζ) uS

2
2
(ξ, ζ) uS

2
3
(ξ, ζ)

uS
3

1
(ξ, ζ) uS

3
2
(ξ, ζ) uS

3
3
(ξ, ζ)


 (10)

in Cartesian coordinates. In what follows, US will be used to synthesize the experimental data
collected over the observation surface �2 ⊂S. In the case of incomplete measurements of the
scattered field, the corresponding columns of US in (10) are set to zero. For instance, if uS3

is the only quantity being monitored (i.e. only vertical point sources are used to illuminate the
scatterer), then the first and second columns of US in (10) are set to zero.

With the above definitions, the inverse scattering problem of interest in this study can
be set forth as a task of reconstructing �C from the knowledge of the tensor of scattered
displacement field components US(ξ, ζ) for all observation points ξ ∈ �2 ⊂S and all source
points ζ ∈ �1 ⊂ S. Inverse scattering problems of this type are inherently nonlinear and
improperly posed. In particular, unless regularization methods are used, small perturbations
of the observed (i.e. measured) data US(ξ, ζ) in any reasonable norm may lead to large errors
in the reconstruction of the scatterer [13].

4. Preliminaries

The linear sampling method, originally introduced by Colton and Kirsch [7] for far-field
inverse scattering problems in acoustics, will be used in this study to tackle the featured inverse
problem within the framework of near-field elastodynamics. To aid such a generalization, let
L2(S1) be the Hilbert space of square integrable vector fields equipped with the inner product

(g,h)L2(S1) =
∫

S1

g(x) · h(x) dsx, (11)
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where the overbar denotes complex conjugation. Further, with reference to any smooth surface
� in � with unit normal n, let the half-space traction Green tensor T̂ (ξ, ζ) at ξ ∈ � due to a
unit point source acting at ζ ∈ �1 be denoted as

T̂ (ξ, ζ) = n(ξ) · C : ∇Û (ξ, ζ) :=




t̂1
1(ξ, ζ) t̂1

2(ξ, ζ) t̂1
3(ξ, ζ)

t̂2
1(ξ, ζ) t̂2

2(ξ, ζ) t̂2
3(ξ, ζ)

t̂3
1(ξ, ζ) t̂3

2(ξ, ζ) t̂3
3(ξ, ζ)


 (12)

in the reference Cartesian frame.

Theorem 4.1. Let S1 be a surface of limited extent of class C1,α in � and g ∈ L2(S1). Then
a single layer potential

v(ξ) =
∫

S1

Û (ξ,x) · g(x) dsx =
∫

S1

ûk(ξ,x)gk(x) dsx, ξ ∈ �\S1 (13)

is a radiating solution to the homogeneous Navier equation in �\S1, i.e.

Lv(ξ) + ρω2v(ξ) = 0, ξ ∈ �\S1, (14)

and

lim
R→∞

∫
�R

{ûj (ξ,x) · t(ξ;v) − t̂j (ξ,x) · v(ξ)} d�ξ = 0, x ∈ �R, j = 1, 2, 3, (15)

where t(ξ;v) = n(ξ) · C :∇v(ξ) is the traction vector associated with the displacement field
v on any regular surface in � with unit normal n.

Proof. Since ξ ∈ �\S1, (13) can be differentiated under the integral sign and (14) follows
directly from the fact that ûk (k = 1, 2, 3) satisfies the homogeneous Navier equation away
from the source surface S1.

By use of (12) in (13), one can deduce that

t(ξ;v) =
∫

S1

T̂ (ξ,x) · g(x) dsx =
∫

S1

t̂k(ξ,x)gk(x) dsx, ξ �= x (16)

on any regular surface in � with unit normal n. On employing (13) and (16) and interchanging
the order of integration, one can verify that∫

�R

{ûj (ξ,x) · t(ξ;v) − t̂j (ξ,x) · v(ξ)} d�ξ

=
∫

S1

gk(x)

(∫
�R

{t̂k(ξ,y) · ûj (ξ,x) − t̂j (ξ,x) · ûk(ξ,y)} d�ξ

)
dsx. (17)

The statement (15) immediately follows from (17), and the fact that the half-space displacement
Green function ûk(·,z) (k = 1, 2, 3) is a radiating solution to the homogeneous Navier
equation in �\{z}, see [23]. �

The following lemma will be very useful in establishing the linear sampling method.

Lemma 4.1. For a given density distribution g ∈ L2(�1), the solution to the scattering
problem by an obstacle �C in the half-space � due to the free field

vF(ξ) =
∫

�1

Û (ξ,x) · g(x) dsx, ξ ∈ �\�1 (18)

is given by the scattered field

vS(ξ) =
∫

�1

US(ξ,x) · g(x) dsx =
∫

�1

uSk
(ξ,x)gk(x) dsx, ξ ∈ �−, (19)

where Û and US are defined, respectively, by (8) and (10).
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Proof. An integral representation for the scattered field uSk
(e.g., [36]) in terms of the total

displacement field uk and the total traction tk over the obstacle boundary ∂�C = � due to a
point source x ∈ �1 in the kth coordinate direction is given by

uSk
(ξ,x) =

∫
�

[Û (η, ξ)]T · tk(η,x) d�η

−
∫

�

[T̂ (η, ξ)]T · uk(η,x) d�η,
ξ ∈ �−

x ∈ �1.
(20)

On using (20) in (19) and interchanging the order of integration, one finds that

vS(ξ) =
∫

�

[Û (η, ξ)]T · t(η;v) d�η −
∫

�

[T̂ (η, ξ)]T · v(η) d�η, ξ ∈ �−, (21)

where

v(ξ) =
∫

�1

uk(ξ,x)gk(x) dsx, ξ ∈ �−, (22)

and t(η;v) = n(η) · C :∇v(η) as examined earlier. It is seen from (21) that vS(ξ) admits a
representation similar to (20) in terms of a single-layer potential

P (ξ) =
∫

�

[Û (η, ξ)]T · t(η;v) d�η, ξ ∈ �−, (23)

and a double-layer potential

Q(ξ) =
∫

�

[T̂ (η, ξ)]T · v(η) d�η, ξ ∈ �−. (24)

Following the idea of the proof of theorem 4.1, one can show that P and Q are radiating
solutions of the homogeneous Navier equation in �−. From this statement and the linearity
of (21) (i.e. vS = P − Q), one can infer that vS is also a radiating solution of the
homogeneous Navier equation in �−. Now, with the aid of (1) and (2) in (22), it is seen
that v = vF(ξ) + vS(ξ), ξ ∈ �− where vF and vS are given, respectively, by (18) and (19).

�

Before establishing the linear sampling method for near-field elastodynamics, one should
mention that lemma 4.1 is a reformulation, suitable for elastic scattering problems, of
lemma 3.16 in [9] for inverse acoustics.

5. Linear sampling method

On the basis of the foregoing developments, one is now in a position to formulate the linear
sampling method for elastic-wave reconstruction of the scatterer �C hidden in a semi-infinite
solid from the knowledge of scattered field along the observation surface �2 synthesized via
the tensor US(ξ,x), ξ ∈ �2,x∈ �1 (see (10) and figure 1). The underlying idea is to find a
free field vF with density g over the source surface �1 so that the corresponding scattered field
vS (see lemma 4.1) coincides with a prescribed radiating solution to the homogeneous Navier
equation in �− which, in particular, is chosen as the displacement Û (·,z) · d, ‖d‖ = 1, due
to a point source acting at z ∈ � in the direction d.

In mathematical terms, let z ∈ � be fixed. The objective is to find the vector density
gz,d(·) ≡ g(·;z,d) ∈ L2(�1) as a solution to the near-field integral equation of the first kind∫

�1

US(ξ,x) · gz,d(x) dsx = Û (ξ,z) · d, ξ ∈ �−, z ∈ �, d ∈ R
3, ‖d‖ = 1.

(25)
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Let z ∈ �C. On employing (19) and taking the limit as ξ → y ∈ � in (25), one can write

vS(y) = Û (y,z) · d, y ∈ �, z ∈ �C, d ∈ R
3, ‖d‖ = 1. (26)

Letting z → y ∈ � in (26), one finds that vS(y) becomes unbounded, and, since US

is bounded on �, one must have limz→y∈� ‖g(·;z,d)‖L2(�1) = ∞, where ‖g‖L2(�1) =√
(g, g)L2(�1). For completeness, it will also be shown in this study that ‖g(·;z,d)‖L2(�1)

becomes unbounded whenever z ∈ �−. As a result, the unboundedness property of g(·;z,d)

can be used to reconstruct the unknown scatterer �C. The key idea is to sample a region of
interest in the half-space � by varying the probing (i.e. sampling) point z, and to identify �C

(if any) through a location of those sampling points z where ‖g(·;z,d)‖L2(�1) is bounded.
In practical terms, the scattered tensor US is assumed to be measured on a bounded

planar subdomain �2 of the surface of the half-space S (see figure 2) so that the following
specialization of (25)∫

�1

US(ξ,x) · gz,d(x) dsx = Û (ξ,z) · d, ξ ∈ �2, z ∈ �, d ∈ R
3, ‖d‖ = 1

(27)

needs to be solved for the density gz,d.
The above formulation of the linear sampling method for solving inverse scattering

problems is, despite its elegance, fraught with difficulties. One should mention that equation
(27) constitutes a Fredholm integral equation of the first kind with a smooth kernel given by
the scattered tensor field US synthesizing experimental observations. Since solving Fredholm
integral equations of this type is an improperly posed mathematical problem in the sense of
Hadamard [26], it is not clear whether a solution gz,d to (27) exists and, if such a solution does
exist, whether gz,d depends continuously on the measured data US in any reasonable norm.
Thus, a mathematical justification of the linear sampling method is necessary to consistently
deal with these impediments.

6. Theoretical foundation

To extend the linear sampling method to near-field inverse elastic scattering problems, one has
to analyse the near-field Fredholm integral equation of the first kind (27) in order to justify
the method. The case where z ∈ �C is first considered, wherein the necessary existence
and uniqueness theorems in terms of density gz,d that characterizes the scatterer �C are
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established. As mentioned in section 2, it is assumed that a unique solution uSk ∈ H1
loc(�

−)

to the direct scattering problem (4) to (7) exists.
The following basic identities of the mathematical theory of linear elasticity will be of great

importance in the subsequent development. Let D be a bounded elastic domain (characterized
by an isotropic elastic tensor C) with boundary ∂D of class C1,α , and let n denote the unit
outward normal to ∂D. Then, for vector fields u,v ∈ C2(D) ∩ C1(D), Betti’s first formula,
obtained by integration by parts, takes the form∫

D

v(ξ) · Lu(ξ) dVξ =
∫

∂D

v(ξ) · t(ξ;u) dsξ −
∫

D

∇v(ξ) : C : ∇u(ξ) dVξ, (28)

where the Lamé operator L is given by (5) and t(ξ;u) = n(ξ) · C : ∇u(ξ) as elucidated
earlier. By setting v = u in (28), Betti’s second formula can be expressed as∫

D

u(ξ) · Lu(ξ) dVξ =
∫

∂D

u(ξ) · t(ξ;u) dsξ −
∫

D

∇u(ξ) : C : ∇u(ξ) dVξ. (29)

On interchanging the role of u and v in (28) and subtracting the latter from (28), one can write
Betti’s third formula as∫

D

[v(ξ) · Lu(ξ) − u(ξ) · Lv(ξ)] dVξ =
∫

∂D

[v(ξ) · t(ξ;u) − u(ξ) · t(ξ;v)] dsξ. (30)

To aid the ensuing development, the following near-field operator F : L2(�1) → L2(�2)

defined as

(Fg)(ξ) :=
∫

�1

US(ξ,x) · g(x) dsx, ξ ∈ �2 (31)

is also introduced where �1 and �2 are, respectively, the surfaces of source and observation
points, while US is the scattered tensor given by (10). One should note that for US ∈
L2(�2 × �1), the operator F is well defined, linear and bounded from L2(�1) into L2(�2).
The latter property can be seen from the inequality

‖Fg‖2
L2(�2)

� ‖g‖2
L2(�1)


 3∑

k=1

3∑
j=1

∫
�2

∫
�1

∣∣uS
j

k
(ξ,x)

∣∣2
dsx dsξ


 (32)

obtained using the Cauchy–Schwarz inequality [29], where | · | is the complex modulus. It can
also be shown [29] that the linear integral operator F is compact from L2(�1) into L2(�2),
thus rendering the linear equation (27) ill-posed.

In what follows, the solvability condition for the integral equation of the first kind (27)
when z ∈ �C is given in terms of the following theorem, derived by analogy to its acoustic
counterpart (theorem 3.19 in [9]).

Theorem 6.1. Let z ∈ �C be fixed. Then the integral equation of the first kind∫
�1

US(ξ,x) · gz,d(x) dsx = Û (ξ,z) · d, ξ ∈ �2, z ∈ �C, d ∈ R
3, ‖d‖ = 1

(33)

possesses a solution gz,d ∈ L2(�1) if and only if there exists a solution vF to the interior
boundary value problem given by

LvF(ξ) + ρω2vF(ξ) = 0, ξ ∈ �C, (34)

vF(ξ) + Û (ξ,z) · d = 0, ξ ∈ �, (35)

for the scattering by an immovable rigid inclusion (Dirichlet problem), and by
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LvF(ξ) + ρω2vF(ξ) = 0, ξ ∈ �C, (36)

t(ξ;vF) + T̂ (ξ,z) · d = 0, ξ ∈ �, (37)

for the scattering by a cavity (the Neumann problem), that is expressible in the form of (18),
where t(·;vF) denotes the traction vector associated with vF.

Proof. Let gz,d ∈ L2(�1) be a solution to (33) and define vF according to (18) by

vF(ξ) =
∫

�1

Û (ξ,x) · gz,d(x) dsx, ξ ∈ �\�1. (38)

Then, from lemma 4.1,

vS(ξ) =
∫

�1

US(ξ,x) · gz,d(x) dsx, ξ ∈ �− (39)

is a radiating solution to the homogeneous Navier equation in �−. Since z is held fixed in �C,
one can infer that Û (ξ,z) · d, ξ ∈ �− is also a radiating solution to the homogeneous Navier
equation in �− (see theorem 2.2.1 in [34]), and by use of (33), that vS(ξ) = Û (ξ,z) · d
on �2. With the aid of the latter result and Holmgren’s uniqueness theorem [6, 17], one can
conclude that, in fact

vS(ξ) = Û (ξ,z) · d, ξ ∈ �−. (40)

For the scattering by an immobile rigid obstacle, one has

vF(ξ) + vS(ξ) = 0, ξ ∈ �. (41)

On substituting the limit of (40) as ξ → y ∈ � into (41), one obtains (35). For scattering by
a cavity, on the other hand,

t(ξ;vF) + t(ξ;vS) = 0, ξ ∈ �. (42)

From (40), the traction vector t(ξ;vS) (associated with vS) on any surface strictly inside
�− with unit normal n is given by T̂ (ξ,z) · d, which, in the limit as ξ → y ∈ �, (42) yields
(37). Further, since the source surface �1 is away from the scatterer �C, (34) (or (36)) directly
follows from theorem 4.1.

Conversely, let vF(ξ) be a solution of (34) and (35) (or (36) and (37)). Then vF(ξ) can be
taken as a free field for scattering by an obstacle �C and, from lemma 4.1, the unique radiating
solution, uS, to this scattering problem is given by (39) with boundary condition (41) (or (42)).
Comparison of (35) and (41) (or (37) and (42)) yields

vS(ξ) = Û (ξ,z) · d, (or t(ξ;vS) = T̂ (ξ,z) · d), ξ ∈ �. (43)

Holmgren’s uniqueness theorem can again be used to obtain (40) and the proof follows by
taking the limit as ξ → y ∈ �2. �

6.1. Approximation property of single-layer potentials

One of the key issues in establishing the validity of the linear sampling method for inverse
scattering problems dealing with far-field observations is concerned with the approximation
property of Herglotz wavefunctions (see, e.g., [14] for acoustics and [16] for elastodynamics).
To facilitate the ensuing development, it is instructive to mention that the single-layer potential
defining the free field vF(ξ) in (18) plays the same role in this investigation as the Herglotz
wavefunction does for the sampling method in far-field inverse acoustic or elastic scattering
problems. Accordingly, the next step in this study is to establish the denseness property of
single-layer potentials such as those characterizing vF.
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With the above settings, let D⊂� be a bounded domain with boundary ∂D of class C1,α

and let H(D) be the set of classical solutions to the homogeneous Navier equation in D, i.e.

H(D) = {u ∈ C2(D) ∩ C1(D) : Lu + ρω2u = 0 in D}.
From the above definition, it is readily shown that for any u ∈ H(D), its complex conjugate
belongs to the same space, i.e. u ∈ H(D) and thus

t(·;u) = t(·;u), u ∈ H(D). (44)

For further reference, let L2(D) be the Hilbert space of square integrable vector fields equipped
with the usual inner product

(v,u)L2(D) =
∫

D

v(ξ) · u(ξ) dVξ, (45)

and H 1(D) = {u ∈ L2(D),∇u ∈ L2(D)} be the Hilbert space equipped with the Hermitian
product

(v,u)H 1(D) = θ

∫
D

v(ξ) · u(ξ) dVξ +
∫

D

∇v(ξ) : C : ∇u(ξ) dVξ, R � θ > 0, (46)

and denote by H(D) the closure of H(D) with the norm of H 1(D) given by

‖u‖H 1(D) = √
(u,u)H 1(D). (47)

Now, consider the single-layer integral operator S : L2(�1) → H(D) defined by

(Sg)(ξ) :=
∫

�1

Û (ξ,x) · g(x) dsx, ξ ∈ D. (48)

The operator S given by (48) is well defined. It is important first to mention that �1 lies outside
D, i.e. �1∩D = ∅, and for that reason, Sg ∈ C∞ (

D
)⊂C2(D) ∩ C1(D). But from theorem

4.1, the field Sg satisfies the homogeneous Navier equation in D and therefore Sg ∈ H(D).

Lemma 6.1. For all g ∈ L2(�1) and u ∈ H(D), the following identity holds

(Sg,u)L2(D) = (g,S∗
Du)L2(�1), (49)

where S∗
D : H(D) → L2(�1) is given by

(S∗
Du)(x) :=

∫
D

Û (x, ξ) · u(ξ) dVξ, x ∈ �1.

Proof. For g ∈ L2(�1) and u ∈ H(D),

(Sg,u)L2(D) =
∫

D

u(ξ) ·
(∫

�1

Û (ξ,x) · g(x) dsx

)
dVξ. (50)

On interchanging the order of integration in (50) and employing the symmetry of Û in (9), it
is seen that

(Sg,u)L2(D) =
∫

�1

g(x) ·
(∫

D

Û (x, ξ) · u(ξ) dVξ

)
dsx = (g,S∗

Du)L2(�1). (51)

The statement of the lemma follows from the fact that H(D) is dense in H(D). �

Lemma 6.2. For all g ∈ L2(�1) and u ∈ H(D), the following identity holds:

(Sg,u)H 1(D) = (g,S∗u)L2(�1), (52)
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Figure 3. Interior and exterior domains.

where S∗ : H(D) → L2(�1) is given by

(S∗u)(x) := (θ + ρω2)

∫
D

Û (x, ξ) · u(ξ) dVξ +
∫

∂D

Û (x, ξ) · t(ξ;u) dsξ, x ∈ �1

(53)

with the traction vector t(·;u) ∈ H−1/2(∂D) understood in the sense of the trace of
u ∈ H 1(D), see [33].

Proof. Let g ∈ L2(�1); on the basis of the comment made right after the definition of S in
(48), it follows that Sg ∈ H(D). Now let u ∈ H(D). Using Betti’s first formula (28), the
homogeneous Navier equation for the vector field u in D, and the sesquilinear form (46), one
can write

(Sg,u)H 1(D) = (θ + ρω2)(Sg,u)L2(D) + (Sg, t(·;u))L2(∂D). (54)

Similar to the proof of lemma 6.1, one can derive the relationship (52) from (54) and the
identity (49). The statement of the lemma again follows by the denseness argument. �

For u ∈ H(D), the adjoint operator S∗, defined through (53) as a linear combination of
volume and surface potentials, can be used to introduce the vector field

v(x) := (S∗u)(x)

= (θ + ρω2)

∫
D

Û (x, ξ) · u(ξ) dVξ +
∫

∂D

Û (x, ξ) · t(ξ;u) dsξ, x ∈ �\∂D.

(55)

Using Lax’s theorem [29], it can be shown that the volume potential in (55) is a bounded
linear operator from L2(D) into H 2

loc(�) (see also [9]). Accordingly, since the single-layer
potential in (55) is a bounded linear operator from H−1/2(∂D) into H 1

loc(�\D) (see [31]), one
can conclude that the mapping u �−→ v given by (55) defines a bounded linear operator from
H 1(D) into H 1

loc(�\D). Since elastic potentials behave near boundaries much like ordinary
harmonic potentials, it can be shown that

v(x) = v+(x) = v−(x), t+(x;v) − t−(x;v) = −t(x;u), x ∈ ∂D, (56)

where the subscripts ‘+’ and ‘−’ stand for the limiting values of the corresponding quantity
at the boundary ∂D when approached, respectively, from the exterior domain �\D and from
the interior domain D (see figure 3).
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For x ∈ D, formula (55) can be differentiated under the integral sign. By taking into
account that the support of the half-space displacement Green function ûk(x, ξ) is resting in
D, i.e.

Lûk(x, ξ) + ρω2ûk(x, ξ) + δkiδ(x − ξ)ei = 0, x ∈ D, (57)

where δki is the Kronecker delta, δ(x − ξ) is the Dirac delta function and ei is a unit vector
in the ith coordinate direction, it can be shown that

Lv(x) + ρω2v(x) = −(θ + ρω2)u(x), x ∈ D. (58)

In what follows, it is assumed that u ∈ H(D). By use of the Navier equation for the field u
in D and Betti’s second formula (29) in (47), one can write

‖u‖2
H 1(D) = (θ + ρω2)

∫
D

u(ξ) · u(ξ) dVξ +
∫

∂D

u(ξ) · t(ξ;u) dsξ. (59)

With the aid of (44), (56) and (58), (59) can be expressed as

‖u‖2
H 1(D) = −

∫
D

u(ξ) · [Lv(ξ) + ρω2v(ξ)] dVξ −
∫

∂D

u(ξ) · [t+(ξ;v) − t−(ξ;v)] dsξ.

(60)

By use of Betti’s third formula (30), the Navier equation for the field u in D and (44), it can
be shown that (60) admits the following representation:

‖u‖2
H 1(D) =

∫
∂D

[v(ξ) · t(ξ;u) − u(ξ) · t+(ξ;v)] dsξ. (61)

With the above settings, one is now in position to formulate the following result.

Lemma 6.3. For all u ∈ H(D),

‖u‖2
H 1(D) =

∫
∂D

[v(ξ) · t(ξ;u) − u(ξ) · t+(ξ;v)] dsξ, (62)

where v ∈ H 1
loc(�\D) is given by (55).

Proof. The statement of the lemma readily follows from (61) for u ∈ H(D), and the denseness
argument. �

Theorem 6.2. The space of single-layer potentials {Sg, g ∈ L2(�1)} given by (48) is dense
in the space of classical solutions to the homogeneous Navier equation: Lu + ρω2u = 0 in
D with respect to the H 1(D) norm, i.e. S (L2(�1)) is dense with respect to the H 1(D) norm
in H(D).

Proof. Let u ∈ H(D) and assume that (Sg,u)H 1(D) = 0 for all g ∈ L2(�1). Then, by
lemma 6.2, one can write (g,S∗u)L2(�1) = 0 for all g ∈ L2(�1) and consequently S∗u = 0
(see (53)). Now, by making use of Holmgren’s uniqueness theorem, one can conclude that
v = 0 in �−. Finally it follows from lemma 6.3 that ‖u‖H 1(D) = 0, hence u = 0 in D. �

6.2. Mathematical validation

As mentioned in section 3, the linear sampling method for solving inverse scattering problems
is based on the integral equation of the first kind (33) which, in general, does not possess a
solution. In fact, (33) constitutes an improperly posed mathematical problem in the sense of
Hadamard [26]. To examine the problem further, let F be the near-field operator as defined
by (31). With the results of the preceding section, the fact that (33) is in general not solvable
can be overcome with the following result.



Elastodynamic obstacle identification in a semi-infinite solid 725

Theorem 6.3 (Existence). Let z ∈ �C be fixed, d ∈ R
3 with ‖d‖ = 1, and let � be of class

C1,α . Then, for every ε > 0, there exists g(·;z,d) ∈ L2(�1) such that

‖Fg(·;z,d) − Û (·,z) · d‖L2(�2) < ε, (63)

where

lim
z→y∈�

‖g(·;z,d)‖L2(�1) = ∞, (64)

and the single-layer potential Sg(x;z,d) defined by (48) becomes unbounded as z → x ∈ �.

Proof. Consider the interior boundary value problem given by

Lw(x) + ρω2w(x) = 0, x ∈ �C, (65)

w(x) + Û (x,z) · d = 0, x ∈ �, z ∈ �C, (66)

for the scattering by an immovable rigid inclusion (the Dirichlet problem), and by

Lw(x) + ρω2w(x) = 0, x ∈ �C, (67)

t(x;w) + T̂ (x,z) · d = 0, x ∈ �, z ∈ �C, (68)

for the scattering by a cavity (the Neumann problem) in terms of w. It follows from theorem 6.2
that the solution, w, to the Navier equation (65) (or 67) can be approximated arbitrarily well
by a single-layer potential Sg with respect to the H 1(�C) norm, i.e. for every ε > 0, there
exists g(·;z,d) ∈ L2(�1) such that

‖w − Sg(·;z,d)‖H 1(�C) < c0ε, R�c0 >0. (69)

Now, by virtue of the continuity of the norm, boundary conditions (66) and (68), and the trace
theorem [33], there exist positive constants c1 and c2 such that

‖Û (·,z) · d + Sg(·;z,d)‖H 1/2(�) < c1ε,

for the scattering by an immobile rigid inclusion (the Dirichlet problem), and

‖T̂ (·,z) · d + t(·;Sg(·;z,d))‖H−1/2(�) < c2ε,

for the scattering by a cavity (the Neumann problem). The proof of (63) now follows by virtue
of theorem 6.1.

With the above approximation property of the single-layer potential Sg and the trace
theorem, there exist positive constants c and c′ such that

‖Û (·,z) · d‖H 1/2(�) � c‖w‖H 1(�C) � c(c0ε + ‖Sg(·;z,d)‖H 1(�C)), (70)

‖T̂ (·,z) · d‖H−1/2(�) � c′(c0ε + ‖Sg(·;z,d)‖H 1(�C)). (71)

Since the single-layer integral operator S is bounded [34] from L2(�1) → H 1(�C) for
g(·;z,d) ∈ L2(�1), there exists a constant c′′ > 0 such that

‖Sg(·;z,d)‖H 1(�C) � c′′‖g(·;z,d)‖L2(�1). (72)

With (70) to (72) and the limiting properties of the half-space Green functions

lim
z→y∈�

‖Û (·,z) · d‖H 1/2(�) = ∞, lim
z→y∈�

‖T̂ (·,z) · d‖H−1/2(�) = ∞, (73)

the second claim of the theorem (given by (64)) and the unboundedness of Sg immediately
follow. �
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Remark. One may note that (73) is a consequence of the following reasoning: as
�C �z → y ∈ �, the radiating field v(x,z) = Û (x,z) · d that satisfies the homogeneous
Navier equation outside any ball containing z exhibits the singular behaviour

v(y,z) = O

(
1

‖y − z‖
)

, as ‖y − z‖ → 0 (74)

owing to the singularity of the half-space displacement Green functions as ‖y − z‖ → 0 (see
[22]). In what follows, v(·,z) /∈H 1

loc(�
−) since

∇v(y,z) = O

(
1

‖y − z‖2

)
, as ‖y − z‖ → 0.

Hence, the restrictions of v(x,z) on � given by Û (y,z) · d and T̂ (y,z) · d,y ∈ � are so
that Û (·,z) · d /∈H 1/2(�) and T̂ (·,z) · d /∈H−1/2(�).

Theorem 6.4 (Uniqueness). The near-field operator F : L2(�1) → L2(�2) given by (31) is
injective (one-to-one) if and only if there does not exists neither a Dirichlet nor a Neumann
eigenfunction for the obstacle �C that is a single-layer potential Sg defined by (48).

Proof. The equation

Fg = 0 (75)

is solvable (see theorem 6.1) if and only if the following interior boundary value problem

Lw(x) + ρω2w(x) = 0, x ∈ �C, (76)

with

w(x) = 0, x ∈ �, (77)

for the Dirichlet problem and

t(x;w) = 0, x ∈ �, (78)

for the Neumann problem, admits a solution. But (76) and (77) constitute the Dirichlet
eigenvalue problem for −L in �C, while (76) and (78) are the Neumann eigenvalue problem
for −L in �C. From theorem 6.2, w can be approximated arbitrarily well by a single-layer
potential Sg with respect to the H 1(�C) norm. Thus, the statement that (75) holds with
g �= 0 is equivalent to the existence of the Dirichlet (problem (76) and (77)) or Neumann ((76)
and (78)) eigenfunction w = Sg for �C, which is in contradiction with the statement of the
theorem and completes the proof. �

Remark. One can infer from the result of the above theorem that the unboundedness property
of g (see theorem 6.3) is not due to elements of the nullspace of F herein denoted by ker F .

6.3. Reconstruction of an infinitesimal cavity

To investigate the performance of the linear sampling method for an obstacle of vanishing
size, consider the elastic-wave reconstruction of a ‘small’ cavity hidden in the half-space �.
Without loss of generality, it is assumed that the cavity, denoted as Bτ (z), is a ball of radius
τ >0 centred at a fixed sampling point z ∈ �. In this setting, one is to solve the equation(
F τgτ

z,d

)
(ξ) :=

∫
�1

US
τ (ξ,x) · gτ

z,d(x) dsx

= Û (ξ,z) · d, ξ ∈ �2, d ∈ R
3, ‖d‖ = 1, (79)
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where US
τ (ξ,x) is the scattered tensor induced by Bτ (z) ⊂ � at ξ ∈ �2 due to a unit point

source at x ∈ �1. For a vanishing cavity size, it can be shown [24] that US
τ admits the

representation

US
τ (ξ,x) = −4πτ 3

3
(ρω2[Û (z, ξ)]T · Û (z,x) − M(ξ,x)) + o(τ 3), as τ → 0, (80)

where M(ξ,x) is a 3 × 3 matrix with components Mi
k(ξ,x) = σ̂i (z, ξ) :A : σ̂k(z,x)

constructed from the elastodynamic stress Green tensor σ̂k = C : ∇ûk , and

A = 3(λ + 2µ)

2µ(9λ + 14µ)

[
5I4 − 7λ + 2µ

2(3λ + 2µ)
I2 ⊗ I2

]
.

On employing (9) and neglecting higher order terms in (80), one can write

(F τg)(ξ) = −4πτ 3

3


ρω2Û (ξ,z) · α −


σ̂1(z, ξ) :A :β

σ̂2(z, ξ) :A :β
σ̂3(z, ξ) :A :β





 , ξ∈ �2, (81)

where ∫
�1

û1(z,x)g1(x) + û2(z,x)g2(x) + û3(z,x)g3(x) dsx = α,

(82)∫
�1

σ̂1(z,x)g1(x) + σ̂2(z,x)g2(x) + σ̂3(z,x)g3(x) dsx = β.

As can be seen from (81), Û (ξ,z) · d, ξ∈ �2 is in the range of F τ , and one can conclude that
(79) is solvable. By use of (81), (82) and a 9×3 stress matrix

Σ̂(z,x) = (σ̂1(z,x), σ̂2(z,x), σ̂3(z,x)),

(79) can be rewritten as∫
�1

Û (z,x) · gτ
z,d(x) dsx = − 3

4πτ 3

1

ρω2
d,

(83)∫
�1

Σ̂(z,x) · gτ
z,d(x) dsx = 0.

In view of (80) which demonstrates that the kernel of F τ is degenerate (see [29]), (83) is not
uniquely solvable. As a result, a bounded solution of (83) can be specified, e.g., as

gτ
z,d(x) = − 3

4πτ 3

1

ρω2
([Û (z,x)]T ·az,d + [Σ̂(z,x)]T · bz,d), (84)

where az,d and bz,d are the solution of the linear algebraic system(∫
�1

Û (z,x) · [Û (z,x)]T dsx

)
·az,d +

(∫
�1

Û (z,x) · [Σ̂(z,x)]T dsx

)
· bz,d = d,(∫

�1

Σ̂(z,x) · [Û (z,x)]T dsx

)
·az,d +

(∫
�1

Σ̂(z,x) · [Σ̂(z,x)]T dsx

)
· bz,d = 0,

characterized by a positive definite coefficient matrix. Now, one can formulate the following
result.

Theorem 6.5. The inverse problem for the elastic-wave reconstruction of a ‘small’ obstacle
Bτ (z) ⊂ � with characteristic size τ > 0 is solvable by the linear sampling method. Its
solution, gτ (·;z,d) ∈ L2(�1), behaves so that

lim
τ→0

‖gτ (·;z,d)‖L2(�1) = ∞.
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Figure 4. Sampling point in the exterior domain

Proof. The assertion of the theorem readily follows from (84) by taking τ → 0. �

Remark. It was previously shown (see theorem 6.3) that if the sampling point z
is inside the scatterer, i.e. z ∈ Bτ (z), there exists gτ (·;z,d) ∈ L2(�1) such that
limz→y∈∂Bτ (z) ‖gτ (·;z,d)‖L2(�1) = ∞. On the other hand, theorem 6.5 states that the norm
‖gτ (·;z,d)‖L2(�1) becomes unbounded as the boundary ∂Bτ (z) approaches the sampling
point z, i.e. as τ = miny∈∂Bτ (z) ‖z − y‖ → 0. Accordingly, theorems 6.3 and 6.5 illustrate
the fact that the respective limits are interchangeable.

6.4. Behaviour of the solution in the exterior domain

To provide a comprehensive mathematical basis for the linear sampling method dealing with
inverse scattering problems in elastodynamics, the behaviour of the solution to the near-field
integral equation (27) when the sampling point lies outside of the scatterer (z ∈ �−) is the
focus of this section. In other words, one has to examine the integral equation

(Fgz,d)(ξ) = Û (ξ,z) · d, ξ ∈ �2, z ∈ �−, d ∈ R
3, ‖d‖ = 1. (85)

With the assumption that gz,d ∈ L2(�1) and that z ∈ �− is fixed, it is easy to show
that Û (ξ,z) · d, ξ ∈ �2 is not in the range of F . In particular, the opposite claim that
Û (ξ,z) · d, ξ ∈ �2 is in the range of F contradicts the analyticity of

vS(ξ) =
∫

�1

US(ξ,x) · gz,d(x) dsx, ξ ∈ �−.

In what follows, an approximation of (85) that is solvable in the L2-sense will be considered
instead.

To this end, let z ∈ �−. With reference to figure 4, consider the perturbed scatterer
domain �̃C,τ = �C ∪ Hτ ∪ B+

τ (z), where B+
τ is a semi-ball of radius τ >0 centred at z, and

Hτ is a cylinder-like domain of radius τ >0 smoothly connecting �C and B+
τ (z). Further, let

� and �̃τ denote the respective boundaries of �C and �̃C,τ , so that �τ = �̃τ \(� ∩ �̃τ ) is the
‘exposed’ boundary of the appendage in figure 4. With these definitions, one may analyse the
integral equation∫

�1

Ũ
S

τ (ξ,x) · g̃τ
z,d(x) dsx = Û (ξ,z) · d,

ξ ∈ �2, z ∈ �̃C,τ ⊂�, d ∈ R
3, ‖d‖ = 1,
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introduced as a perturbation of (85), where Ũ
S

τ is the scattered tensor induced by �̃C,τ ⊂� at
ξ∈ �2 due to a unit point source at x ∈ �1. On denoting

Ũ
S

τ (ξ,x) = US(ξ,x) + V S
τ (ξ,x), (86)

where US is the original (i.e. unperturbed) scattered tensor, one can formulate the following
claim.

Theorem 6.6. Let z ∈ �− be fixed, and d ∈ R
3 with ‖d‖ = 1. Then, for every ε > 0, there

exists g̃τ
z,d ∈ L2(�1), τ >0, such that∥∥∥∥

∫
�1

[
US(·,x) + V S

τ (·,x)
] · g̃τ

z,d(x) dsx − Û (·,z) · d

∥∥∥∥
L2(�2)

<ε, (87)

where

lim
τ→0

V S
τ (·,x) = 0, and lim

τ→0

∥∥̃gτ
z,d

∥∥
L2(�1)

= ∞. (88)

Proof. With the assumption that z ∈ �̃C,τ ⊂ � is fixed and decomposition (86), one can
infer from theorem 6.3 that there exists a solution g̃τ

z,d ∈ L2(�1) that satisfies the inequality
(87). Further, on employing the interchangeability of the limits z → y ∈ �̃τ and τ → 0 as
examined in section 6.3, it follows from (64) that

lim
τ→0

∥∥g̃τ
z,d

∥∥
L2(�1)

= ∞.

To show that limτ→0 V S
τ (·,x) = 0, it is useful to employ an integral representation of the

perturbed scattered field Ũ
S

τ (ξ,x), ξ ∈ �2,x ∈ �1 corresponding to �̃C,τ , i.e.

Ũ
S

τ (ξ,x) =
∫

�̃τ

{
[Û (η, ξ)]T · T̃

S
τ (η,x) d�η − [T̂ (η, ξ)]T · Ũ

S
τ (η,x)

}
d�η. (89)

Likewise, one may write

US(ξ,x) =
∫

�̃τ

{[Û (η, ξ)]T ·T S(η,x) d�η − [T̂ (η, ξ)]T ·US(η,x)} d�η, (90)

for the unperturbed scattered field on the same (perturbed) boundary �̃τ .
For scattering problems where �C (and thus �̃C,τ ) is a cavity, T S(η,x) = −T̂ (η,x), η ∈

�,x ∈ �1, and T̃
S

τ (η,x) = −T̂ (η,x), η ∈ �̃τ ,x ∈ �1. On the basis of this result and (89)
to (90), one finds that

US(ξ,x) − Ũ
S

τ (ξ,x) = −
∫

�̃τ

[T̂ (η, ξ)]T · (
US(η,x) − Ũ

S
τ (η,x)

)
d�η + W S

τ (ξ,x), (91)

where

W S
τ (ξ,x) =

∫
�τ

[Û (η, ξ)]T · (T S(η,x) + T̂ (η,x)) d�η = O(τq),

as τ → 0, ξ ∈ �2,x ∈ �1 and q � 1. Although the exact value of q is not relevant in this
study, it can be shown using the divergence theorem that q = 2 for the problem of interest
(see also [24]). To examine the behaviour of the residual integral in (91), it is useful to note

that the boundary distribution of the perturbed scattered field Ũ
S
τ (η,x) solves the regularized

integral equation

Ũ
S

τ (y,x) +
∫

�̃τ

[T̂ (η,y)]T
1 · (

Ũ
S

τ (η,x) − Ũ
S

τ (y,x)
)

d�η +
∫

�̃τ

[T̂ (η,y)]T
2 · Ũ

S
τ (η,x) d�η

= −
∫

�̃τ

[Û (η,y)]T · T̂ (η,x) d�η, y ∈ �̃τ , (92)
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where the traction Green tensor, T̂ (η,y) = [T̂ (η,y)]1 + [T̂ (η,y)]2, is decomposed into its
singular [T̂ (η,y)]1 and regular [T̂ (η,y)]2 parts (see [36]). With reference to �̃τ , boundary
integral equation for the unperturbed scattered field US(η,x) can be written as

US(y,x) +
∫

�̃τ

[T̂ (η,y)]T
1 · (US(η,x) − US(y,x)) d�η +

∫
�̃τ

[T̂ (η,y)]T
2 · US(η,x) d�η

= −
∫

�̃τ

[Û (η,y)]T · T̂ (η,x) d�η

+
∫

�τ

[Û (η,y)]T · (T̂ (η,x) + T S(η,x)) d�η, y ∈ �̃τ . (93)

Here it should be noted that (i) both (elastodynamic) integral equations are by definition
well posed, and (ii) all integrands in (92) and (93) are at most weakly singular owing to the

assumption that Ũ
S

τ and US are Hölder continuous. On subtracting (93) from (92), the integral
equation for the perturbed scattered field can be recast as

V S
τ (y,x) +

∫
�̃τ

[T̂ (η,y)]T
1 · (

V S
τ (η,x) − V S

τ (y,x)
)

d�η +
∫

�̃τ

[T̂ (η,y)]T
2 · V S

τ (η,x) d�η

= −
∫

�τ

[Û (η,y)]T · (T̂ (η,x) + T S(η,x)) d�η, y ∈ �̃τ , (94)

where US is assumed to be known beforehand. By virtue of the divergence theorem, it can
be shown that the right-hand side of (94) behaves as O(τ 2) as τ → 0. As a result, solution
of the linear integral equation (94) (which, in view of (92) and (93), constitutes a well-posed
problem for any τ >0) exhibits the behaviour

V S
τ (y,x) = O(τ 2), as τ → 0, y ∈ �̃τ , x ∈ �1.

By virtue of (91), this result concludes the proof of (88).
For scattering problems where �C is an immobile rigid obstacle, (88) can be established

using an approach similar to that presented above. For brevity reasons, however, this proof
will be omitted. �

Remark. To provide further insight into the behaviour of gz,d when z ∈ �−, it can also
be shown using the Tikhonov regularization (see [5] for problems in acoustics) that for every
ε>0 and δ>0 there exists gε,δ

z,d ∈ L2(�1), such that∥∥∥∥
∫

�1

US(·,x) · gε,δ
z,d(x) dsx − Û (·,z) · d

∥∥∥∥
L2(�2)

< ε + δ,

where

lim
δ→0

∥∥gε,δ
z,d

∥∥
L2(�1)

= ∞.

With the result of theorems 6.3, 6.4 and 6.6, it is seen that the function
‖g(·;z,d)‖L2(�1),z ∈ �, can be used as an efficient tool for exposing the support of
the hidden scatterer �C through the region of its bounded values. However, since
‖g(·;z,d)‖L2(�1) exhibits an unbounded behaviour in �−, it is more convenient to employ
1/‖g(·;z,d)‖L2(�1),z ∈ �, as an indicator (i.e. characteristic function) of the hidden scatterer.

Although herein formulated and analysed for near-field elastic waves in a half-space,
the linear sampling method derived in this study is also valid for near-field elastic scattering
problems in a free space. This can be achieved by replacing the elastodynamic half-space
Green function ûk by the corresponding free-space fundamental solution [30].
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Figure 5. Ellipsoidal cavity and testing configuration in the half-space ξ3 > 0.

7. Results

As elucidated earlier, identification of the support of an obstacle �C hidden in a semi-infinite
solid �, can be effected by solving the near-field linear integral equation of the first kind (27)
in a sampling region D ⊂ � containing the scatterer. In particular, this process is done by
exciting the half-space with a ‘fictitious’ point source at a sampling point z ∈ D acting in the
direction given by a unit vector d, solving (27) for g(·;z,d), and plotting 1/‖g(·;z,d)‖L2(�1)

for all z ∈ D. More precisely, it was shown via theorems 6.3 through 6.6 that the norm of the
density gz,d = g(·;z,d) becomes unbounded whenever z /∈�C. In what follows, the support
of �C can be identified by resolving the operator equation

Fgz,d = bz,d (95)

where F is the linear compact operator defined by (31), and bz,d = Û (·,z) · d. To obtain
a stable solution to the ill-posed equation (95), the Tikhonov regularization method [26] is
employed in this study wherein the regularized solution of (95) can be found by minimizing
the Tikhonov functional

Jα(gz,d) = ‖Fgz,d − bz,d‖2
L2(�2)

+ α‖gz,d‖2
L2(�1)

, R�α>0, (96)

where the regularization parameter α is chosen according to Morozov’s discrepancy principle
[32].

7.1. Reconstruction of a single-cavity using triaxial seismic excitation

To illustrate the performance of the linear sampling method for near-field elastodynamic
inverse problems, the next example deals with the elastic-wave imaging of an ellipsoidal void
(the Neumann problem) buried in a semi-infinite solid as depicted in figure 5. With reference
to the Cartesian frame, {O; ξ1, ξ2, ξ3}, the cavity is centred at (0, 0, 4a)T; its semi-axes lengths,
aligned with the global coordinate system, are taken as (1.8a, a, 0.6a)T, where a represents
the semi-axis in the ξ2-direction.

On assuming that the source surface �1 and the observation surface �2 coincide (i.e.
�1 = �2 = �), the numerical example employs noise-free synthetic data US(ξ,x), computed
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Figure 6. Plot of 1/(a2‖g(·; z, d)‖L2(�)) exposing the ‘true’ ellipsoidal cavity from triaxial
seismic excitation (ξ3 =4a, ω̄ = 1.8,d = (1, 0, 0)T).

using the regularized boundary integral equation [35]. The elastic properties of the half-space
and the frequency of excitation are chosen as

C = 3

2
µI2 ⊗ I2 + 2µI4, ω̄ = 3.6a

ω√
µ/ρ

= 1.8, µ>0. (97)

In the simulation, the cavity is exposed sequentially using 40 source points according to
the testing grid shown in figure 5. From each point of the grid, the void is illuminated in
sequence using vibratory forces acting in three perpendicular directions (ξ1, ξ2 and ξ3) with
respective magnitude P1 = P2 = P3 = P = 0.2µa2. For each point source x ∈ �, the
noise-free synthetic scattered tensor, US(ξ,x), ξ,x ∈ �, is generated at the same (forty) grid
points covering the test area 14a × 14a as illustrated in the figure.

With the above problem parameters, the near-field equation (95) is used to compute
the density gz,d where the probing point z runs through a rectangular parallelepiped
(12a × 12a × 7a), a priori known to contain the scatterer. In the computation of
gz,d, the right-hand side of (95) is specified according to a ‘virtual’ point source z with
magnitude P = 0.2µa2, vibrating with frequency ω in the direction given by the unit vector
d = (1, 0, 0)T.

Figure 6 shows the plot of 1/(a2‖g(·;z,d)‖L2(�)) as a function of the probing point z in
the horizontal plane ξ3 = 4a (covering an area of 12a × 12a), where g(·;z,d) is computed
over a 20 × 20 grid of uniformly spaced sampling points. As can be seen from the figure, the
distribution indicates the support of the hidden scatterer.

Figures 7(a) and (b) depict, respectively, the contour plots of 1/‖(a2g(·;z,d)‖L2(�)) as a
function of the probing point z in the horizontal plane ξ3 = 4a, and in the vertical plane ξ1 = 0.
In both horizontal (12a × 12a) and vertical (12a × 7a) planes, a 20 × 20 grid of uniformly
spaced sampling points was used in the numerical evaluation of the density g(·;z,d). As
can be seen from the figure, the region of interest (i.e. containing the scatterer) is identified
by the regularized sampling method. It should be noted, however, that while the presence
of an elliptically shaped object is clearly visible in the horizontal plane from figure 7(a), the
reconstruction of the support of the scatterer is somewhat smeared on the vertical plane shown
on figure 7(b). This difficulty in the reconstruction on the vertical plane can be associated
with (i) the limited aperture effect (the surface patch � subtends a solid angle of only 3.42 sr
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Figure 7. Contour plot of 1/(a2‖g(·; z, d)‖L2(�)) for the identification of an ellipsoidal void
using triaxial point source (ω̄ = 1.8,d = (1, 0, 0)T): (a) horizontal plane, ξ3 = 4a and (b) vertical
plane, ξ1 = 0.

ξ
3

a/

ξ
1

a/
ξ

2
a/

Figure 8. Level surface of 1/(a2‖g(·; z, d)‖L2(�)) in the rectangular box (12a × 12a × 7a) with
level value 10−3 (ω̄ = 1.8,d = (1, 0, 0)T).

at the centre of the ellipsoidal cavity), and (ii) the choice of the direction, d, (in this case,
d = (1, 0, 0)T) of the point source at the sampling point z (see also [3]).

To provide further insight into the performance of the method, figure 8 illustrates the
reconstructed cavity as level set of 1/(a2‖g(·;z,d)‖L2(�)) in the rectangular parallelepiped
(12a × 12a × 7a) with the level value 10−3 chosen in accordance to figure 6. In the figure,
the true ellipsoidal cavity is also shown inside the level surface.

7.2. Reconstruction of two cavities using triaxial seismic excitation

Motivated by the fact that the near-field equation (95) does not directly involve the boundary
of the scatterer, an attempt to identify two isolated ellipsoidal cavities buried in the elastic half-
space is undertaken to examine the generality of the linear sampling method. With reference to
the Cartesian frame, {O; ξ1, ξ2, ξ3}, the cavities are centred, respectively, at (−4a,−2a, 4a)T
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Figure 9. Ellipsoidal cavities and testing configuration in the half-space ξ3 >0.
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Figure 10. Contour plot of 1/(a2‖g(·; z, d)‖L2(�)) for the reconstruction of an two ellipsoidal
cavities using triaxial point source (ω̄ = 1.8,d = (0, 1, 0)T): horizontal plane, ξ3 = 4a.

and (4a, 2a, 4a)T as shown in figure 9. Their semi-axes lengths, aligned with the global
coordinate system, are taken, respectively, as (1.8a, a, 0.6a)T and (a, 1.8a, 0.6a)T.

As in the previous example, the cavities are exposed using 40 point sources with magnitude
P = 0.2µa2 according to the testing grid depicted in figure 9. The constitutive parameters
of the half-space and the frequency of excitation are again chosen according to (97). For
every point source x∈ �, the noise-free scatterer field US(ξ,x), ξ,x ∈ � is evaluated at the
same (forty) grid points over the test area 14a × 14a using the regularized boundary integral
formulation [35]. With such synthetic data, (95) is solved for the density gz,d at a 20 × 20
grid of sampling points, uniformly spaced over a 12a × 12a square area in the equatorial
plane ξ3 = 4a. In the simulation, a fictitious point source with magnitude P = 0.2µa2 and
polarization d = (0, 1, 0)T, is specified at every sampling point z.

Figure 10 illustrates the contour plot of 1/(a2‖g(·;z,d)‖L2(�)). The presence of two
isolated cavities should be again apparent from the display.
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8. Conclusions

In this study, the problem of reconstructing three-dimensional obstacles buried in a semi-
infinite solid from near-field, surface seismic measurements is investigated by means of the
linear sampling method that is rooted in far-field acoustics. To this end, a three-dimensional
inverse analysis of elastic waves scattered by an obstacle in a semi-infinite solid is formulated
as a linear integral equation of the first kind whose solution becomes unbounded in the
exterior of the hidden scatterer. This unboundedness property of the solution is used to
determine the support of the unknown scatterer. For a rigorous approach to the problem,
the theoretical foundation of the linear sampling method is systematically extended to near-
field elastodynamics in semi-infinite solids, including the necessary existence and uniqueness
theorems. Numerical examples indicate that the new technique is capable of effectively
identifying subterranean obstacles, both in terms of their location, topology and approximate
geometry.
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