Preliminary Assessment of Injection, Storage, and Recovery of Freshwater in the Lower Hawthorn Aquifer, Cape Coral, Florida

By Vicente Quiñones-Aponte and Eliezer J. Wexler
U.S. Geological Survey

Water-Resources Investigations Report 94-4121

Prepared in cooperation with the
City of Cape Coral and the
South Florida Water Management District

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

District Chief
U.S. Geological Survey

Suite 3015
227 N. Bronough Street
Tallahassee, FL 32301

Copies of this report can be purchased from:
U.S. Geological Survey

Earth Science Information Center
Open-File Reports Section
Box 25286, MS 517
Denver Federal Center Denver, CO 80225

CONTENTS

Abstract 1
Introduction 1
Purpose and Scope 3
Description of Study Area 3
Subsurface Injection, Storage, and Recovery of Freshwater Concept 4
Factors Affecting Recovery Efficiency 4
General Hydrogeologic Setting 5
Hydrogeology of the Lower Hawthorn Aquifer 7
Hydraulic Characteristics of the Lower Hawthorn Aquifer 7
Theoretical Background 9
Density-Dependent Ground-Water Flow Equation 9
Advection and Hydrodynamic Dispersion 10
Macrodispersion 11
Advective-Dispersive Solute-Transport Equation 11
Preliminary Assessment of Injection, Storage, and Recovery of Freshwater 11
Grid Design 12
Boundary and Initial Conditions 12
Solute Source 14
Time Steps 14
Model Simulation Results for the Lee County Water Treatment Plant-Calibration and Testing 15
Model Simulations Results for Cape Coral-Effects of Operational Factors on Recovery Efficiency 16
Baseline Simulation 18
Rates of Injection and Recovery 21
Volume of Water Injected 23
Storage Time 23
Water Injected into Selected Flow Zones 24
Successive Cycles of Injection, Storage, and Recovery 24
Chloride Concentrations in Injected and Native Waters 25
Sensitivity Analysis 25
Permeability and Vertical Anisotropy 27
Hydrodynamic Dispersion and Effective Porosity 27
Limitations 28
Summary and Conclusions 28
References Cited 30
Appendix 1: Hierarchic levels of subprograms in SUTRA and QSUTRA showing major changes to the original code (SUTRA) 33
Appendix 2: QSUTRA program listing (model version 1284-2DICG modified for regular grid) 35
Appendix 3: Subprograms SOLVEC and LSORA used to solve system of equations 93
Appendix 4: Comparison of results from SUTRA and QSUTRA for Henry's (1964) seawater intrusion problem 101

FIGURES

1. Map showing location of the Cape Coral study area, wells, and the Lee County Water Treatment Plant site 2
2. Profile showing geologic formations, hydrostratigraphic units, and local aquifers underlying Cape Coral 6
3. Graphs showing percent of total flow estimated using velocity and caliper borehole logs for well L-M-2426 at Cape Coral 8
4. Histogram of apparent transmissivity values estimated from wells tapping the lower Hawthorn aquifer at Cape Coral 9
5. Sectional views of the cylindrical coordinate finite-element grid used to study previous subsurface injection, storage, and recovery of freshwater in the lower Hawthorn aquifer at the Lee County Water Treatment Plant 13
6. Sectional views of the cylindrical coordinate finite-element grid used to study hypothetical subsurface injection, storage, and recovery of freshwater in the lower Hawthorn aquifer at Cape Coral 13
7. Graphs showing observed and model simulated head increase during the first 7 days of injection and chloride concentration breakthrough curves at observation wells L-2530 and L-3224 during the injection phase of test 3 at the Lee County Water Treatment Plant 16
8. Graph showing observed and model-simulated chloride concentration in water recovered from injection well L-3225 during the recovery phase of test 3 at the Lee County Water Treatment Plant 17
9. Graph showing observed and model-simulated chloride concentration in water recovered from injection well L- 3225 during the recovery phase of test 2 at the Lee County Water Treatment Plant 18
10. Graphs showing chloride distribution profiles at different times during the injection phase of the baseline simulation 20
11. Graph showing vector field representing pore-water velocities in a radial section of the flow zones at the end of the injection phase of the baseline simulation 21
12. Graph showing vector field representing pore-water velocities in a radial section of the flow zones at the end of the recovery phase of the baseline simulation 21
13. Graph showing chloride distribution profile at the end of the recovery phase of the baseline simulation. 22
14. Graph showing relation between recovery efficiency and injection or recovery rate in the lower Hawthorn aquifer for $\mathrm{Q}_{\mathrm{R}} / \mathrm{Q}_{\mathrm{I}}=1$ 22
15. Graph showing relation between recovery efficiency and recovery rate/injection rate ratio in the lower Hawthorn aquifer 22
16. Graph showing relation between recovery efficiency and volume of water injected in the lower Hawthorn aquifer 23
17. Graph showing relation between recovery efficiency and storage time in the lower Hawthorn aquifer 23
18. Graphs showing chloride distribution profiles at the end of a 30-day injection period for the cases of injection into the upper and lower flow zones 24
19. Graph showing relation between recovery efficiency and successive subsurface injection, storage, and recovery of freshwater cycles in the lower Hawthorn aquifer 25
20. Graphs showing relative sensitivity of recovery efficiency to variations in (A) permeability values and vertical anisotropy ratio, (B) longitudinal and transverse dispersivities and the ratio of transverse to longitudinal dispersivities, and (C) effective porosity 26
TABLES
21. General hydrogeologic characteristics of flow zones and confining units in the lower Hawthorn aquifer at the Lee County Water Treatment Plant and Cape Coral 7
22. Specific capacity and apparent transmissivity values for wells completed in the lower Hawthorn aquifer at Cape Coral 9
23. Results of two injection, storage, and recovery of freshwater tests conducted from a previous study in the lower Hawthorn aquifer at the Lee County Water Treatment Plant 15
24. Characteristics of flow zones and confining units used to model the lower Hawthorn aquifer at the Lee County Water Treatment Plant 17
25. Fluid, solute, and rock matrix properties used in the simulations 17
26. Characteristics of flow zones and confining units used to model the lower Hawthorn aquifer at Cape Coral 18
27. Conditions and results for recovery times and efficiencies for the baseline simulation and other simulations of subsurface freshwater injection, storage, and recovery for the lower Hawthorn aquifer at Cape Coral 19

Multiply	By	To obtain
millimeter (mm)	0.03937	inch
millimeter per year $(\mathrm{mm} / \mathrm{yr})$	0.03937	inch per year
meter (m)	3.281	foot
meter per second $(\mathrm{m} / \mathrm{s})$	3.281	foot per second
meter per day $(\mathrm{m} / \mathrm{d})$	3.281	foot per day
kilometer (km)	0.6214	mile
square meter $\left(\mathrm{m}^{2}\right)$	10.76	square foot
meter squared per second $\left(\mathrm{m}^{2} / \mathrm{s}\right)$	10.76	foot squared per second
meter squared per day $\left(\mathrm{m}^{2} / \mathrm{d}\right)$	10.76	foot squared per day
square kilometer $\left(\mathrm{km} \mathrm{km}^{2}\right)$	0.3861	square mile
cubic $\operatorname{meter}\left(\mathrm{m}^{3}\right)$	35.31	cubic foot
cubic meter $\left(\mathrm{m}^{3}\right)$	264.2	gallon
cubic meter per second $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	264.2	gallon per second
cubic meter per day $\left(\mathrm{m}^{3} / \mathrm{d}\right)$	264.2	gallon per day
liter per second per meter $(\mathrm{L} / \mathrm{s} / \mathrm{m})$	4.831	gallon per minute per foot
kilogram per meter per second $(\mathrm{kg} / \mathrm{m} / \mathrm{s})$	0.6716	pound mass per foot per second
kilogram per meter per second squared $\left(\mathrm{kg} / \mathrm{m} / \mathrm{s}^{2}\right)$	0.6716	pound mass per foot per second squared
kilogram per cubic meter $\left(\mathrm{km} / \mathrm{m}^{3}\right)$	0.0624	pound per cubic foot

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)— a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

The standard unit for transmissivity (T) is cubic meter per day per square meter times meter of aquifer thickness. This mathematical expression reduces to meter squared per day.

Temperature in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ can be converted to degrees Fahrenheit $\left({ }^{(} \mathrm{F}\right)$ as follows:
${ }^{\circ} \mathrm{F}=1.8\left({ }^{\circ} \mathrm{C}\right)+32$

Additional Abbreviations

RO = reverse osmosis
SISRF = subsurface injection, storage, and recovery of freshwater
SUTRA = Saturated-Unsaturated TRAnsport
$\mathrm{mg} / \mathrm{L}=$ milligrams per liter

VI Contents

Preliminary Assessment of Injection, Storage, and Recovery of Freshwater in the Lower Hawthorn Aquifer, Cape Coral, Florida

By Vicente Quiñones-Aponte and Eliezer J. Wexler

Abstract

A preliminary assessment of subsurface injection, storage and recovery of fresh canal water was made in the naturally brackish lower Hawthorn aquifer in Cape Coral, southwestern Florida. A digital modeling approach was used for this preliminary assessment, incorporating available data on hydrologic conditions, aquifer properties, and water quality to simulate density-dependent ground-water flow and advective-dispersive transport of a conservative ground-water solute (chloride ion).

A baseline simulation was used as reference to compare the effects of changing various operational factors on the recovery efficiency. A recovery efficiency of 64 percent was estimated for the baseline simulation. Based on the model, the recovery efficiency increases if the injection rate and recovery rates are increased and if the ratio of recovery rate to injection rate is increased. Recovery efficiency decreases if the amount of water injected is increased; slightly decreases if the storage time is increased; is not changed significantly if the water is injected to a specific flow zone; increases with successive cycles of injection, storage, and recovery; and decreases if the chloride concentrations in either the injection water or native aquifer water are increased. In everal hypothetical tests, the recovery efficiency fluctuated between 22 and about 100 percent.

Two successive cycles could bring the recovery efficiency from 60 to about 80 percent. Interlayer solute mass movement across the upper and lower boundaries seems to be the most important factor affecting the recovery efficiency. A sensitivity analysis was performed applying a technique in
which the change in the various factors and the corresponding model responses are normalized so that meaningful comparisons among the responses could be made. The general results from the sensitivity analysis indicated that the permeabilities of the upper and lower flow zones were the most important factors that produced the greatest changes in the relative sensitivity of the recovery efficiency. Almost equally significant changes occurred in the relative sensitivity of the recovery efficiency when all porosity values of the upper and lower flow zones and the leaky confining units and the vertical anisotropy ratio were changed.

The advective factors are the most important in the Cape Coral area according to the sensitivity analysis. However, the dispersivity values used in the model were extrapolated from studies conducted at the nearby Lee County Water Treatment Plant, and these values might not be representative of the actual dispersive characteristics of the lower Hawthorn aquifer in the Cape Coral area.

INTRODUCTION

Cape Coral, a coastal suburban community in western Lee County (fig. 1), is a fast growing city in southwestern Florida, with the population increasing at a rate of 8.5 percent during the year ending in April 1989 (City of Cape Coral, Planning Division, written commun., 1989). The city had less than 500 residents in 1960, but became the largest city in Lee County by 1983. The number of permanent residents in 1990 was estimated at more than 73,600 . Temporary residents from the northern United States and Canada typically increase the population by about 20 percent during the winter months (City of Cape Coral, Planning Division, 1988).

Figure 1. Location of the Cape Coral study area, wells, and the Lee County Water Treatment Plant site.

The rapidly increasing population has placed a stress on the potable water supply for Lee County. The upper Hawthorn aquifer (also referred to as the mid-Hawthorn aquifer) is the principal source of fresh ground water in Cape Coral. This aquifer is moderately permeable and has been subjected to severe drawdowns, particularly during a recent 3 -year drought period (1989-91). At present (1994), the most reliable municipal water supply to Cape Coral (and nearby Pine Island) is brackish water from the lower Hawthorn aquifer that is treated at a
$52,990 \mathrm{~m}^{3} / \mathrm{d}$ reverse-osmosis (RO) plant. Drawdowns in this moderately permeable aquifer have also been substantial. Increased population and water demands in Charlotte County to the north and upgradient of Cape Coral could have an effect on the amount of water available in the two aquifers.

Demand for water is seasonal with peak use occurring during the dry season (November-April) when monthly precipitation averages less than 51 mm (National Oceanic and Atmospheric Administration,

1944-88). Lawn, golf course, agricultural irrigation, and public-supply demands are highest during this period. Temporary water-use restrictions have been implemented occasionally during recent years because of drought conditions and could become permanent as the demand for water becomes more acute.

Alternative water supplies or a means of augmenting existing supplies is a major concern to water-management officials. For this reason, the U.S. Geological Survey, in cooperation with the City of Cape Coral and the South Florida Water Management District, began a study in October 1986 to assess the feasibility of subsurface injection, storage, and recovery of freshwater (SISRF) in Cape Coral. The objectives of the study were to: (1) define the runoff pattern of the freshwater canal system, (2) assess quantities of excess runoff occurring during the wet season, and (3) assess the feasibility of conserving the excess runoff through subsurface storage. This report involves the development and testing of a digital model for assessing hypothetical SISRF tests in Cape Coral.

Although a site seems favorable for SISRF, the recovery efficiency at a particular site can only be determined by establishing a full-scale test facility and conducting full cycle testing under various conditions. Pilot tests are generally too expensive for preliminary assessments, such as this study. However, recent SISRF tests conducted by the U.S. Geological Survey at the Lee County Water Treatment Plant (Fitzpatrick, 1986a) can provide information, which when supplemented with less expensive computer-modeling techniques, yield usable preliminary information on recovery efficiency for an SISRF operation in Cape Coral.

Purpose and Scope

This report presents the results of a preliminary assessment of the subsurface injection, storage, and recovery operation in the lower Hawthorn aquifer in Cape Coral, Fla., using a digital modeling technique. Model simulations were made to assess: (1) recovery efficiencies for injected water; (2) the effect of repeated cycles, length of storage period, injection rates, and volumes of injected water on recovery efficiency; and (3) the relation between recovery efficiencies and the uncertainty in values for hydrogeologic properties. Hydrogeologic data from boreholes in Cape Coral and at the Lee County Water Treatment Plant were used to estimate hydraulic characteristics of the lower Hawthorn aquifer.

A modified SUTRA (Saturated-Unsaturated TRAnsport) ground-water flow and solute-transport digital model was used for the simulations. Data from an earlier study at the Lee County Water Treatment Plant were used to calibrate and test the model, and the model was then applied to simulate a hypothetical injection and recovery operation in Cape Coral. Nearly 30 simulations calculated recovery efficiencies for various changes in injection and recovery rates, volumes of water injected, storage time, and solute concentrations.

Description of Study Area

The city of Cape Coral occupies an area of $259 \mathrm{~km}^{2}$ in Lee County, southwestern Florida (fig. 1). The development of the area, originally a low-lying pineland subject to frequent flooding, began in 1958 and continued to the early 1960's with the construction of a $724-\mathrm{km}$ drainage canal system that interlaces the entire area (Knapp and others, 1984).

The Cape Coral watershed is similar to most southern Florida watersheds in that it is characterized by sheetflow runoff conditions and swamp type vegetation. Surface-water runoff in these watersheds is exclusively derived from rainfall. Rainfall is subdivided into surface-water runoff, evapotranspiration, and natural recharge to the shallow surficial aquifer. Some of the recharge to shallow aquifers returns to the drainage canals in Cape Coral. Many of the canals (totaling about 193 km in length) convey saltwater because they are affected by tidal reaches of the Caloosahatchee River and bays in the Gulf of Mexico. The remaining canals on higher lands convey surface-water runoff collected from the watershed. Although canals that convey fresh surface-water runoff and those that contain saltwater are connected, the movement of saltwater into the freshwater canals is impeded by a series of weir structures with crests that are above sea level.

The freshwater canal system contains two different systems, the north Cape Coral canal system and the south Cape Coral canal system. The canal systems are separated by U.S. Highway 78 with the northern system bounded by Gator Slough. Dredge spoil obtained during canal construction was used to raise land surface as much as 0.62 m in some areas (Fitzpatrick, 1986b). H.R. La Rose indicates that flow through the canals responds to seasonal patterns (U.S. Geological Survey, written commun., 1994). Records for the north Cape Coral canal system indicate that canal flow (not including flood peaks) ranges from 0.85 to $2.83 \mathrm{~m}^{3} / \mathrm{s}$ during wet seasons and can be as low as $0.003 \mathrm{~m}^{3} / \mathrm{s}$ during dry seasons.

Cape Coral has a subtropical climate with temperatures that are moderated by the Gulf of Mexico. The average annual temperature is $23^{\circ} \mathrm{C}$ with monthly averages ranging between $28^{\circ} \mathrm{C}$ in August and $18^{\circ} \mathrm{C}$ in January. Annual precipitation averages $1,372 \mathrm{~mm}$. Hurricanes have caused damage in the past with highvelocity winds, rainfall, and tidal surges in Lee County. Additional data on local climate are available in a summary report by the Lee County Planning Department (1977).

Subsurface Injection, Storage, and Recovery of Freshwater Concept

Subsurface injection, storage, and recovery of freshwater in saline aquifers underlying southern Florida is a method of water-supply augmentation that has received increased attention in recent years. The SISRF concept is particularly suited for southern Florida where there is: (1) a surplus of freshwater during the wet season; (2) lack of suitable surface storage reservoirs because of the high cost of land, low relief, and high rates of evapotranspiration; and (3) availability of moderately permeable aquifers near the surface which contain brackish water (defined in the table below).

The average monthly rainfall in Cape Coral is more than 178 mm during the wet season (May-October). Most of this water ultimately discharges to the tidal reach of the Caloosahatchee River or Matlacha Pass through an extensive network of drainage canals totaling about 483 km . In the SISRF concept, part of the surface freshwater discharge is intercepted, treated for removal of suspended solids, chlorinated, and then injected through wells into the lower Hawthorn aquifer or deeper aquifers. Water is stored in the aquifers for 3 to 6 months and recovered during the dry season (November-April) to augment supply or meet peak demand. This cyclic procedure of injection, storage, and recovery is repeated on an annual basis.

Success of an SISRF cycle is measured by the recovery efficiency-defined as the volume of mixed injected and native aquifer waters recovered that meets a prescribed chemical standard, expressed as a percentage of the volume of water initially injected (Meyer, 1989). Most recent studies of SISRF, including this study, have assumed the Florida Department of Environmental Protection (1993) recommended level of $250 \mathrm{mg} / \mathrm{L}$ (milligrams per liter) for chloride ion as the standard which is equivalent to about 500 to $600 \mathrm{mg} / \mathrm{L}$ total dissolved solids. Generally, the degree of water is expressed as a percent of seawater in terms of total dissolved solids. The U.S. Geological Survey has adopted the following classification:

Classification	Total dissolved solids concentration (milligrams per liter)	Percent seawater
Freshwater	<1,000	<2.9
Slightly saline (brackish water)	1,000-3,000	2.9-8.6
Moderately saline (brackish water)	3,000-10,000	8.6-29
Very saline (saltwater)	10,000-35,000	29-100
Brine	>35,000	>100

Factors Affecting Recovery Efficiency

Merritt (1985) and Merritt and others (1983) studied the potential for SISRF in southern Florida and described a number of physical mechanisms that control the recoverability of freshwater and determine the suitability of the receiving aquifer for SISRF. The three dominant processes are buoyancy stratification, mixing due to hydrodynamic dispersion, and downgradient displacement of the injected freshwater.

Buoyancy stratification describes the tendency for the lighter freshwater to rise through the aquifer as it moves outward from the injection well and overrides the denser, native saltwater. Native saltwater in the lower part of the injection zone is drawn into the well during recovery, whereas potable water remains in the upper part of the zone. Buoyancy stratification is controlled by several factors, including: (1) the density contrast between native and injected waters, (2) permeability of the injection zone, and (3) the thickness of the injection zone (Merritt, 1985). These studies indicate that the effect of buoyancy stratification is smaller in relatively thin aquifers of moderate permeability and containing native water of low total dissolved solids concentration. These type of aquifers, therefore, are suitable for SISRF. Confinement of the injection zone by low-permeability materials can also aid in limiting the upward movement of freshwater.

Hydrodynamic dispersion is the mixing of solutes between zones of high and low solute concentrations as a result of molecular diffusion and mechanical dispersion. Molecular diffusion is caused by the flux of solute particles from areas of high solute concentration to areas of low solute concentration. The effect of molecular diffusion is independent of the fluid velocity. Mechanical dispersion is caused by mixing of solutes due to variations in fluid velocities at the microscopic scale. Enhanced mechanical dispersion or macrodispersion is caused by fluid velocity variations resulting from local differences in hydraulic conductivity.

Mechanical dispersion is dependent on the fluid velocity. At the relatively large fluid velocities during injection and recovery cycles, the effects of mechanical dispersion are generally greater than those of molecular diffusion.

Dispersive mixing causes the formation of a transition zone between the native and injected waters. The size of this zone depends on the rate of injection, length of injection period, and the solute-concentration difference between native and injected waters. Because fluid velocities are highest near the well, most of the mixing occurs at the beginning of the injection process. As injection continues, the transition zone moves outward at continually decreasing fluid velocities, leading to decreasing dispersive mixing. Merritt (1985) reported that the growth of the transition zone did not keep pace with the growth of the freshwater zone for long injection periods, thus providing for enhancement of the recovery by injecting larger volumes of water.

The effect of downgradient movement of the freshwater zone on recovery efficiency depends on the length of the cycle and the regional ground-water flow velocities. It is possible to design multiple-well injection systems in situations where flow velocities are high and storage periods are long, similar to those described by Merritt (1985) or Kimbler and others (1975). These multiple well systems can be used to offset the effects of downgradient movement.

The lower Hawthorn aquifer beneath Cape Coral seems to meet most of the criteria for consideration in an SISRF scheme. The aquifer has moderate permeability with mean values representing the vertical distribution of hydraulic conductivity that ranges from 21.3 to $41.4 \mathrm{~m} / \mathrm{d}$ (estimated using data from Missimer and Associates, Inc., 1985). The aquifer, confined by low-permeability leaky units on the top and bottom, has a thickness of about 60 m . The native water is brackish with chloride concentrations ($500-600 \mathrm{mg} / \mathrm{L}$), total dissolved solids concentrations (greater than $1,000 \mathrm{mg} / \mathrm{L}$), and densities ($1,001 \mathrm{~kg} / \mathrm{m}^{3}$) not much different from the treated surface water that is proposed to be injected. Rates of regional movement of ground water are generally lower in the northern part of Cape Coral and are higher in the vicinity of the RO wells to the south (fig. 1). Other factors in favor of SISRF are: (1) the artesian heads to be overcome by forced pumping are relatively low; (2) the aquifer is moderately permeable, allowing reasonable rates of pumping be maintained; and (3) well-construction costs would probably not be much higher than for typical watersupply wells in the area.

Another factor that can affect SISRF efficiency is clogging of the aquifer around the injection wellbore. This clogging can be caused by bacterial growth, suspended sediments in the injected water, and chemical precipitation of solutes caused by chemical reactions between the injected fluid and the aquifer material or native water. Removal of sediments and disinfection of the water would likely be required before injecting surface waters. Geochemical models can be used to predict the reactions likely to occur during rock-water interaction and mixing of injected and native waters; additional treatment requirements for the injected water could then be determined. However, the analysis of the well-clogging potential was beyond the scope of this study.

GENERAL HYDROGEOLOGIC SETTING

The geology of Lee County and the Cape Coral area has been described by previous investigators, including Wedderburn and others (1982), Knapp and others (1984), and Missimer and Associates, Inc. (1984). The upper 228 m of sediments in the Cape Coral area are composed of the upper part of the Suwannee Limestone of Oligocene age, the Tampa Limestone and the Hawthorn Formation of Miocene age, the Tamiami Formation of Pliocene age, and undifferentiated deposits chiefly of Pleistocene and Holocene age (fig. 2).

The Suwannee Limestone underlying Cape Coral is predominantly a very pale orange to tan mediumgrained limestone, but tends to be sandy and slightly phosphatic (Knapp and others, 1984). The top of the unit generally dips to the south-southeast and ranges from 183 m below sea level at the northern border of Cape Coral to about 229 m below sea level at the southeastern end (Missimer and Associates, Inc., 1984). The base of the unit lies between 274 and 366 m below sea level although few wells in the area penetrate beyond the upper part of the Suwannee Limestone.

Earlier reports by the U.S. Geological Survey divide the Miocene age sediments into two units, the Tampa Limestone and Hawthorn Formation. Recent studies (Wedderburn and others, 1982; Missimer and Associates, Inc., 1984) refer to the Tampa Limestone as the Tampa Formation and, although lithologically distinctive, include these sediments within the Hawthorn Formation.

The Tampa Limestone is present from about 150 to 200 m below land surface and is described by Wedderburn and others (1982) as a very light orange to white,

Figure 2. Profile showing geologic formations, hydrostratigraphic units, and local aquifers underlying Cape Coral (modified from La Rose, 1990).
biogenic, micritic, very fine grained limestone with up to 10 percent quartz sand. The Hawthorn Formation is a predominantly clastic unit. The thickness of the formation is about 150 m (Wedderburn and others, 1982). The Hawthorn Formation consists of a series of highly heterogeneous, interbedded clayey phosphatic dolosilts and phosphatic sandy dolomites and limestones (Wedderburn and others, 1982). The upper part of the Hawthorn Formation is a slightly sandy, dolomitic,
phosphatic limestone with a maximum thickness of 46 m (Wedderburn and others, 1982). The top of this bed is about 30 m below sea level beneath Cape Coral and dips primarily to the southeast reaching 53 m below sea level in the southeastern corner of Cape Coral. Local names for zones within the upper part of the Hawthorn Formation have been listed by Missimer and Associates, Inc. (1984) and include the Cape Coral clay, Lehigh Acres sandstone, and Fort Myers clay.

Pliocene and Pleistocene age sediments range from 6.1 to 12.2 m thick in the study area (Missimer and Associates, Inc., 1984). Locally, four geologic formations occur within these undifferentiated sediments: (1) the Pamlico sand, (2) the Fort Thompson formation, (3) the Caloosahatchee formation, and (4) the Pinecrest member of the Tamiami Formation. Detailed stratigraphic descriptions are given by Missimer and Associates, Inc. (1984).

Hydrogeology of the Lower Hawthorn Aquifer

The lower Hawthorn aquifer occurs in the lower part of the Hawthorn Formation and the upper part of the Tampa Limestone (fig. 2). The lower Hawthorn aquifer in Cape Coral occurs from about 128 to 188 m below land surface, having an average thickness of 60 m . However, the thickness of its water-yielding zone is less than 30 m (La Rose, 1990). The lower Hawthorn aquifer is confined by thick, leaky clay sequences above and below. Because of this confinement and the higher heads in the upgradient recharge area, this aquifer is considered to be an artesian system with a producing capacity ranging from 0.019 to $0.032 \mathrm{~m}^{3} / \mathrm{s}$ in large-diameter wells under natural flow conditions.

Although abundant water is available from the lower Hawthorn aquifer, high chloride concentrations (greater than $500 \mathrm{mg} / \mathrm{L}$) preclude its direct use for public-water supply. Water from the lower Hawthorn aquifer is used to feed RO desalination plants in Cape Coral. According to an interpretation of the hydrogeologic system by La Rose (1990), recharge to the lower Hawthorn aquifer comes from the mid-Hawthorn aquifer north of the study area where the upper confining unit pinches out in Hillsborough, Polk, Manatee, and Hardee Counties.

Hydraulic Characteristics of the Lower Hawthorn Aquifer

Three individual flow zones in the lower Hawthorn aquifer at the Lee County Water Treatment Plant are identified by Fitzpatrick (1986a) using data from geophysical logs (caliper, flow velocity, fluid resistivity, and fluid temperature) during pumping and injection conditions (table 1).

The percentages of flow from the individual zones at the Lee County Water Treatment Plant (table 1) are estimated from caliper/velocity borehole studies conducted by Fitzpatrick (1986a). The aquifer is characteristic of a leaky confined aquifer with hydraulic characteristics as follows (Fitzpatrick, 1986a):

$$
\begin{aligned}
T & =7.526 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s} \text { to } 8.601 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}, \\
S & =1 \times 10^{-4}, \text { and } \\
K_{v}^{\prime} / b^{\prime} & =0.01 \text { per day }=864 \text { per second }
\end{aligned}
$$

where,
T is transmissivity;
S is storage coefficient;
$K_{v}{ }^{\prime}$ is vertical hydraulic conductivity of the confining beds; and
b^{\prime} is thickness of the confining beds.
The hydraulic characteristics of the individual flow zones at the Lee County Water Treatment Plant are estimated using the following procedure:

$$
\begin{equation*}
Q_{T}=Q_{1}+Q_{2}+Q_{3} \tag{1}
\end{equation*}
$$

where,
Q_{T} is the total flow rate through the well; and
$Q_{i} \quad(\mathrm{i}=1,2,3)$ represents the flow components from the different flow zones.

Table 1. General hydrogeologic characteristics of flow zones and confining units in the lower Hawthorn aquifer at the Lee County Water Treatment Plant and Cape Coral
$\left.\begin{array}{lccccc}\hline & \begin{array}{c}\text { Flow zones } \\ \text { and leaky }\end{array} & \text { Thickness } & \begin{array}{c}\text { Percent of } \\ \text { flow from } \\ \text { (meters) } \\ \text { (mfining units } \\ \text { (meners below }\end{array} & \begin{array}{c}\text { Hydraulic } \\ \text { land surface) }\end{array} & \begin{array}{c}\text { conductivity } \\ \text { (meters per } \\ \text { second) }\end{array}\end{array} \begin{array}{c}\text { Intrinsic } \\ \text { permeability } \\ \text { (square meters) }\end{array}\right]$

For each flow zone:

$$
\begin{equation*}
Q_{i}=2 \pi r T_{i} \frac{d h_{i}}{d r} \tag{2}
\end{equation*}
$$

where,
r is radial distance from pumping well;
$d h_{i}$ is the head change in the different flow zones; and $d r$ is the change in distance from the pumping well.

Assuming no head gradient among the flow zones, $d h_{i} / d r=d h / d r$, and uniform head in the wellbore:

$$
\begin{equation*}
Q_{T}=2 \pi r\left(T_{1}+T_{2}+T_{3}\right) \frac{d h}{d r}=2 \pi r T \frac{d h}{d r} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
T=T_{1}+T_{2}+T_{3}=K_{1} b_{1}+K_{2} b_{2}+K_{3} b_{3} . \tag{4}
\end{equation*}
$$

For example, if T is the composite transmissivity estimated from an aquifer test, assuming that equation 4 can be applied, $Q_{i} / Q_{\mathrm{T}}=T_{i} / T$ and $T_{i}=K_{i} b_{i}$ gives the hydraulic conductivity of each zone. If $T=7.68 \times 10^{-4}$ $\mathrm{m}^{2} / \mathrm{s}$ (aquifer test), 30 percent of the total flow $\left(Q_{\mathrm{T}}\right)$ comes from zone 1 (flowmeter survey), and this zone has a thickness of 6.1 m :

$$
T_{1}=\frac{Q_{i}}{Q_{T}} T=0.30 \times 7.68 \times 10^{-4}\left(\mathrm{~m}^{2} / \mathrm{s}\right)=2.30 \times 10^{-4}\left(\mathrm{~m}^{2} / \mathrm{s}\right)
$$

and $\quad K_{1}=\frac{T_{1}}{b_{1}}=\frac{2.30 \times 10^{-4}\left(\mathrm{~m}^{2} / \mathrm{s}\right)}{6.1 \mathrm{~m}}=3.775 \times 10^{-5}(\mathrm{~m} / \mathrm{s})$,
The hydraulic conductivity $\left(K_{i}\right)$ values for the different flow zones are given in table 1. Aquifer matrix permeability (k_{i}, intrinsic permeability) values from table 1 are then computed using:

$$
\begin{equation*}
k_{i}=\frac{\mu}{\rho} \frac{K_{i}}{g} \tag{5}
\end{equation*}
$$

where,
μ is dynamic viscosity of the fluid [M/LT];
ρ is fluid density $\left[\mathrm{M} / \mathrm{L}^{3}\right]$; and g is gravitational acceleration $\left[\mathrm{L} / \mathrm{T}^{2}\right]$.

Although the general hydrogeologic framework of the lower Hawthorn aquifer at the two sites (Cape Coral and the Lee County Water Treatment Plant) is similar, the magnitude of the hydraulic characteristics is somewhat different. Analysis of flow velocity and caliper borehole logs (fig. 3) in Cape Coral indicated a similar flow zoning, occurring at different depths below land surface and with different thicknesses and hydraulic coefficients (table 1). The upper flow zone and the low permeability unit seem to be thicker in Cape Coral, but the distribution of flow across these hydrogeologic units is almost the same (table 1).

Figure 3. Percent of total flow estimated using velocity and caliper borehole logs for well L-M-2426 at Cape Coral.

Apparent transmissivity values are estimated for several wells in Cape Coral (table 2), using specific capacity values from step-drawdown tests conducted by Missimer and Associates, Inc. (1985), and the empirical equation by Brown (1963). Estimated transmissivity values range from 149 to about $807 \mathrm{~m}^{2} / \mathrm{d}$ (fig. 4 and table 2) with a geometric mean value of about $414 \mathrm{~m}^{2} / \mathrm{d}$. Values of hydraulic conductivity and intrinsic permeability are estimated for the lower Hawthorn aquifer in Cape Coral (table 1), using the geometric mean of the transmissivity values and equations 1 to 5 .

Table 2. Specific capacity and apparent transmissivity values for wells completed in the lower Hawthorn aquifer at Cape Coral
[Specific capacity values from Missimer and Associates, Inc. (1985); apparent transmissivity values estimated using the empirical equation by Brown (1963)]

Well identification number	Specific capacity (liters per second per meter)	Apparent transmissivity (meters squared per day)
L-M-2417	4.74	496.7
L-M-2418	5.20	546.4
L-M-2419	3.97	409.8
L-M-2420	5.55	583.6
L-M-2421	3.35	347.7
L-M-2422	4.57	496.7
L-M-2423	1.74	149.0
L-M-2424	2.24	223.5
L-M-2425	2.84	273.2
L-M-2426	7.64	807.2
L-M-2427	7.27	782.3
L-M-2428	4.14	397.4
Geometric mean		414.3
Standard deviation		203.7

THEORETICAL BACKGROUND

The ability to assess whether SISRF could be an economical water-supply alternative is enhanced by the capability to predict the movement of water and solutes under the conditions of injection, storage, and recovery. Digital models have been developed by the U.S. Geological Survey and others to simulate the densitydependent flow of ground water and the transport of solutes in ground-water systems. These models can utilize data on fluid and aquifer properties to estimate recovery efficiencies under conditions expected at a particular study area.

Figure 4. Histogram of apparent transmissivity values estimated from wells tapping the lower Hawthorn aquifer at Cape Coral.

Simulation of density-dependent ground-water flow and solute transport requires the solution of two governing partial differential equations subject to appropriate boundary and initial conditions. The first equation describes transient ground-water flow under conditions where density differences due to solute concentrations can affect flow. The second equation describes the movement and spread of solutes within the flowing ground water using data on the distribution of groundwater velocities obtained by solving the first equation. The two equations are solved iteratively, as the distribution of solute concentrations needed to solve the first equation is initially estimated and updated after solving the second equation. The theoretical background of the governing equations is discussed in the next section.

Density-Dependent Ground-Water Flow Equation

The rate of ground-water flow is assumed to be governed by Darcy's law, which when written in terms of fluid pressure (rather than piezometric head), is:

$$
\begin{equation*}
q=-k(\nabla \rho-\rho g z) / \mu \tag{6}
\end{equation*}
$$

where,
q is specific discharge (flow rate per unit cross-sectional area) [L/T];
k is the intrinsic permeability of the aquifer materials $\left[\mathrm{L}^{2}\right]$;
∇ is the gradient operator [1/L];
p is the fluid pressure $\left[\mathrm{M} / \mathrm{LT}^{2}\right]$;
ρ is the fluid density $\left[\mathrm{M} / \mathrm{L}^{3}\right]$;
g is the gravitational acceleration vector $\left[\mathrm{L} / \mathrm{T}^{2}\right] ;$
z is the elevation above a reference datum [L]; and μ is the dynamic viscosity of the fluid [M/LT].

Using Darcy's law and the principle of conservation of fluid mass, a mass-balance equation can be written as:

$$
\begin{equation*}
\frac{\partial(n \rho)}{\partial t}=-\nabla \cdot(\rho q) \pm Q_{p} \tag{7}
\end{equation*}
$$

where,
n is aquifer porosity [dimensionless], and
Q_{p} is mass of fluid injected (+) or withdrawn (-) per unit time per unit volume of aquifer $\left[\mathrm{M} / \mathrm{L}^{3} \mathrm{~T}\right]$.

The dependence of fluid density on solute concentration has an important effect on the mass-balance equation, which can be seen by expanding the first term in equation 7 :

$$
\begin{equation*}
\frac{\partial(n \rho)}{\partial t}=\frac{\rho \partial n \partial p}{\partial p \partial t}+\frac{n \partial \rho \partial p}{\partial p \partial t}+\frac{n \partial \rho \partial c}{\partial c \partial t}, \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial(n \rho)}{\partial t}=\frac{S_{s} \partial p}{\partial t}+\frac{n \partial \rho \partial c}{\partial c \partial t} \tag{9}
\end{equation*}
$$

where,
c is solute concentration (mass of solute/mass of water)
[dimensionless]; and
S_{S} is specific pressure storativity of the aquifer
given by $S_{s}=[(1-n) \alpha+n \beta$] for an unconsolidating aquifer $\left[\mathrm{LT}^{2} / \mathrm{M}\right]$ where,
α is compressibility of the aquifer solid matrix $\left[\mathrm{LT}^{2} / \mathrm{M}\right]$, and
β is compressibility of water $\left[\mathrm{LT}^{2} / \mathrm{M}\right]$.
The determination of fluid pressures at any given time, which affects the rates of fluid movement, requires the prior or simultaneous determination of the rate of change in fluid concentration over time. The specific discharge, as determined by Darcy's law, is also dependent on solute concentration through the density and viscosity terms (eq. 6), which is only slightly dependent on solute concentration.

A system of equations, such as equation 7, can be simultaneously solved for a given set of boundary conditions, aquifer properties, fluid densities, and rates of recharge or withdrawals from the aquifer. The solution will be in terms of the pressure at all points in the aquifer. The average pore velocity, v, can then be determined from the distribution of hydraulic head by Darcy's law:

$$
\begin{equation*}
v=-\frac{q}{n} \tag{10}
\end{equation*}
$$

where,
n is the effective porosity of the aquifer [dimensionless].

Advection and Hydrodynamic Dispersion

Movement of solutes through a porous medium is controlled by advection and hydrodynamic dispersion. Advective transport describes the movement of solute particles along the mean direction of fluid flow at a rate equal to the average pore-water velocity. Hydrodynamic dispersion describes the spread of solute particles along and transverse to the direction of average fluid flow in response to molecular diffusion and mechanical dispersion.

Molecular diffusion produces a flux of solute particles from areas of high to low solute concentrations; its effect is independent of the fluid velocity. Mechanical dispersion is the mixing of solutes caused by variations in fluid velocities at the microscopic scale. Velocity variations are caused by several factors, including: (1) velocity distributions within the pore space, (2) variations in pore size, (3) differences in path lengths for different solute particles, and (4) the effect of converging and diverging flow paths (Bear, 1979). Mechanical dispersion is dependent on fluid velocity, and at the relatively large pore-water velocities expected during injection and recovery phases, the effects are greater than those of molecular diffusion. Fluid movement during the storage phase is mainly from buoyancy forces, and at these low velocities, molecular diffusion can have a more significant role in solute movement.

Dispersive flux, J, can be described by Fick's first law as:

$$
\begin{equation*}
J=-D_{m} \nabla c \tag{11}
\end{equation*}
$$

where,
c is the volumetric concentration of solute $\left[\mathrm{M} / \mathrm{L}^{3}\right]$; and D_{m} is the second rank tensor containing the coefficients of mechanical dispersion [$\left.\mathrm{L}^{2} / \mathrm{T}\right]$.
Mechanical dispersion coefficients are related to the average pore velocity by the dispersivity of the medium (Scheidegger, 1961). The coefficients of dispersivity are dependent on properties of the medium including permeability, length of a characteristic flow path, and tortuosity. In an isotropic medium (with respect to dispersion), the coefficients of mechanical dispersion can be expressed in terms of two components: (1) longitudinal dispersivity $\left(\alpha_{L}\right)$, which represents dispersion in the direction of the flow path; and (2) transverse dispersivity $\left(\alpha_{T}\right)$, which represents dispersion in the direction perpendicular to the flow path. Transverse dispersivities are usually smaller than longitudinal dispersivities by a factor of 5 to 20 (Freeze and Cherry, 1979).

The nine components of the symmetric mechanical dispersion tensor can be expressed in terms of v (the average pore-water velocity vector) and the velocity components v_{x}, v_{y} and v_{z} (Bear, 1979). In a system where ground-water flow is horizontal $\left(v_{z}=0\right)$, the components of the mechanical dispersion tensor are:

$$
\begin{align*}
& D_{x x}=\left(\alpha_{L} v_{x}^{2}+\alpha_{T} v_{y}^{2}\right) /|v| \\
& D_{x y}=D_{y x}=\left(\alpha_{L}-\alpha_{T}\right) v_{x} v_{y} /|v| \\
& D_{y y}=\left(\alpha_{L} v_{y}^{2}+\alpha_{T} v_{x}^{2}\right) /|v| \\
& D_{x z}=D_{z x}=D_{y z}=D_{z y}=0 \\
& D_{z z}=\alpha_{T}|v| .
\end{align*}
$$

For radially symmetric irrational flow ($v_{\Theta}=0$) systems, subscripts x and y are replaced by r and z, respectively.
The hydrodynamic dispersion tensor can be written as:

$$
\begin{equation*}
D_{h}=D_{m}+D_{d} \underline{I} \tag{13}
\end{equation*}
$$

where,
D_{h} is the second order hydrodynamic dispersion tensor [$\left.\mathrm{L}^{2} / \mathrm{T}\right]$;
D_{m} is the mechanical dispersion tensor $\left[\mathrm{L}^{2} / \mathrm{T}\right]$;
D_{d} is the coefficient of molecular diffusion $\left[\mathrm{L}^{2} / \mathrm{T}\right]$; and
\underline{I} is the identity tensor.

Macrodispersion

Longitudinal dispersivities typically range from 0.100 to 10.00 mm in laboratory experiments with homogeneous materials and have been estimated as much as 90 m from field studies of contaminant plumes (Freeze and Cherry, 1979). The larger values in field studies are related to increased mixing (on a macroscopic scale) because of local variations in aquifer hydraulic and dispersive characteristics.

Most studies of radial injection have assumed that macrodispersive fluxes can be represented by Fick's law with a constant dispersion coefficient. However, recent studies of transport in porous media have indicated that dispersion can increase away from the source and reach an asymptotic value after travel distances of hundreds or thousands of feet (Gelhar and Axness, 1983). Dispersivities are scale dependent at short distances with values increasing away from the contaminant source as larger scale heterogeneities occur (Gelhar and others, 1979). Recent developments in the macrodispersion theory are discussed by Anderson (1984).

In this study, aquifer dispersivity values were estimated from the analysis of field test data from a previous study (Fitzpatrick, 1986a). Values of aquifer dispersivity used in the different simulations and sensitivity analyses are discussed in later sections. Limitations of the advective-dispersive model must be recognized along with the other limitations introduced because of uncertainties in aquifer properties.

Advective-Dispersive Solute-Transport Equation

A version of the variable-density advective-dispersive solute-transport equation modified for saturated flow and conservative solute species presented by Voss (1984) is:

$$
\begin{equation*}
\frac{\partial(n \rho c)}{\partial t}=-\nabla \cdot(n \rho v c)+\nabla \cdot[n s(D d \underline{I}+D m) \cdot \nabla C]+Q^{\prime} c^{*} \tag{14}
\end{equation*}
$$

where,
Q^{\prime} is the volumetric injection rate per unit area of aquifer [L/T]; and
c^{*} is volumetric solute concentration in the injected fluid $\left[\mathrm{M} / \mathrm{L}^{3}\right]$.

When applying equation 14 to freshwater injection in an aquifer, flow can be assumed to be either: (1) radially symmetric about the injection well (regional flow is negligible), or (2) horizontal and the solute concentration and fluid density are vertically uniform (regional flow is considered). In the latter case, the term c represents the vertically averaged concentration at a point in the aquifer. For this study, the first option was used.

The term $Q^{\prime} c^{*}$ represents only sources of solute mass. Withdrawals of fluid from the aquifer do not need to be considered in the transport equation because the concentration of solute in the fluid withdrawn from the aquifer c^{*} is identical to the solute concentration c. The source term from equation 14 is incorporated as part of the boundary conditions.

PRELIMINARY ASSESSMENT OF INJECTION, STORAGE AND RECOVERY OF FRESHWATER

Solution of the two governing partial-differential equations generally requires sophisticated digital models. These models use numerical approximation techniques that determine aquifer pressure and solute concentrations at a finite number of points and at specified time intervals. SUTRA (Saturated-Unsaturated TRAnsport), a computer code based on the Galerkin finite element technique (Voss, 1984), was applied in this study. Modifications were made to the code to compute the solution in terms of a regular rectangular grid with the intention of minimizing computer storage and time (apps. 1 and 2). Appendix 1 contains the hierarchic levels of subprograms in the original SUTRA version and in the modified SUTRA version, hereafter referred to as QSUTRA.

Subprograms PLOT, CONNEC, BANWID, NCHECK, and PINCHB were not included. All of these subprograms, except for PLOT, were used in the original SUTRA version to process information related to the irregularity of element shapes forming the mesh or grid. A new subprogram (FOPEN) was added to open files and assign unit numbers (apps. 1 and 2) (C.I. Voss, U.S. Geological Survey, written commun., 1994). Subprogram SOLVEB, which includes the algorithms to solve the system of equations (eqs. 7 and 15), was substituted by subprograms SOLVEC and LSORA (apps. 1 and 3). SOLVEC uses the incomplete Cholesky-conjugate gradient method (Kuiper, 1987) to solve a system of ground-water flow equations (eq. 7). LSORA uses the line successive overrelaxation method (Young, 1954) to solve a system of solute-transport equations (eq. 15). Some other changes to the code are highlighted in the program listing (app. 2).

QSUTRA was tested by applying it to Henry's (1964) density-dependent flow problem described in Voss (1984, p. 196-203). This problem was selected because it provides a good opportunity to test the capabilities of QSUTRA in solving nonlinearities occurring in variable density flow problems. Comparison of results from QSUTRA and SUTRA for Henry's (1964) problem are presented in appendix 4. As shown in appendix 4, concentration profiles from QSUTRA and SUTRA are identical. Also, QSUTRA and SUTRA estimates of flux across one model boundary compare very well.

Simulations of freshwater injection, storage, and recovery in the lower Hawthorn aquifer were made using the QSUTRA code with a radial coordinates grid. The following assumptions are made: (1) the effect of the background hydraulic gradient is negligible, (2) the aquifer is divided into vertically adjacent layers characterized in the model as homogeneous with respect to the hydraulic and transport characteristics, (3) the hydraulic and transport characteristics are homogeneous along the radial direction of flow, and (4) the aquifer characteristics are isotropic along the horizontal (radial) direction. Assumptions 2 and 3 are made because of the lack of information on the spatial variability of the hydraulic and transport characteristics. Estimates of the transport characteristics of the lower Hawthorn aquifer were made using data from previous freshwater injection tests (Fitzpatrick, 1986a) conducted at the Lee County Water Treatment Plant (fig. 1).

Grid Design

Although the configuration of the lower Hawthorn aquifer at the Lee County Water Treatment Plant and Cape Coral are similar, differences on the thickness of the flow zones and on the magnitude of the hydraulic properties precluded the use of the same model grid for both sites. Two finite-element grids were required. The first grid was used for calibrating and testing the model with data from field tests conducted at the Lee County Water Treatment Plant and documented (Fitzpatrick, 1986a). The second grid was used to represent the hydrogeologic conditions at the Cape Coral site. Transport characteristics obtained from simulating Fitzpatrick's tests were extrapolated to the Cape Coral area.

The Lee County Water Treatment Plant site grid consists of 1,400 elements and 1,491 nodes (fig. 5A), and the Cape Coral grid consists of 2,100 elements and 2,201 nodes (fig. 6A). Both grids extend out radially to $10,384 \mathrm{~m}$ (figs. 5A and 6A). The Cape Coral grid was used to conduct hypothetical tests of freshwater injection, storage, and recovery in the lower Hawthorn aquifer in the study area (fig. 1). The grids are very fine (2 m) in the vicinity of the injection well so as to avoid errors associated with numerical dispersion (artificial dispersion introduced by inappropriate spatial discretization) and high aspect ratios (large difference between sides of an element). At a distance of 100 m , element lengths increased to 4 and 8 m at 120 m from the well. Beyond 160 m , element lengths were successively doubled until a maximum length of $4,096 \mathrm{~m}$ was reached. The thickness of elements remained constant (2 m). The part of the finite-element grids extending to a distance of 160 m from the injection well is shown in figures 5B and 6B, and the entire finite-element grids are shown in figures 5A and 6A.

Boundary and Initial Conditions

Boundary conditions were set at $\mathrm{r}=0, \mathrm{r}=10,384 \mathrm{~m}$, $\mathrm{z}=144.8 \mathrm{~m}$ below land surface, and $\mathrm{z}=184.8 \mathrm{~m}$ below land surface for the Lee County Water Treatment Plant model, and set at $\mathrm{r}=0, \mathrm{r}=10,384 \mathrm{~m}, \mathrm{z}=186 \mathrm{~m}$ below land surface, and $\mathrm{z}=246 \mathrm{~m}$ below land surface for the Cape Coral model-the limits of the finite-element grids (figs. 5 and 6). Boundaries at the top and bottom of the aquifer (upper and lower limits of the modeled zone) were set constant for pressure and concentration. The solute concentration was set equal to the solute concentration of the native water at these boundaries, and the pressures were set equal to the hydrostatic pressures at the specific depths where the boundaries were located.

A

Figure 5. Sectional views of the cylindrical coordinate finite-element grid used to study previous subsurface injection, storage, and recovery of freshwater in the lower Hawthorn aquifer at the Lee County Water Treatment Plant.

Figure 6. Sectional views of the cylindrical coordinate finite-element grid used to study hypothetical subsurface injection, storage, and recovery of freshwater in the lower Hawthorn aquifer at Cape Coral.

One limitation setting of these types of boundary conditions (constant pressure and concentration on top and bottom) is that if injected or mixed water passes across these boundaries, the model would be unable to consider it during the recovery pumping because the concentrations along these boundaries are assumed to represent a constant value. However, for the present study, these boundary conditions yielded the best representation of the actual aquifer in terms of approximating measured pressure and concentration changes in observation wells and in the injection well during recovery. Also, these boundary conditions would yield more conservative estimates of recovery efficiency. The lack of detailed hydrogeologic information beyond these boundaries precluded the location of the boundaries farther from flow zones receiving the injection water. An attempt was made to locate the boundaries farther from the injection source by extrapolating the hydrogeologic information, but the results were discouraging in terms of matching field measured pressure and concentration changes.

At $\mathrm{r}=10,384 \mathrm{~m}$, no-flow/no-transport boundary conditions were specified. This boundary was intentionally located far from the injection source to prevent any effect that it might have on the determination of pressures and concentrations in the aquifer segment affected by the injection. Boundary conditions at the well ($\mathrm{r}=0$) were set by specifying a mass flux equal to the injection rate. The flux was proportionally distributed among the boundary nodes along the length of the injection zone using the aquifer hydraulic characteristics (K) as a weighting factor. The solute concentration in the injected water during injection was specified at the well boundary ($\mathrm{r}=0$). A flux average concentration for water withdrawn during recovery was calculated from concentration values at boundary nodes representing the well.

The hydraulic conductivity value of the upper and lower confining zones was modified using the model to replicate the effect of these leaky units on pressure and concentration changes in the main flow zones (discussed later). Although more sophisticated boundary types are currently available, they are not available in QSUTRA, and this study lacks the field data to justify their application. For large volumes of water injected (larger than those used in this study), the vertical and horizontal boundaries can become invalid yielding unrealistic model results.

Initial pressures were assumed to be hydrostatic and set equal to an equivalent freshwater head of 10.49 m above sea level for the Lee County Water Treatment

Plant model and 7.62 m for the Cape Coral area model. Initial solute concentration was set equal to solute concentration in the native water. For this study, fluid density was assumed to depend only on solute concentration. Fluid density was calculated by the model based on initial solute concentrations and the following functional relation between density and solute concentration:

$$
\begin{equation*}
\rho=\rho_{i}+\left(\rho_{n}-\rho_{i}\right)\left[\left(C-C_{i}\right) /\left(C_{n}-C_{i}\right)\right] \tag{15}
\end{equation*}
$$

where,
ρ_{i} is density of injected water $\left[\mathrm{M} / \mathrm{L}^{3}\right]$;
ρ_{n} is density of native water $\left[\mathrm{M} / \mathrm{L}^{3}\right] 1$;
C is solute concentration in the mixed water $\left[\mathrm{M} / \mathrm{L}^{3}\right]$;
C_{i} is solute concentration in the injected water $\left[\mathrm{M} / \mathrm{L}^{3}\right]$; and C_{n} is solute concentration in the native water $\left[\mathrm{M} / \mathrm{L}^{3}\right]$.

Solute Source

Chloride ion, the dominant conservative anion in the native aquifer water and the injected surface water, was selected as the solute to be modeled. Chloride concentrations in water samples from the lower Hawthorn aquifer ranged from 500 to $550 \mathrm{mg} / \mathrm{L}$ at the Lee County Water Treatment Plant and from 350 to $750 \mathrm{mg} / \mathrm{L}$ in Cape Coral (Missimer and Associates, Inc., 1985). The model computes relative or normalized concentrations that range from 0.1 to 1 , where 0.1 represents concentration in the injected water and 1 represents concentration in the native water.

Time Steps

Initial time-step sizes were kept equal or smaller than 400 seconds to avoid numerical dispersion associated with a large time-step size. The time-step size was increased during the injection phase in such a way that the injected water front (neglecting dispersion) moved a constant distance during each successive time step. The final time-step size from the injection phase was used and kept constant for the entire simulation of the storage period. During the recovery phase, the timestep size was gradually reduced from its maximum value as the injected water front moved closer to the well. Generally, except for the first time step in each run, only two iterations per time step were needed to resolve the nonlinearities of the density-dependent flow equation (eq. 7).

Model Simulation Results for the Lee County Water Treatment Plant-Calibration and Testing

Data from a study by Fitzpatrick (1986a) were used in this study to define the hydrogeologic system and to provide a basis for estimating the hydraulic and transport characteristics for the lower Hawthorn aquifer in Cape Coral. The conceptual model for the Lee County Water Treatment Plant site was developed on the basis of interpretation of velocity, caliper, fluid resistivity, and fluid temperature borehole logs and interpretation of aquifer-test data (Fitzpatrick, 1986a). The conceptual model consists of two main flow zones and three leaky confining units (fig. 5). Aquifer hydraulic characteristics, boundary conditions, and nodes subject to them were previously described.

Two injection, storage, and recovery tests and results (table 3) from the study by Fitzpatrick (1986a) were useful in calibrating the model (tests 2 and 3). Test 3 was used for model calibration and test 2 for
and horizontal directions. Following the hydraulic calibration, data on chloride concentration changes in the two observation wells (L-2530 and L-3224) were used to calibrate the transport model for effective porosity and longitudinal and transverse dispersivities. The model yielded better results when using an effective porosity of 0.12 , a longitudinal dispersivity $\left(\alpha_{L}\right)$ of 3.0 m , and a transverse dispersivity $\left(\alpha_{T}\right)$ of 0.3 m for a ratio of $\alpha_{T} / \alpha_{L}=0.1$ (fig. 7B). However, the model did not fit the field test data for the early arrival times of the injected water front at well L-2530 (fig. 7B). Several simulations were made varying the effective porosity, dispersivity values $\left(\alpha_{L}\right.$ and $\left.\alpha_{T}\right)$, and the aquifer permeability without obtaining a good match to the field data from well L-2530, while simultaneously matching the field data from well L-3224. This is probably because of the nature of flow in a part of the aquifer, which according to the borehole velocity logs (fig. 3), seems to have cavernous porosity, whereas the model is based on equations that are developed for a porous media system.

Table 3. Results of two injection, storage, and recovery of freshwater tests conducted from a previous study in the lower Hawthorn aquifer at the Lee County Water Treatment Plant
[Tests conducted by Fitzpatrick (1986a). Recovery time indicates time since the beginning of recovery when chloride concentration of recovered water approached background concentration of native aquifer water]

Test number	Average injection rate (cubic meters per day)	Average recovery rate (cubic meters per day)	Total volume injected (cubic meters)	Injection time (days)	Storage time (days)	Recovery time (days)	Average chloride concentration of injected water (milligrams per liter)
2	1,635	899	26,160	16	47	50	171
3	1,423	818	109,571	77	98	150	69

model testing. Data for test 3 were obtained for the injection well (L-3225) and two observation wells (L-2530 and L-3224), about 43 and 102 m , respectively, from the injection well. The calibration of the model was performed using the classical interactive process in which the model variables were changed within realistic limits, until a satisfactory match to the measured data was obtained. Initial model variables were set according to data presented in table 1 and information previously described in this report.

Increases in hydraulic head at observation wells $\mathrm{L}-2530$ and L-3224 were used to calibrate the hydraulic variables. The permeability of the flow zones is assumed to be isotropic, and no attempt was made to change it. However, the permeability of the leaky confining units was decreased from an estimated value of 1.89×10^{-13} to $1.67 \times 10^{-13} \mathrm{~m}^{2}$ to obtain a satisfactory match between observed and modeled head change data (fig. 7A). The permeability is assumed to be isotropic in the vertical

Model results for test 3 were compared with field data at the injection well (L-3225) for the recovery phase. Although a satisfactory match was obtained for breakthrough at observation wells L-2530 and L-3224, model predicted values for recovery chloride concentrations at the injection well (L-3225) were low compared to field measured values. Different porosity values were assigned to the main flow zones and the leaky confining units in an attempt to improve the model predictions at the injection well while keeping a good match at the two observation wells. A combination of porosity values of 0.15 for the main flow zones and 0.05 for the leaky confining units yielded satisfactory results (fig. 8). The characteristics used in the calibrated model and the fluid, solute, and rock matrix properties used in the simulations are listed in tables 4 and 5 , respectively.

EXPLANATION

EXPLANATION	
*	OBSERVED VALUE AT WEL L-2530--About 43 meters from injection well.
-	OBSERVED VALUE AT WEL L-3234--About 102 meters from injection well.
	MODEL-SIMULATED VALUE AT NODE 427--About 42 meters from nodes representing source.
	MODEL-SIMULATED VALUE AT NODE 1057--About 100 meters from nodes representing source.

Figure 7. Observed and model simulated head increase during the first 7 days of injection and chloride concentration breakthrough curves at observation wells L-2530 and L-3224 during the injection phase of test 3 at the Lee County Water Treatment Plant.

The model was tested using chloride concentration data at the injection well (L-3225) during the recovery phase of test 2 (Fitzpatrick, 1986a). The test simulation was made using the same hydraulic and transport characteristics from the calibration run for test 3 . The resulting chloride concentration breakthrough curve produced by the model was low compared to the field data (fig. 9). In an attempt to provide a closer match of the field data, the longitudinal and transverse dispersivity values were increased from 3.0 and 0.3 m to 5.0 and 0.5 m , respectively. This change resulted in a good match of the field measured data by the model-generated data (fig. 9). According to the present knowledge on the scale dependency of the dispersion coefficient (Gelhar and others, 1979; Gelhar and Axness, 1983; and Mercado, 1984), the value used to effectively simulate test 2 was expected to be smaller than its counterpart for test 3 . However, the dispersivity value from test 2 was larger than that from test 3 , but the difference between the values was small $\left(\alpha_{L}=3.0 \mathrm{~m}\right.$ and $\alpha_{T}=$ 0.3 m for test $3 ; \alpha_{L}=5.0 \mathrm{~m}$ and $\alpha_{T}=0.5 \mathrm{~m}$ for test 2). No further attempt was made in this study to explain the differences in the dispersivity values between the two tests because detailed field information was unavailable.

Model Simulation Results for Cape CoralEffects of Operational Factors on Recovery Efficiency

A series of hypothetical SISRF tests were made for the lower Hawthorn aquifer in Cape Coral using the digital modeling technique. Estimates of the hydrologic and transport characteristics from the analysis of previous test data (Fitzpatrick, 1986a) were used in a baseline simulation with other factors represented by values from studies in similar geologic units. The baseline simulation was used as a reference to study the effects of changing a series of SISRF operational factors on the recovery efficiency. The hydrologic and transport characteristics used in the baseline simulation were selected as the best possible representation of the actual field values in Cape Coral. These characteristic values might not necessarily represent the entire spatial spectrum of possible values in the lower Hawthorn aquifer. Therefore, the characteristic values used in the simulations are subject to some uncertainty. The effects on the recovery efficiency of the rates of injection and recovery; volume of water injected; storage time; injection into selected flow zones; successive cycles of injection, storage, and recovery; and chloride concentrations of injected and native waters were also studied using the digital model.

Figure 8. Observed and model-simulated chloride concentration in water recovered from injection well L-3225 during the recovery phase of test 3 at the Lee County Water Treatment Plant (data from Fitzpatrick, 1986a).

Table 4. Characteristics of flow zones and confining units used to model the lower Hawthorn aquifer at the Lee County Water Treatment Plant

Flow zones and leaky confining units (meters below land surface)	Permeability (square meters)	Effective porosity (percent)	Specific pressure storativity (kilograms per meter per second squared)	-1	Longitudinal dispersivity (meters)
$144.8-152.8$	1.670×10^{-13}	5	1.36×10^{-10}	Transverse dispersivity (meters)	
$152.8-158.8$	3.846×10^{-12}	15	1.68×10^{-10}	3.0	0.3
$158.8-166.8$	5.140×10^{-13}	5	1.36×10^{-10}	.3 .0	.3
$166.8-176.8$	5.572×10^{-12}	15	1.68×10^{-10}	.3	.3
$176.8-184.8$	1.670×10^{-13}	5	1.36×10^{-10}	3.0	.3

Table 5. Fluid, solute, and rock matrix properties used in the simulations

Property	Value
Dynamic viscosity of native water, in kilograms per meter per second	0.001
Dynamic viscosity of injected water, in kilograms per meter per second	0.001
Density of native water, in kilograms per cubic meter	$1,001.0$
Density of injected water, in kilograms per cubic meter Coefficient of molecular diffusion, in meters squared per second	$1,000.1$
Fluid compressibility, in (kilograms per meter per second squared)	
Rock matrix compressibility, in (kilograms per meter per second squared)	

Figure 9. Observed and model-simulated chloride concentration in water recovered from injection well L-3225 during the recovery phase of test 2 at the Lee County Water Treatment Plant (observed data from Fitzpatrick, 1986a).

Baseline Simulation

A baseline simulation was made using the previously described model grid (fig. 6), estimated hydraulic and transport characteristics (tables 1, 5, and 6), and the conditions presented in table 7 . The growth of the injected water body and the chloride distribution profiles (mixing zone) during the injection phase of the baseline simulation are depicted in figure 10. Although the injected water body in the lower main flow zone has twice the radial extent of its counterpart in the upper main flow zone, the difference between the chloride distribution profiles of the two flow zones was not significant (fig. 10). The injected water front was about 50 m from the injection well in the lower main flow zone
and 25 m from the injection well in the upper main flow zone at the end of the injection phase (fig. 10D). A vector representation of the pore-water velocity field was generated by the model (fig. 11). This velocity vector shows that the injected water, in general, is moving: (1) horizontally outward along the two main flow zones, (2) vertically upward from the upper main flow zone into the upper confining zone, (3) vertically downward from the lower main flow zone into the lower confining zone, and (4) vertically upward from the lower main flow zone through the middle confining zone into the upper main flow zone (fig. 11). A similar vector representation was generated by the model during the recovery phase, but the vectors point in the opposite direction (fig. 12).

Table 6. Characteristics of flow zones and confining units used to model the lower Hawthorn aquifer at Cape Coral

Flow zones and leaky confining units (meters below land surface)	Permeability (square meters)	Effective porosity (percent)	Specific pressure storativity (kilograms per meter per second squared)	Longitudinal dispersivity (meters)	Transverse dispersivity (meters)
$186.0-198.0$	1.061×10^{-12}	5	1.36×10^{-10}	3.0	0.3
$198.0-214.0$	1.085×10^{-11}	15	1.68×10^{-10}	.3 .0	.3
$214.0-224.0$	1.061×10^{-12}	5	1.36×10^{-10}	.3	.0
$224.0-232.0$	3.435×10^{-11}	15	1.68×10^{-10}	3.0	.3
$232.0-246.0$	1.061×10^{-12}	5	1.36×10^{-10}	3.0	.3

Table 7. Conditions and results for recovery times and efficiencies for the baseline simulation and other simulations of subsurface freshwater injection, storage, and recovery for the lower Hawthorn aquifer at Cape Coral
[Recovery time is when the preestablished chloride concentration limit of 250 milligrams per liter is reached]

Simulation number	Injection rate (cubic meters per day)	Recovery rate (cubic meters per day)	Recovery rate/ injection rate (dimensionless)	Volume of injected water (cubic meters)	```Injection time (days)```	Storage time (days)	Chloride concentrations, milligrams per liter		$\begin{gathered} \text { Recovery } \\ \text { time } \\ \text { (days) } \end{gathered}$	Recovery efficiency (percent)
							Injection water	Native aquifer water		
Baseline Simulation										
1	1,635.2	1,635.2	1.00	49,055	30	0	50	500	19.2	64
Changes in Rates of Injection and Recovery										
2	408.8	408.8	1.00	49,055	120.0	0	50	500	76.1	63
3	817.6	817.6	1.00	49,055	60.0	0	50	500	37.5	63
4	3,270.3	3,270.3	1.00	49,055	15.0	0	50	500	10.2	68
5	6,540.7	6,540.7	1.00	49,055	7.5	0	50	500	6.9	92
Changes in Recovery Rate/Injection Rate Ratio										
6	1,635.2	408.8	. 25	49,055	120.0	0	50	500	74.3	62
7	1,635.2	817.6	. 50	49,055	60.0	0	50	500	37.5	63
8	1,635.2	3,270.3	2.00	49,055	15.0	0	50	500	10.2	68
9	1,635.2	6,540.7	4.00	49,055	7.5	0	50	500	7.0	93
Changes in Volume of Water Injected										
10	1,635.2	1,635.2	1.00	12,264	7.5	0	50	500	7.6	100
11	1,635.2	1,635.2	1.00	24,528	15.0	0	50	500	12.1	81
12	1,635.2	1,635.2	1.00	98,110	60.0	0	50	500	33.5	56
13	1,635.2	1,635.2	1.00	196,221	120.0	0	50	500	51.8	43
Changes in Storage Time										
14	1,635.2	1,635.2	1.00	49,055	30	5	50	500	19.2	64
15	1,635.2	1,635.2	1.00	49,055	30	30	50	500	19.0	63
16	1,635.2	1,635.2	1.00	49,055	30	90	50	500	18.6	62
17	1,635.2	1,635.2	1.00	49,055	30	180	50	500	18.1	60
Injection into Upper Flow Zone (198-214 meters)										
18	1,635.2	1,635.2	1.00	49,055	30	0	50	500	18.3	61
Injection into Lower Flow Zone (224-232 meters)										
19	1,635.2	1,635.2	1.00	49,055	30	0	50	500	18.6	62
Five Successive Cycles										
20	1,635.2	1,635.2	1.00	49,055	30	180	50	500	18.3	61
21	1,635.2	1,635.2	1.00	49,055	30	180	50	500	23.4	78
22	1,635.2	1,635.2	1.00	49,055	30	180	50	500	25.0	83
23	1,635.2	1,635.2	1.00	49,055	30	180	50	500	25.8	86
24	1,635.2	1,635.2	1.00	49,055	30	180	50	500	26.6	89
Different Injected and Native Water Chloride Concentrations										
25	1,635.2	1,635.2	1.00	49,055	30	0	100	500	16.6	55
26	1,635.2	1,635.2	1.00	49,055	30	0	200	500	9.0	30
27	1,635.2	1,635.2	1.00	49,055	30	0	50	1,000	10.7	36
28	1,635.2	1,635.2	1.00	49,055	30	0	50	2,000	6.5	22

Figure 10. Chloride distribution profiles at different times during the injection phase of the baseline simulation.

A 64 percent recovery efficiency value was obtained for the baseline simulation for the preselected $250-\mathrm{mg} / \mathrm{L}$ chloride concentration limit. The thickness of the mixing zone at the end of the recovery phase grew from 1.5 to 2 times compared to its thickness at the end of the injection phase (figs. 13 and 10D). Some residual injected water was still inside the injection zones at the end of recovery (fig. 13). A subsequent injection phase would result in a wider mixing zone and a higher recovery efficiency.

A simulation was made with the same parameters that were used in the baseline simulation but using no-
flow/no-transport boundaries at the top and bottom limits of the model. This simulation was conducted to test the effect on the recovery efficiency of using a constant pressure/constant concentration boundary condition to represent interlayer solute mass movement across these boundaries. The simulation yielded a recovery efficiency of 83 percentage points, which is 19 percentage points higher than the value estimated from the baseline simulation (64 percentage points). This indicates that the constant pressure/constant concentration boundaries are important in the determination of the recovery efficiency and that this type of boundary would yield more conservative estimates of the recovery efficiency.

Figure 11. Vector field representing pore-water velocities in a radial section of the flow zones at the end of the injection phase of the baseline simulation.

EXPLANATION

PORE-WATER VELOCITY VECTOR (224 METERS PER DAY)-Shows magnitude of vector proportional to shaft length. Arrowhead points to direction of flow.

Figure 12. Vector field representing pore-water velocities in a radial section of the flow zones at the end of the recovery phase of the baseline simulation.

Rates of Injection and Recovery

The effect of the rates of injection and recovery on the recovery efficiency was studied with eight simulations using different injection and recovery rates and injection rate/recovery rate ratios (simulations 2-9 in table 7). In simulations 2 to 5 , the injection rate $\left(Q_{\mathrm{I}}\right)$ and the recovery rate $\left(Q_{\mathrm{R}}\right)$ were each changed by 25,50 , 200 , and 400 percent from the value used in the baseline simulation. In simulations 6 to 9 , the ratio of $Q_{\mathrm{R}} / Q_{\mathrm{I}}$ was changed by $25,50,200$, and 400 percent from the baseline simulation ratio $\left(Q_{\mathrm{R}} / Q_{\mathrm{I}}=1\right)$.

The results of the simulations indicated that when the injection rate was decreased by 25 and 50 percent while keeping $Q_{\mathrm{R}} / Q_{\mathrm{I}}$ equal to 1 , an insignificant decrease in the recovery efficiency occurred (fig. 14 and table 7). However, when the injection and recovery rates were increased by 200 and 400 percent, the recovery efficiency increased from 64 percent (for the baseline simulation) to 68 and 92 percent, respectively (fig. 14 and table 7). Although in a previous hypothetical study (Merritt, 1985) no relation was reported between the rates of injection and recovery and the

Figure 13. Chloride distribution profile at the end of the recovery phase of the baseline simulation.

INJECTION OR RECOVERY RATE, IN CUBIC METERS PER DAY
Figure 14. Relation between recovery efficiency and injection or recovery rate in the lower Hawthorn aquifer for $Q_{R} / Q_{\mathrm{I}}=1$.
recovery efficiency, the injected solute mass was confined by the upper and lower boundaries, keeping the injected mass near the well region and precluding mass migration across the upper and lower model boundaries. Because the mass of injected water was confined, no vertical movement occurred, and therefore, the duration and rate of injection and recovery were not important. Leakance occurs in most confined aquifers, and interlayer solute mass movement provides mechanics for mass migration, thereby affecting the recovery efficiency.

For the recovery rate/injection rate $\left(Q_{\mathrm{R}} / Q_{\mathrm{I}}\right)$ ratios of 25 and 50 percent, the recovery efficiency decreased slightly (fig. 15 and table 7). For $Q_{\mathrm{R}} / Q_{\mathrm{I}}$ ratios of 200 and 400 percent, the recovery efficiency increased from 64 percent (for the baseline simulation value) to 68 and 93 percent, respectively (fig. 15 and table 7). This relation can be explained by the fact that vertical mass transfer in leaky aquifers can be significant. For fast recovery rates, the vertical migration of mass would be smaller, providing for higher recoverability.

Figure 15. Relation between recovery efficiency and recovery rate/injection rate ratio in the lower Hawthorn aquifer.

VOLUME OF WATER INJECTED, IN THOUSANDS OF CUBIC METERS
Figure 16. Relation between recovery efficiency and volume of water injected in the lower Hawthorn aquifer.

Volume of Water Injected

The effect of injecting different size volumes was studied using four simulations in which the injected volume was changed by $25,50,200$, and 400 percent from the baseline simulation value (simulations 10-13 in table 7). This was accomplished by decreasing or increasing the injection time, while keeping the same injection rate used in the baseline simulation. Results from these simulations show that for the range of injected volumes tested in this study the recovery efficiency decreases as the volume of water injected increases (fig. 16 and table 7). Initially, the recovery efficiency decreases at a great rate as the volume of water injected is increased, but an asymptote is approached at a recovery efficiency value of about 40 percent (fig. 16); however, this result cannot be generalized. Some investigators (Merritt, 1985; Quiñones-Aponte and others, 1989) reported that the relation between the volume of water injected and the recovery efficiency can change direction for different ranges of volumes of water injected. For instance, the recovery efficiency for a range of small volumes of water injected can increase as the volume of water injected increases, and the recovery efficiency for a range of large volumes of water injected can decrease as the volume of injected water increases. The type of aquifer (confined or leaky) and boundary conditions can also affect the relation between volume of water injected and recovery efficiency. The leaky nature of the aquifer represented in this study model provides for transfer of injected water into
low-permeability units. For longer injection times, larger volumes of water would migrate into and across the lowpermeability units, thus reducing the potential for freshwater recovery.

Storage Time

The effect of storage time duration was assessed by increasing the duration of the storage time from the baseline simulation value of 0 days. Four simulations were made using storage times of 5, 30, 90, and 180 days (simulations 14-17 in table 7). Results from the simulations indicated that the storage time did not greatly affect the recovery efficiency, showing only a 4 percentage point decrease in recovery efficiency when the storage time was increased from 0 to 180 days (fig. 17 and table 7). However, the present model does not consider the regional background flow, which, combined with the storage time, could significantly reduce the recovery efficiency. Quiñones-Aponte and others (1989) interpreted actual SISRF tests and suggested that the recovery efficiency generally decreases as the storage time increases, but the rate of decrease in recovery efficiency would also depend on the volume of water injected. When small volumes of water are injected, the storage time has a stronger effect on reducing the recovery efficiency than when large volumes are injected (Quiñones-Aponte and others, 1989). The effect of storage time on the recovery efficiency would become overshadowed by the effect of the volume of water injected when the volume injected is large.

Figure 17. Relation between recovery efficiency and storage time in the lower Hawthorn aquifer.

Water Injected into Selected Flow Zones

The effect of injection into selected flow zones on recovery efficiency was studied by individually injecting the same volume of water at the same rate (volume and rate used for the baseline simulation) to each of the two more permeable flow zones. Two simulations were made-injection into the upper flow zone (198-213.3 m) and injection into the lower flow zone (222.5-231.6 m). The recovery efficiency did not change significantly; however, the configuration of the lines of equal chloride concentration at the end of the injection phase for both simulation cases revealed a sharp contrast between cases (fig. 18) and compared to their counterpart for the baseline simulation (figs. 18 and 10D). Model results indicated that the recovery efficiency in both cases decreased by a very small amount (simulations 18 and 19 in table 7) compared with the baseline simulation, which is not significant if the errors associated with the numerical method are taken into consideration. Merritt (1985) reported similar results; however, to generalize these results, a more-detailed study focusing on this aspect (injection into different flow zones) is needed.

When the injection well is open to all of the flow zones, a potential problem is the occurrence of interflow from higher to lower permeability zones through the wellbore during storage time. Water from flow zones under higher hydraulic pressure flows through the wellbore into flow zones under lower hydraulic pressure. This potential problem was not assessed by the model presented in this report; however, it should be considered for the design of actual injection wells.

Successive Cycles of Injection, Storage, and Recovery

Five consecutive simulations were made to study the effect of successive cycles of injection, storage, and recovery on the recovery efficiency. The different factors were not changed from the baseline simulation values; however, a storage time of 180 days was used for each cycle (simulations 20-24 in table 7). Results from the preceding cycle were used as initial values for simulating the following cycle. Model results were similar to those reported by Merritt (1985). The rate of improvement on recovery efficiency with successive SISRF cycles was higher during the early cycles, increasing from about 60 to 84 percent during the first three cycles (fig. 19). Recovery efficiency increased from about 84 to 88 percent for cycles 3,4 , and 5
INJECTION THROUGH UPPER FLOW ZONE

INJECTION THROUGH LOWER FLOW ZONE

EXPLANATION

MAIN FLOW ZONES IN INJECTIONRECOVERY WELL
_- 500 - LINE OF EQUAL CHLORIDE CONCEN-

\quad| TRATION--Shows radial distribution |
| :--- |
| of chloride in flow zones around |
| a well injecting freshwater at 1,635 |
| cubic meters per day after 30 days |
| of injection. Interval is 100 |
| milligrams per liter. |

Figure 18. Chloride distribution profiles at the end of a 30day injection period for the cases of injection into the upper and lower flow zones.
(fig. 19). It can be inferred from Merritt (1985, fig. 12) that the relation between recovery efficiency and the number of SISRF cycles approaches an asymptote after a certain number of cycles, where for practical purposes, no improvement of recovery efficiency occurs. The asymptote is reached at earlier cycle numbers for aquifers having small longitudinal dispersivity values (Merritt, 1985).

Figure 19. Relation between recovery efficiency and successive subsurface injection, storage, and recovery of freshwater cycles in the lower Hawthorn aquifer.

Chloride Concentrations in Injected and Native Waters

Four simulations were made to study the effects of different chloride concentrations in the injected and native waters. The chloride concentration in the injected water was changed in two simulations by increasing the value used in the baseline simulation by 200 and 400 percent. The chloride concentration in the native water in the remaining two simulations was changed in the same manner. The recovery efficiency in all of the simulations indicated reductions ranging from 9 percentage points (from the baseline simulation value) for $100 \mathrm{mg} / \mathrm{L}$ of chloride concentration in injected water to 42 percentage points (from the baseline simulation value) for $2,000 \mathrm{mg} / \mathrm{L}$ of chloride concentration in native water (simulations 25-28 in table 7). The analysis indicates: (1) the changes in the quality of injected water could result in reduction of the recovery efficiency; and (2) increases in the chloride concentration in native water because of saltwater intrusion, upconing, or other factors can decrease the recovery efficiency (table 7).

Sensitivity Analysis

Simulations were made to determine the sensitivity of the model-predicted recovery efficiency to variation in modeled aquifer characteristics, including perme-
ability, ratios of anisotropy, longitudinal and transverse dispersivities, molecular diffusion, and effective porosity. The sensitivity analysis was conducted to assess the uncertainty of estimating the aquifer hydraulic and transport properties. A sensitivity analysis provides the means to identify the most important aquifer characteristics.

The relative sensitivity approach developed by Simon (1988) was applied in this sensitivity study. In the relative sensitivity approach, modeled aquifer characteristics are varied from an optimum or calibrated value by different arbitrarily selected percentages. An objective function is used to represent the overall changes in model results because of a change in the optimum aquifer characteristic value.

For this sensitivity analysis, the recovery efficiency was used as an objective function. Relative changes in the objective function values (recovery efficiency values) were related to relative changes in the different aquifer characteristics. Each of the selected aquifer characteristic values was changed individually while keeping the other values unchanged. According to Simon (1988), the first relative change in the recovery efficiency value from the baseline simulation value can be defined by:

$$
\begin{equation*}
R E F F R E L_{i}=\frac{A C V_{b}\left(R E F F_{i}-R E F F_{b}\right)}{R E F F_{b}\left(A C V_{i}-A C V_{b}\right)} \tag{16}
\end{equation*}
$$

where,
$R E F F R E L_{i}$ is the relative change in the recovery efficiency; $R E F F_{i}$ is the recovery efficiency for a given change in an aquifer characteristic value;
$R E F F_{b}$ is the recovery efficiency for the baseline simulation;
$A C V_{i}$ is the changed or modified aquifer characteristic value; and
$A C V_{b}$ is the aquifer characteristic value used in the baseline simulation.

Subsequent relative changes can be defined by:

$$
\begin{equation*}
R E F F R E L_{i}=\frac{A C V_{b}\left(R E F F_{i}-R E F F_{i-1}\right)}{R E F F_{b}\left(A C V_{i}-A C V_{i-1}\right)} \tag{17}
\end{equation*}
$$

For this sensitivity analysis, the parameters were divided into two categories-hydraulic and transport. The general results from the two categories, which are described in the following sections, indicated that the permeability values of the upper and lower flow zones were the most important factors and produced the greatest changes in the relative sensitivity of the recovery efficiency (fig. 20A-C). In second place of importance,
(A)

(A)

(B)

(B)

(C)

(C)

Figure 20. Relative sensitivity of recovery efficiency to variations in (A) permeability values and vertical anisotropy ratio, (B) longitudinal and transverse dispersivities and the ratio of transverse to longitudinal dispersivities, and (C) effective porosity.
but of about equal significance between them, are changes in the relative sensitivity of the recovery efficiency, produced by changing all the porosity values (porosity values of the upper and lower flow zones and the leaky confining units) and those produced by changing the vertical anisotropy ratio (fig. 20C). The fact that permeability, vertical anisotropy, and porosity are the most important factors indicates that the advection process is the most important transport process for this study. Another general observation is that the effect of changing the characteristic values on the relative sensitivity of the recovery efficiency increases when the values are decreased and decreases when the values are increased for all cases (figs. 20A-C).

Permeability and Vertical Anisotropy

The aquifer permeability determines the specific discharge or Darcy's velocity (eq. 6), which in turn, is combined with the effective aquifer porosity to determine the average pore-water velocity (eq. 10). The average pore-water velocity is directly used in the advective term of the transport equation (eq. 14) and indirectly used through the hydrodynamic dispersion tensor (eq. 12) in the dispersive term of the transport equation (eq. 14). Uncertainty in the permeability value would, therefore, affect the advective and dispersive components of the transport computations. The sensitivity of the model to the permeability value was limited to changing the magnitude of the permeability tensor and the vertical anisotropy. Other factors having potential effects on the permeability, such as horizontal anisotropy and heterogeneity, were not considered in this analysis because of the lack of available information.

The magnitude of the permeability was changed in three different ways: (1) uniform changes in all permeability values, (2) changes in permeability values of the leaky confining units, and (3) changes in permeability values of the upper and lower flow zones. The permeability values of the upper and lower flow zones (seemingly the most important in the permeability category) produced the greater changes in the relative sensitivity of the recovery efficiency when the calibrated value was decreased or increased, but showed greater effects when the permeability values were decreased (fig. 20A). Changes in the permeability value of the leaky confining units indicated some sensitivity when the value was increased or decreased by 25 percent, but for greater changes the relative sensitivity was not significantly affected (fig. 20A). It can be inferred from
figure 20A that a uniform change in the permeabilities of model layers representing all flow zones and leaky confining units produced an insignificant effect on the recovery efficiency.

Vertical anisotropy, the ratio of vertical to horizontal permeability, was also studied. Changes in the ratio of horizontal to vertical permeability produced the second greatest changes in the relative sensitivity of the recovery efficiency in the permeability category (fig. 20A).

Hydrodynamic Dispersion and Effective Porosity

The hydrodynamic dispersion tensor describes the combined effects of the flow field, aquifer matrix, and molecular diffusion on the transport of solute particles (eq. 13). Flow field and aquifer matrix effects are represented by mechanical dispersion (eq. 12), whereas molecular diffusion is described by Fick's law. The effect of hydrodynamic dispersion on the relative sensitivity of recovery efficiency was studied through the different components of the hydrodynamic dispersion coefficient. The longitudinal and transverse dispersivities represent the dispersive mechanisms of the process. Although molecular diffusion is also a component of the hydrodynamic dispersion coefficient, it is widely recognized among scientists that the effect of molecular diffusion is negligible when compared to longitudinal and transverse dispersivities. Therefore, no attempt was made to study the effects of changing the coefficient of molecular diffusion in this study.

Two different tests were made for the longitudinal and transverse dispersivity values. Both dispersivity values were simultaneously changed by the same percentage in the first test, keeping the ratio of transverse to longitudinal dispersivity equal to $1 / 10$. The ratio of transverse to longitudinal dispersivity was changed in the second test, keeping the longitudinal dispersivity value constant while changing the transverse dispersivity value. The results from the analysis indicated that the uniform change in both transverse and longitudinal dispersivity values produced more significant changes in the relative sensitivity of the recovery efficiency than when the ratio of transverse to longitudinal dispersivities was changed (fig. 20B). In both cases, the relative sensitivity of the recovery efficiency decreased as the dispersivity values or ratio of transverse to longitudinal dispersivity were increased (fig. 20B).

Effective porosity is a factor in the ground-water hydraulic equation (eq. 7) and the advective-dispersive solute-transport equation (eq. 14) in the storage term. However, this porosity has a double effect on the
advective dispersive solute-transport equation (eq. 14). In addition to the effect on the storage term for the transport equation, the effective porosity value is combined with the specific discharge (obtained from the ground-water flow equation) to determine the average pore-water velocities, which are used to represent the advection term in the transport equation (eq. 14).

The effective porosity values were changed in three different ways: (1) the porosity values of all the different layers representing the hydrogeologic units were changed by the same percentage from their calibrated values, (2) changes were made to porosity values of the upper and lower flow zones, and (3) changes were made to porosity values of the leaky confining units. Results from the analysis indicated that the most significant changes in the relative sensitivity of the recovery efficiency (and seemingly the most important in the hydrodynamic dispersion category) were produced by changing the porosity values of all layers using the same percentage (figs. 20B and 20C). The second most significant changes to the relative sensitivity of the recovery efficiency were produced by changing the porosity of the upper and lower flow zones (fig. 20C). Smaller changes in the relative sensitivity of the recovery efficiency were produced when porosity values of the leaky confining units were changed (fig. 20C). These results suggest that a specific combination of porosity values of the flow zones and the leaky confining units is needed to provide an adequate representation of the transport system.

LIMITATIONS

Confidence in the model and in the resulting simulations is limited by a number of factors. These factors can be segregated into two categories-the hydrogeologic information and the aspects of the model code. Among the hydrogeologic information, the most important limiting factors in this study were lack of:

- Complete understanding about the spatial variability of the hydraulic conductivity or permeability values (heterogeneity),
- Field information on changes in the magnitude of the hydraulic conductivity or permeability in the horizontal and vertical directions (horizontal and vertical anisotropies),
- Field information on the porosity values,
- Knowledge about the potential effect of fractures or solution cavities on the flow and transport processes (result of effective secondary porosity),
- Real SISRF tests in the Cape Coral area, and
- Assumptions made to represent the top and bottom boundary conditions as having constant solute concentration and pressure.
The computer code (QSUTRA) used in this study has some intrinsic limitations:
- The fact that the code provides only for two-dimensional simulations precluded the study of the effect of background regional flow on the displacement of the injected water when the cylindrical (radial) coordinate option was used;
- When the Cartesian coordinate option is used, the assumption of vertical homogeneity and isotropy must be made, and such an assumption would be unrealistic for the Cape Coral site; and
- In QSUTRA, the solute-transport equation for transient compressible fluid flow is represented by an analogous numerical expression where porosity, thickness, and fluid density are kept constant by producing a massbalance error. This affects the determination of velocities and dispersion coefficients (Goode, 1990; 1992). However, this intrinsic error is not expected to greatly affect the simulation of field-scale problems in which the uncertainty and variability of the modeled aquifer characteristics overshadow the potential effects from the intrinsic mass-balance error.

SUMMARY AND CONCLUSIONS

A preliminary assessment of subsurface injection, storage, and recovery of freshwater (SISRF) was made as a potential alternative to the growing water-supply problems of Cape Coral in Lee County, southwestern Florida. A digital modeling approach was used for this preliminary assessment to research the actual potential of SISRF without having to spend the large amounts of money required for real field testing of this technique.

The hydrogeologic framework used for this study was modified or developed from the interpretation of data from previous studies. Aquifer characteristics were estimated from interpretation of data from previous studies. A combination of caliper and flow-velocity borehole geophysical logs was used to estimate the percentages of flow entering different flow zones. These percentages of flow and information on the aquifer transmissivity were used to estimate permeability values for the different flow zones.

A general presentation was made of the densitydependent ground-water flow and advective dispersive solute-transport equations. A modified version of the computer code SUTRA (QSUTRA) and a cylindrical coordinates grid were used for this preliminary assessment because of the lack of information required to represent the real three-dimensional ground-water flow and transport system.

Dispersive characteristics were estimated on the basis of data from a previous study at the Lee County Water Treatment Plant. This was accomplished by calibrating a model for the Lee County Water Treatment Plant site and testing this model using field data from a previous study. A second model was made for the Cape Coral area using local hydraulic characteristics and adopting the dispersive characteristics estimated for the Lee County Water Treatment Plant site model.

A series of 28 hypothetical tests of subsurface injection, storage, and recovery of freshwater were made for the lower Hawthorn aquifer in Cape Coral using the digital modeling technique to assess the efficiency of this operation in the subject aquifer. A baseline simulation was used as reference to compare the effects of changing some operational factors on the recovery efficiency. A recovery efficiency of 64 percent was estimated for the baseline simulation. This recovery efficiency represents the total amount of water pumped during the recovery phase before the 250 -milligrams per liter chloride limit is reached divided by the total amount of injected water. The effects of the following operational factors were assessed using the model: rates of injection and recovery; volume of water injected; storage time; injection into selected flow zones; successive cycles of injection, storage, and recovery; and chloride concentrations in injected and native aquifer waters.

A summary of the simulation results from the model, which is based on the limited knowledge of the aquifer, indicates that the recovery efficiency increased when the injection rate and recovery rates were increased, and when the ratio of recovery rate to injection rate was increased. Recovery efficiency decreased when the amount of water injected was increased; decreased slightly when the storage time was increased; was not changed significantly when the water was injected to a specific flow zone; increased with successive cycles of injection, storage, and recovery; and decreased when the chloride concentrations in either the injected water or native aquifer water were increased. The different simulation results for storage time might be unrealistic because the cylindrical coordinates used in the model did not consider the regional background flow, which was an important factor in previous studies.

The higher recovery efficiencies were obtained for three simulation tests for which the duration of injection and recovery phases was shorter. This is expected because of the nature of the conceptual system in which
migration of the solute particles to areas beyond the vertical boundaries will reduce the recoverability for tests of longer duration. The recovery efficiency fluctuated from its baseline value of 64 percent to an upper value of about 100 percent and to a lower value of 22 percent in all of the simulations.

Interlayer solute mass movement across the upper and lower boundaries seems to be the most important factor affecting the recovery efficiency. A simulation that was conducted with the same parameters used for the baseline simulation, but representing the top and bottom boundaries as impermeable (no flow and no solute transport), yielded a recovery efficiency value of 83 percentage points. This value is 19 percentage points higher than the estimated value from the baseline simulation showing that this boundary is important in determining the recovery efficiency, and that using constant pressure and constant solute concentration, boundaries will yield more conservative estimates of the recovery efficiency.

The sensitivity analysis was performed applying the relative sensitivity technique in which changes in the different factors and model responses are normalized to make a meaningful comparison of the model responses due to changes in the different factors. Two categories of factors were recognized for the sensitivity analysis-aquifer permeability and hydrodynamic dispersion. Several combinations of changes were made for factors of the two categories. For instance, a factor was changed only for a specific flow zone. The general results from the sensitivity analysis indicated that the permeability values of the upper and lower flow zones are the most important factors, producing the overall greater changes in the relative sensitivity of the recovery efficiency. In second place of importance, but of about equal significance between them, are changes in the relative sensitivity of the recovery efficiency, produced by changing all the porosity values (porosity values of the upper and lower flow zones and the confining beds) and those produced by changing the vertical anisotropy ratio.

Model results indicate that high recovery efficiencies (from 64 to about 100 percent) can be achieved for different SISRF operational schemes. Two successive injection, storage, and recovery cycles can increase the recovery efficiency from 60 to about 80 percent. Combinations of different operational factors also can be used to maintain high recovery efficiencies. The advective factors (pore-water velocities derived from permeability and porosity values) were apparently the most
important to the model sensitivity in the Cape Coral area. However, the dispersivity values used for the lower Hawthorn aquifer in the Cape Coral area model were not field values, but values that were extrapolated from the model of the lower Hawthorn aquifer at the Lee County Water Treatment Plant site. These dispersivity values might not be representative of the actual dispersive characteristics of the lower Hawthorn aquifer in the Cape Coral area. The model presented in this report is a generalized version of the actual hydrogeologic system and could be refined if additional information on the advective and dispersive characteristics of the aquifer is made available.

REFERENCES CITED

Anderson, M.P., 1984, Movement of contaminants in groundwater: Groundwater transport-advection and dispersion, in Groundwater Contamination: Washington, D.C., National Academy Press, p. 37-45.
Bear, J., 1979, Hydraulics of Groundwater: New York, McGraw-Hill, 569 p.
Brown, R.H., 1963, Estimating the transmissivity of an artesian aquifer from the specific capacity of a well, in Methods of Determining Permeability, Transmissivity, and Drawdown: U.S. Geological Survey Water-Supply Paper 1536-I, p. 336-338.
City of Cape Coral Planning Division, 1988, Comprehensive plan-future land use element-Volume 1. Population and Demographics, 31 p.
Fitzpatrick, D.J., 1986a, Tests for injecting, storing, and recovering freshwater in a saline artesian aquifer, Lee County, Florida: U.S. Geological Survey WaterResources Investigations Report 85-4249, 53 p . 1986b, Hydrogeologic conditions and saline-water intrusion, Cape Coral, Florida, 1978-81: U.S. Geological Survey Water-Resources Investigations Report 85-4231, 31 p.
Florida Department of Environmental Protection, 1993, Drinking water standards, monitoring and reporting: Chapter 17-550, Florida Administrative Code, 38 p.
Freeze and Cherry, 1979, Groundwater: Englewood Cliffs, N.J., Prentice-Hall, 604 p.

Gelhar, L.W., and Axness, C.L., 1983, Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resources Research, v. 19, no. 1, p. 161-180.
Gelhar, L.W., Gutjahr, A.L., and Naff, R.L., 1979, Stochastic analysis of macrodispersion in a stratified aquifer: Water Resources Research, v. 15, no. 6, p. 1387-1397.
Goode, D.J., 1990, Governing equations and model approximation errors associated with the effects of fluidstorage transients on solute transport in aquifers: U.S. Geological Survey Water-Resources Investigations Report 90-4156, 20 p.

- 1992, Modeling transport in transient ground-water flow: An unacknowledged approximation: Ground Water, v. 30, no. 2, p. 257-261.
Kimbler, O.K., Kazmann, R.G., and Whitehead, W.R., 1975, Cyclic storage of fresh water in saline aquifers: Louisiana Water Resources Research Institute Bulletin 10, Baton Rouge, Louisiana State University, 78 p.
Knapp, M.S., Burns, W.S., Sharp, T.S., and Shih, George, 1984, Preliminary water resources assessment of the mid and lower Hawthorn aquifers in western Lee County, Florida: South Florida Water Management District Technical Report 84-10, 106 p.
Kuiper, L.K., 1987, Computer program for solving groundwater flow equations by the preconditioned conjugate gradient method: U.S. Geological Survey WaterResources Investigations Report 87-4091, 34 p.
La Rose, H.R., 1990, Geohydrologic framework and an analysis of a well-plugging program, Lee County, Florida: U.S. Geological Survey Water-Resources Investigations Report 90-4063, 26 p., 1 pl.
Lee County Planning Department, 1977, Climate of Lee County: Lee County Planning Department report, 62 p.
Mercado, A., 1984, A note on micro and macrodispersion: Ground Water, v. 22, no. 6, p. 790-791.
Merritt, M.L., 1985, Subsurface storage of freshwater in south Florida: A digital model analysis of recoverability: U.S. Geological Survey Water Supply Paper 2261, 44 p.
Merritt, M.L., Meyer, F.W., Sonntag, W.H., and Fitzpatrick, D.J., 1983, Subsurface storage of freshwater in south Florida: A prospectus: U.S. Geological Survey WaterResources Investigations Report 83-4214, 69 p.
Meyer, F.W., 1989, Subsurface storage of liquids in the Floridan aquifer system in south Florida: U.S. Geological Survey Open-File Report 88-477, 25 p.
Missimer and Associates, Inc., 1984, Hydrogeology of the lower part of the Hawthorn aquifer system, Cape Coral Florida: Consultant's Report, 84 p.
1985, Cape Coral reverse osmosis wellfield final construction report and operational and maintenance recommendations: v. $1,58 \mathrm{p}$.
National Oceanic and Atmospheric Administration, 1944-88, Climatological data, Florida: Monthly summaries for 1984 to 1988.
Quiñones-Aponte, Vicente, Whiteside, D.V., and Zack, Allen, 1989, Single well injection and recovery of freshwater from an aquifer containing saline water in Arecibo, Puerto Rico: U.S. Geological Survey WaterResources Investigations Report 88-4037, 19 p.
Scheidegger, A.E., 1961, General theory of dispersion in porous media: Journal of Geophysical Research, v. 66, p. 3273-3278.

Simon, E., 1988, Parameter sensitivity analysis for hydrologic simulation models: Water International, v. 13, p. 46-56.

Voss, C.I., 1984, A finite-element simulation model for sat-urated-unsaturated, fluid density-dependent groundwater flow with energy transport or chemically reactive single species solute transport: U.S. Geological Survey Water-Resources Investigations Report 84-4369, 409 p.

Wedderburn, L.A., Knapp, M.S., Waltz, D.P., and Burns, W.S., 1982, Hydrogeologic reconnaissance of Lee County, Florida—Part 1: South Florida Water Management District Technical Report 82-1, 192 p.
Young, D.M., 1954, Iterative method for solving partial differential equations of the elliptic type: Transactions American Mathematical Society, v. 76, p. 92-111.

Appendix I

Appendix II

QSUTRA Program Listing (Model Version 1284-2DICG Modified for Regular Grid)
[MODIFIED, Changes as per updated version of SUTRA, version V06902D; NEW, Changes made as part of QSUTRA implementation, version 1284-2DICG]


```
C.....INPUT DATASET 2: OUTPUT HEADING
        READ (K1, 170) TITLE1,TITLE2
    170 FORMAT (80A1/80A1)
        WRITE(K3,180) TITLE1,TITLE2
180 FORMAT(////1X,131(1H-)//26X,80A1//26X,80A1//1X,131(1H-))
C.....OUTPUT FILE UNIT ASSIGNMENTS
WRITE (K3, 202) (IUNIT (NF), FNAME (NF),NF=1, 3)
    202 FORMAT(/////11X,'F I L E UN IT A S S I GNMEENT S'//
    1 13X,'INPUT UNITS:'/
    2 13X,' SIMULATION DATA ',I3,4X,'ASSIGNED TO ',A80/
        13X,' INITIAL CONDITIONS ',I3,4X,'ASSIGNED TO ',A80//
    4 13X,'OUTPUT UNITS:'/
    5 13X,' SIMULATION RESULTS ',I3,4X,'ASSIGNED TO ',A80)
            IF(NFILE.EQ.4) WRITE(K3,203) IUNIT(4),FNAME (4)
    203 FORMAT (13X,' RESTART DATA ',I3,4X,'ASSIGNED TO ',A80)
C.....INPUT AND OUTPUT DATASET 4: SIMULATION MODE OPTIONS
    READ (K1, 200) IS, JT, NBI, NP INCH, NPBC, NUBC, NSOP, NSOU , NOBS, NTOBS
        NN=IS*JT
        NE=(IS-1) * (JT-1)
    READ (K1, 200) IUNSAT,ISSFLO,ISSTRA,IREAD,ISTORE,ITIME
    200 FORMAT (16I5)
    WRITE (K3,205)
205 FORMAT(/////11X,'S I M U L A T I O N M O D E ',
    1 'O P T I O N S'/)
    IF(ISSTRA.EQ.1.AND.ISSFLO.NE.1) THEN
        WRITE (K3,210)
210 FORMAT(////11X,'STEADY-STATE TRANSPORT ALSO REQUIRES THAT ',
    1 'FLOW IS AT STEADY STATE.'//11X,'PLEASE CORRECT ISSFLO ',
    2 'AND ISSTRA IN THE INPUT DATA, AND RERUN.'////////
    345X,'S I M U L A T I O N H A L T E D DUE TO INPUT ERROR')
        ENDFILE(K3)
        STOP
    ENDIF
    IF(IUNSAT.EQ.+1) WRITE (K3,215)
    IF(IUNSAT.EQ.0) WRITE (K3,216)
215 FORMAT (11X,' - ALLOW UNSATURATED AND SATURATED FLOW: UNSATURATED',
    1 ' PROPERTIES ARE USER-PROGRAMMED IN SUBROUTINE U N S A T') A2040..
216 FORMAT(11X,'- ASSUME SATURATED FLOW ONLY')
    IF(ISSFLO.EQ.+1.AND.ME.EQ.-1) WRITE(K3, 219)
    IF(ISSFLO.EQ.+1.AND.ME.EQ.+1) WRITE (K3,220)
    IF(ISSFLO.EQ.0) WRITE (K3,221)
219 FORMAT(11X,' - ASSUME STEADY-STATE FLOW FIELD CONSISTENT WITH ',
    1 'INITIAL CONCENTRATION CONDITIONS')
220 FORMAT(11X,'- ASSUME STEADY-STATE FLOW FIELD CONSISTENT WITH ',
    1 'INITIAL TEMPERATURE CONDITIONS')
221 FORMAT (11X,'- ALLOW TIME-DEPENDENT FLOW FIELD')
    IF(ISSTRA.EQ.+1) WRITE (K3,225)
    IF(ISSTRA.EQ.0) WRITE (K3,226)
225 FORMAT (11X,'- ASSUME STEADY-STATE TRANSPORT')
226 FORMAT(11X,'- ALLOW TIME-DEPENDENT TRANSPORT')
    IF(IREAD.EQ.-1) WRITE (K3,230)
    IF(IREAD.EQ.+1) WRITE (K3, 231)
230 FORMAT(11X,' - WARM START - SIMULATION IS TO BE ',
    1 'CONTINUED FROM PREVIOUSLY-STORED DATA')
231 FORMAT(11X,'- COLD START - BEGIN NEW SIMULATION')
    IF(ISTORE.EQ.+1) WRITE(K3,240)
    IF(ISTORE.EQ.0) WRITE (K3,241)
240 FORMAT (11X,'- STORE RESULTS AFTER EACH TIME STEP ON UNIT-66',
    1 ' AS BACK-UP AND FOR USE IN A SIMULATION RE-START')
241 FORMAT(11X,'- DO NOT STORE RESULTS FOR USE IN A ',
    1 'RE-START OF SIMULATION')
A1810...
A1820.
A1830..
A1840..
A1850...
A1850.5MODIFIED
A1851..MODIFIED
A1852 . .MODIFIED
A1853..MODIFIED
A1854 . .MODIFIED
A1855 . MODIFIED
A1856 . .MODIFIED
A1857..MODIFIED
A1858..MODIFIED
A1859..MODIFIED
A1865 . .MODIFIED
A1860NEW
NEW
NEW
A1870NEW
A1880...
A1890..
A1900...
A1910...
A1920...
A1930..
A1930..
A1940...
A1950..
A1960...
A1970...
A1980...
A1990...
A2000...
A2010...
A2020...
A2030...
A2040..
A2050...
A2060...
A2070...
A2080...
A2090..
A2090..
A2100...
A2110...
A2120..
A2130...
A2140...
A2150...
A2160...
A2170...
A2180...
A2190...
A2200...
A2210...
A2220...
A2230...
A2240...
A2250..
A250..
A2260...
A2270...
A2280..
```

C IF (ME.EQ.-1)
1 WRITE (K3,245) NN, NE, NPBC, NUBC, NSOP, NSOU, NOBS, NTOBS
245 FORMAT (////11X,'S I M U L A T I O N C O N T R O L , ,
1 ' N U M B E R S'//11X,I6,5X,' NUMBER OF NODES IN FINITE-',
2 'ELEMENT MESH'/11X,I6,5X,'NUMBER OF ELEMENTS IN MESH'/
5 11X,I6,5X,'EXACT NUMBER OF NODES IN MESH AT WHICH ',
6 'PRESSURE IS A SPECIFIED CONSTANT OR FUNCTION OF TIME'/
7 11X,I6,5X,' EXACT NUMBER OF NODES IN MESH AT WHICH ',
8 'SOLUTE CONCENTRATION IS A SPECIFIED CONSTANT OR ',
9 'FUNCTION OF TIME'//11X,I6,5X,'EXACT NUMBER OF NODES AT',

* ' WHICH FLUID INFLOW OR OUTFLOW IS A SPECIFIED CONSTANT',

A ' OR FUNCTION OF TIME'/11X,I6,5X,'EXACT NUMBER OF NODES AT',
B ' WHICH A SOURCE OR SINK OF SOLUTE MASS IS A SPECIFIED ',
C 'CONSTANT OR FUNCTION OF TIME'//11X,I6,5X,'EXACT NUMBER OF ',
D ' Nodes at which pressure and concentration will be observed',
E /11X,I6,5X,'MAXIMUM NUMBER OF TIME STEPS ON WHICH ',
F 'OBSERVATIONS WILL BE MADE')
C

IF (ME.EQ.+1)

1 WRITE (K3, 255) NN, NE, NPBC, NUBC, NSOP, NSOU, NOBS, NTOBS 255 FORMAT (////11X,'S I M U L A T I O N C O N T R O L , ' N U M B E R S'//11X,I6,5X,'NUMBER OF NODES IN FINITE-', 'ELEMENT MESH'/11X,I6,5X,'NUMBER OF ELEMENTS IN MESH'/ 11X, I6,5X,'EXACT NUMBER OF NODES IN MESH AT WHICH ', 'PRESSURE IS A SPECIFIED CONSTANT OR FUNCTION OF TIME'/ 11X, I6,5X,'EXACT NUMBER OF NODES IN MESH AT WHICH ', 'TEMPERATURE IS A SPECIFIED CONSTANT OR ', ' FUNCTION OF TIME'//11X,I6,5X,'EXACT NUMBER OF NODES AT', ' WHICH FLUID INFLOW OR OUTFLOW IS A SPECIFIED CONSTANT', ' OR FUNCTION OF TIME'/11X,I6,5X,'EXACT NUMBER OF NODES AT', ' WHICH A SOURCE OR SINK OF ENERGY IS A SPECIFIED CONSTANT', ' OR FUNCTION OF TIME'//11X,I6,5X,'EXACT NUMBER OF NODES ', 'AT WHICH PRESSURE AND TEMPERATURE WILL BE OBSERVED' E /11X,I6,5X,'MAXIMUM NUMBER OF TIME STEPS ON WHICH ',
F 'OBSERVATIONS WILL BE MADE')
C
C
C.....CALCULATE DIMENSIONS FOR POINTERS

C
$\mathrm{NBCN}=\mathrm{NPBC}+\mathrm{NUBC}+1$
$\mathrm{NSOP}=\mathrm{NSOP}+1$
$\mathrm{NSOU}=\mathrm{NSOU}+1$
NP INCH=1
NBIP $=5$
NBIS $=9$
MATDMP $=\mathrm{NN} * N B I P$
MATDMS $=$ NN $* N B I S$
NIN=NE*8
NOBSN=NOBS +1
NTOBSN=NTOBS +2
MATOBS $=$ NOBSN $*$ NTOBSN
NE $4=$ NE * 4
C
C
C.....SET UP POINTERS FOR REAL MATRICES

C
KRM1 $=1$
$\begin{array}{lr}\text { KRM2 }=\text { KRM1+ } & \text { MATDMP } \\ \text { KRM3 }=\text { KRM2+ } & \text { MATDMS } \\ \text { KRM4 }=\text { KRM3+NN }\end{array}$

	KRM5 $=$ KRM4+NN	NEW
	KRM6=KRM5+NN	NEW
	KRM7=KRM6+NN	NEW
C	KRM8=KRM7+NN*9	NEW
C	NOTE: THE LAST POINTER IN THE ABOVE LIST, CURRENTLY, KRM8,	A2900.
C	MAY N E V E R BE PASSED TO SUTRA. IT POINTS TO THE	A2910.
C	STARTING ELEMENT OF THE NEXT NEW MATRIX TO BE ADDED.	A2920.
C	PRESENTLY, SPACE IS ALLOCATED FOR (7) MATRICES.	A2930.
C		A2940.
C		A2950.
C. SET UP POINTERS FOR REAL VECTORS	A2960.
C		A2970.
C	NNV IS NUMBER OF REAL VECTORS THAT ARE NN LONG	A2980.
	NNV=30	A2990.
C	NEV IS NUMBER OF REAL VECTORS THAT ARE NE LONG	A3000.
	NEV=10	A3010.
C		A3020.
	$M 2=1$	A3030.
	$\operatorname{KRV}(1)=1$	A3040.
	$\mathrm{M} 1=\mathrm{M} 2+1$	A3050.
	$\mathrm{M} 2=\mathrm{M} 2+\quad$ (NNV)	A3060.
	DO $400 \mathrm{~J}=\mathrm{M} 1, \mathrm{M} 2$	A3070.
400	$\operatorname{KRV}(J)=\operatorname{KRV}(J-1)+\mathrm{NN}$	A3080.
	$\mathrm{M} 1=\mathrm{M} 2+1$	A3090.
	$\mathrm{M} 2=\mathrm{M} 2+\quad$ (NEV	A3100.
	DO $410 \mathrm{~J}=\mathrm{M} 1, \mathrm{M} 2$	A3110.
410	$\operatorname{KRV}(\mathrm{J})=\mathrm{KRV}(\mathrm{J}-1)+\mathrm{NE}$	A3120.
	$\mathrm{M} 1=\mathrm{M} 2+1$	A3130.
	$\mathrm{M} 2=\mathrm{M} 2+\quad$ (3)	A3140.
	DO $420 \mathrm{~J}=\mathrm{M} 1, \mathrm{M} 2$	A3150.
420	$\operatorname{KRV}(J)=\operatorname{KRV}(J-1)+\mathrm{NBCN}$	A3160.
	$\mathrm{M} 1=\mathrm{M} 2+1$	A3170.
	$\mathrm{M} 2=\mathrm{M} 2+\quad$ (2)	A3180.
	DO $430 \mathrm{~J}=\mathrm{M} 1, \mathrm{M} 2$	A3190.
430	$\operatorname{KRV}(J)=\operatorname{KRV}(J-1)+\mathrm{MATOBS}$	A 3200.
	$\mathrm{M} 2=\mathrm{M} 2+\quad(1)$	A 3210.
	$\operatorname{KRV}(\mathrm{M} 2)=\operatorname{KRV}(\mathrm{M} 2-1)+\mathrm{NTOBSN}$	A3220.
	$\mathrm{M} 1=\mathrm{M} 2+1$	A 3230.
	$\mathrm{M} 2=\mathrm{M} 2+\quad$ (2)	A 3240 .
	DO $440 \mathrm{~J}=\mathrm{M} 1, \mathrm{M} 2$	A 3250.
440	$\operatorname{KRV}(\mathrm{J})=\mathrm{KRV}(\mathrm{J}-1)+\mathrm{NE} 4$	A 3260.
C	NOTE: THE LAST POINTER IN THE ABOVE LIST, CURRENTLY, KRV(J=49),	A 3270.
C	MAY N E V E R BE PASSED TO SUTRA. IT POINTS TO THE	A3280.
C	STARTING ELEMENT OF THE NEXT NEW REAL VECTOR TO BE ADDED.	A3290.
C	PRESENTLY, SPACE IS ALLOCATED FOR (48) VECTORS.	A3300.
C		A3310.
C		A3320.
C. SET UP POINTERS FOR INTEGER VECTORS	A3330.
C		A3340.
	KIMV1=1	A3350.
	KIMV2=KIMV1+ NIN	A3360.
	KIMV3=KIMV2+ NPINCH*3	A3370.
	KIMV4=KIMV3+ NSOP	A3380.
	KIMV5=KIMV4+ NSOU	A3390.
	KIMV6=KIMV5+ NBCN	A3400.
	KIMV7=KIMV6+ NBCN	A3410.
	KIMV8=KIMV7+ NN	A3420.
	KIMV9=KIMV8+ NOBSN	A3430.
C	KIMV10=KIMV9+ NTOBSN	A3440.
C	NOTE: THE LAST POINTER IN THE ABOVE LIST, CURRENTLY, KIMV10,	A3450.
C	MAY N E V E R BE PASSED TO SUTRA. IT POINTS TO THE	A3460.


```
    COMMON/PARAMS/ COMPFL, COMPMA,DRWDU,CW,CS,RHOS,DECAY,SIGMAW,SIGMAS,B260....
    1 RHOW0,URHOW0,VISC0,PRODF1,PRODS1,PRODF0,PRODS0,CHI1,CHI2 B270....
    COMMON/ITERAT/ RPM, RPMAX,RUM,RUMAX,ITER,ITRMAX,IPWORS,IUWORS, B280....
1
                ICON, ITRMX2, OMEGA, RPMX2,RUMX2
    COMMON/KPRINT/ KNODAL,KELMNT,KINCID,KPLOTP,KPLOTU,KVEL,KBUDG
        COMMON/OBS/ NOBSN,NTOBSN,NOBCYC,ITCNT
        DIMENSION QIN(NN),UIN(NN),IQSOP (NSOP),QUIN(NN),IQSOU(NSOU)
    DIMENSION IPBC (NBCN), PBC (NBCN),IUBC (NBCN),UBC (NBCN),QPLITR (NBCN)
    DIMENSION IN (NIN),IPINCH (1,3)
        DIMENSION X(NN),Y(NN),THICK(NN),SW (NN),DSWDP (NN),RHO(NN),SOP (NN), B340....
    1 POR (NN),PVEL (NN)
B350....
    DIMENSION PERMXX (NE),PERMXY (NE),PERMYX(NE),PERMYY(NE),PANGLE (NE), B360....
    1 ALMAX (NE),ALMIN (NE),ATAVG (NE),VMAG (NE),VANG (NE), B370....
    2 GXSI (NE,4),GETA (NE, 4)
    DIMENSION VOL (NN), PMAT (NN,NBIP), PVEC (NN), UMAT (NN, NBIS), UVEC (NN) B390NEW
    DIMENSION CWRK (NN), CWRK2 (NN),CWRK3 (NN), CWRK4 (NN),CWRK5 (NN,5)
    DIMENSION PM1 (NN),UM1 (NN),UM2 (NN),PITER (NN),UITER (NN),
    1 RCIT (NN),RCITM1 (NN),CS1 (NN),CS2 (NN),CS3 (NN)
        DIMENSION CC(NN),INDEX(NN),XX(NN),YY(NN)
        DIMENSION POBS (NOBSN,NTOBSN),UOBS (NOBSN,NTOBSN),OBSTIM(NTOBSN),
    1 IOBS (NOBSN),ITOBS (NTOBSN)
        DATA IT/O/
C
C
C
C.....INPUT SIMULATION DATA FROM UNIT-5 (DATASETS 3 THROUGH 15B)
        CALL INDAT1(X,Y,THICK,POR,ALMAX,ALMIN,ATAVG,PERMXX,PERMXY,
    1 PERMYX, PERMYY, PANGLE, SOP,IN)
C
C.....INPUT FLUID MASS, AND ENERGY OR SOLUTE MASS SOURCES
C (DATASETS 17 AND 18)
C (DATASETS 17 AND 18)
        CALL ZERO(UIN,NN,O.ODO)
        CALL ZERO(QUIN,NN,O.ODO)
        IF(NSOP-1.GT.0.OR.NSOU-1.GT.0)
        1 CALL SOURCE (QIN,UIN,IQSOP,QUIN,IQSOU,IQSOPT,IQSOUT)
C
C.....INPUT SPECIFIED P AND U BOUNDARY CONDITIONS (DATASETS 19 AND 20) B640....
        IF(NBCN-1.GT.0) CALL BOUND(IPBC,PBC,IUBC,UBC,IPBCT,IUBCT)
C
C.....SET FLAG FOR TIME-DEPENDENT SOURCES OR BOUNDARY CONDITIONS.
C WHEN IBCT=+4, THERE ARE NO TIME-DEPENDENT SPECIFICATIONS.
    IBCT=IQSOPT+IQSOUT+IPBCT+IUBCT
C
C.....INPUT OBSERVATION NODE DATA (DATASET 21)
        IF(NOBSN-1.GT.0) CALL OBSERV(0,IOBS,ITOBS,POBS,UOBS,OBSTIM,
        1 PVEC,UVEC,ISTOP)
        WRITE (K3, 4000)
    4000 FORMAT (////////1X,132(1H-)///42X,'E N D O F I NP U T , NEW
    1 'FROM UNIT - 5'//132(1H-))
B830....
C.....INPUT INITIAL OR RESTART CONDITIONS AND INITIALIZE PARAMETERS
C (READ UNIT-55 DATA) B850....
        CALL INDAT2(PVEC,UVEC,PM1,UM1,UM2,CS1,CS2,CS3,SL,SR,RCIT,SW,DSWDP,B860....
    1 PBC,IPBC,IPBCT) B870....
C
C.....SET STARTING TIME OF SIMULATION CLOCK
C TSEC=TSTART
    TSECP0=TSEC
    TSECU0=TSEC
    TMIN=TSEC/60.D0
    B270....
    NEW
    B290....
    B300....
    B310....
    B320....
    B
    B380....
    B390NEW
    AQUI
    B400....
    B410....
    B420....
    B430....
    B440....
    B450....
    B450....
    B470....
    B480....
    B490....
    B500....
    B510NEW
    B550....
    B560....
    B570....
    B580....
    B590....
    B600....
    B610....
    B620....
    B630....
    B640....
    B650....
    B660....
    B670....
    B680....
    B690....
    B700....
    B710....
    B720....
        NEW C
    B840....
    B880....
B890....
    B900....
B910....
B920....
B930....
```



```
    TDAY=THOUR/24.D0 B1410...
    TWEEK=TDAY/7.D0 B1420...
    TMONTH=TDAY/30.4375D0 B1430...
    TYEAR=TDAY/365.25D0 B1440...
C
C.....SET TIME STEP FOR P AND/OR U, WHICHEVER ARE SOLVED FOR
C ON THIS TIME STEP
    IF (ML-1) 1010,1020,1030
    1010 DLTUM1=DELTU
    DLTPM1=DELTP
    GOTO 1040
    1020 DLTPM1=DELTP
    GOTO 1040
    1030 DLTUM1=DELTU
    1040 CONTINUE
    DELTP=TSEC-TSECP O
    DELTU=TSEC-TSECU0
C.....SET PROJECTION FACTORS USED ON FIRST ITERATION TO EXTRAPOLATE
C AHEAD ONE-HALF TIME STEP
    BDELP = (DELTP/DLTPM1)*0.50D0
    BDELU =(DELTU/DLTUM1)*0.50D0
    BDELP1=BDELP+1.0D0
    BDELU1=BDELU+1.0D0
C.....INCREMENT CLOCK FOR WHICHEVER OF P AND U WILL BE SOLVED FOR
C ON THIS TIME STEP
    IF (ML-1) 1060,1070,1080
    1060 TSECP0=TSEC
    TSECU0=TSEC
    GOTO 1090
    1070 TSECP0=TSEC
    GOTO 1090
    1080 TSECU0=TSEC
    1090 CONTINUE
C
C _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ - - - B1750...
C.....BEGIN ITERATION - - - - - - - - - - - - - - - - - - - - - - - - - B1760...
C - - - _ - _ _ _ _ - _ - _ - _ _ - _ - _ - _ - - - - - - - - - - B1770...
    1100 ITER=ITER+1
C
    IF (ML-1) 2000,2200,2400
C.....SHIFT AND SET VECTORS FOR TIME STEP WITH BOTH P AND U SOLUTIONS B1810...
    2000 DO 2025 I=1,NN
            PITER(I) = PVEC (I)
            PVEL (I)=PVEC(I)
            UITER(I)=UVEC (I)
            RCITM1(I)=RCIT(I)
    2025 RCIT (I)=RHOW0+DRWDU* (UITER(I)-URHOW0)
    DO 2050 IP=1,NPBC
        I=IABS (IPBC (IP))
        QPLITR(IP)=GNU* (PBC (IP) -PITER(I))
    2050 CONTINUE
    IF(ITER.GT.1) GOTO 2600
        DO 2075 I=1,NN
        PITER(I)=BDELP1*PVEC(I) -BDELP*PM1 (I)
        UITER(I)=BDELU1*UVEC (I)-BDELU*UM1 (I)
        PM1 (I) = PVEC (I)
        UM2 (I) =UM1 (I)
    2075 UM1 (I)=UVEC (I)
        GOTO 2600
C.....SHIFT AND SET VECTORS FOR TIME STEP WITH P SOLUTION ONLY
    2200 DO 2225 I=1,NN
B1450...
B1460...
B1470...
B1480...
B1490...
B1500...
B1510...
B1520...
B1530...
B1540...
B1550...
B1560...
B1570...
B1580...
B1590...
B1600...
B1610...
B1620...
B1620...
B1630...
B1640...
B1650...
B1660...
B1670...
B1680...
B1690...
B1700...
B1710...
B1720...
B1730...
B1740...
B1780...
B1790...
B1800...
B1810..
B1820...
B1830...
B1840...
B1850...
B1860...
B1870...
B1880...
B1890...
B1900...
B1910...
B1920...
B1940...
B1930...
B1950...
B1960...
B1960...
B1970...
B1980...
B1990...
B2000...
B2010...
```

```
    PVEL(I)=PVEC(I)
2225 PITER(I)=PVEC(I)
    IF(ITER.GT.1) GOTO 2600
    DO 2250 I=1,NN
    PITER(I)=BDELP1*PVEC (I) -BDELP*PM1 (I)
    UITER(I)=UVEC (I)
    RCITM1(I)=RCIT(I)
    RCIT (I) =RHOW0+DRWDU* (UITER (I) -URHOW0)
2250 PM1 (I)=PVEC(I)
    GOTO 2600
C.....SHIFT AND SET VECTORS FOR TIME STEP WITH U SOLUTION ONLY
    2400 IF(NOUMAT.EQ.1) GOTO 2480
    DO 2425 I=1,NN
2425 UITER(I)=UVEC (I)
    IF(ITER.GT.1) GOTO 2600
    DO 2450 I=1,NN
    PITER(I)=PVEC (I)
    PVEL(I)=PVEC(I)
    UITER(I) =BDELU1*UVEC (I) -BDELU*UM1 (I)
    2450 RCITM1(I)=RCIT(I)
    DO 2475 IP=1,NPBC
    I=IABS (IPBC(IP))
    QPLITR(IP)=GNU* (PBC (IP) -PITER(I))
    2475 CONTINUE
    2 4 8 0 ~ D O ~ 2 5 0 0 ~ I = 1 , N N
    UM2 (I) =UM1 (I)
    2500 UM1 (I) =UVEC (I)
    2600 CONTINUE
C
C.....INITIALIZE ARRAYS WITH VALUE OF ZERO
    MATDMP=NN*NBIP
    MATDMS=NN*NBIS
    IF (ML-1) 3000,3000,3300
    3000 CALL ZERO(PMAT,MATDMP,0.0D0)
    CALL ZERO(PVEC,NN,O.ODO)
    CALL ZERO(VOL,NN,0.ODO)
    IF (ML-1) 3300,3400,3300
3300 IF (NOUMAT) 3350,3350,3375
3350 CALL ZERO(UMAT,MATDMS,0.0D0)
3375 CALL ZERO(UVEC,NN,O.ODO)
3400 CONTINUE
C
C.....SET TIME-DEPENDENT BOUNDARY CONDITIONS, SOURCES AND SINKS
C FOR THIS TIME STEP
    IF(ITER.EQ.1.AND.IBCT.NE.4)
    1 CALL BCTIME (IPBC,PBC,IUBC,UBC,QIN,UIN,QUIN,IQSOP,IQSOU,
    2 IPBCT,IUBCT,IQSOPT,IQSOUT,UM1)
C
C.....SET SORPTION PARAMETERS FOR THIS TIME STEP
    IF (ML.NE.1.AND.ME.EQ.-1.AND.NOUMAT.EQ.0.AND.
    1 ADSMOD.NE.'NONE ') CALL ADSORB (CS1,CS2,CS3,SL,SR,UITER)
C
C.....DO ELEMENTWISE CALCULATIONS IN MATRIX EQUATION FOR P AND/OR U
    IF (NOUMAT.EQ.0)
    1 CALL ELEMEN (ML,IN,X,Y,THICK,PITER,UITER,RCIT,RCITM1,POR,
        ALMAX, ALMIN, ATAVG, PERMXX,PERMXY, PERMYX, PERMYY, PANGLE,
        VMAG, VANG, VOL, PMAT, PVEC, UMAT, UVEC, GXSI, GETA, PVEL, CWRK)
C
C.....DO NODEWISE CALCULATIONS IN MATRIX EQUATION FOR P AND/OR U
    CALL NODALB (ML,VOL,PMAT,PVEC,UMAT,UVEC,PITER,UITER,PM1,UM1,UM2,
    1 POR,QIN,UIN,QUIN, CS1,CS2,CS3,SL,SR,SW, DSWDP, RHO,SOP)
B2020...
B2030...
B2040...
B2050...
B2060...
B2070...
B2080...
B2090...
B2100...
B2110...
B2120...
B2130...
B2140...
B2150...
B2160...
B2170...
B2180...
B2180...
B2190...
B2200...
B2210...
B2220...
B2230...
B2240...
B2240...
B2250...
B2260...
B2270...
B2280...
B2290...
B2300...
B2310...
B2320...
B2320...
B2330...
B2340...
B2350...
B2360...
B2370...
B2380...
B2390...
B2390...
B2400...
B2410...
B2420...
B2430...
B2440...
B2440...
B2450...
B2460...
B2470NEW
B2480...
B2490...
B2500...
B2510...
B2520...
B2530...
B2540...
B2550...
B2560...
B2570NEW
B2580...
B2590...
B2600...
B2610...
```

```
C.....SET SPECIFIED P AND U CONDITIONS IN MATRIX EQUATION FOR P AND/OR UB2630...
    CALL BCB(ML,PMAT,PVEC,UMAT,UVEC,IPBC,PBC,IUBC,UBC,QPLITR) B2640...
    4200 CONTINUE
C
C.....MATRIX EQUATION FOR P AND/OR U ARE COMPLETE, SOLVE EQUATIONS:
    IF (ML-1) 5000,5000,5500
C.....SOLVE FOR P
    5000 IPS=0
        CALL SOLVEC(NBIP,PMAT,PM1,PVEC, CWRK,CWRK2,CWRK3,CWRK4,CWRK5)
C.....P SOLUTION NOW IN PVEC
        IF (ML-1) 5500,6000,5500
C.....SOLVE FOR U
    5500 IPS=1
    5700 CALL LSORA (NBIS, UMAT,UVEC,UITER, CWRK, CWRK2,CWRK5)
C.....U SOLUTION NOW IN UVEC
    6000 CONTINUE
C
C.....CHECK PROGRESS AND CONVERGENCE OF ITERATIONS
C AND SET STOP AND GO FLAGS:
C ISTOP = -1 NOT CONVERGED - STOP SIMULATION
C ISTOP = -1 llllol
C ISTOP = 1 LAST TIME STEP REACHED - STOP SIMULATION B2930...
C ISTOP = 2 MAXIMUM TIME REACHED - STOP SIMULATION B2940...
C IGOI = O P AND U CONVERGED, OR NO ITERATIONS DONE B2950...
C IGOI = 1 ONLY P HAS NOT YET CONVERGED TO CRITERION B2960...
C IGOI = 2 ONLY U HAS NOT YET CONVERGED TO CRITERION B2970...
C IGOI = 3 BOTH P AND U HAVE NOT YET CONVERGED TO CRITERIA B2980...
    ISTOP=0
        IGOI=0
        IF(ITRMAX-1) 7500,7500,7000
    7000 RPM=0.DO
        RUM=0.DO
        IPWORS=0
        IUWORS=0
        IF (ML-1) 7050,7050,7150
    7050 DO 7100 I=1,NN
        RP=DABS (PVEC (I) -PITER (I))
        IF (RP-RPM) 7100,7060,7060
    7060 RPM=RP
        IPWORS=I
    7100 CONTINUE
        IF(RPM.GT.RPMAX) IGOI=IGOI+1
    7150 IF (ML-1) 7200,7350,7200
    7200 DO 7300 I=1,NN
        RU=DABS (UVEC (I)-UITER (I))
        IF (RU-RUM) 7300,7260,7260
    7260 RUM=RU
        IUWORS=I
    7300 CONTINUE
        IF (RUM.GT.RUMAX) IGOI=IGOI+2
    7350 CONTINUE
        IF(IGOI.GT.O.AND.ITER.EQ.ITRMAX) ISTOP=-1
        IF(IGOI.GT.O.AND.ISTOP.EQ.O) GOTO 1100
```



```
C.....END ITERATION - - - - . - - - - - - - - - - - - - - - - - . - - - B3260...
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - B3270...
C
    7500 CONTINUE
        IF(ISTOP.NE.-1.AND.IT.EQ.ITMAX) ISTOP=1 B3300...
        IF(ISTOP.NE.-1.AND.TSEC.GE.TMAX) ISTOP=2 B3310...
C
B3280...
B3320...
```

```
C.....OUTPUT RESULTS FOR TIME STEP EACH NPRINT TIME STEPS B3330...
        IF(IT.GT.1.AND.MOD(IT,NPRINT).NE.O.AND.ISTOP.EQ.O) GOTO 8000
C.....PRINT P AND/OR U, AND MAYBE SW AND/OR V
    B3340...
    B3350...
        CALL PRISOL(ML,ISTOP,IGOI,PVEC,UVEC,VMAG,VANG,SW)
    B3360...
C.....CALCULATE AND PRINT FLUID MASS AND/OR ENERGY OR SOLUTE MASS BUDGETB3370...
        IF (KBUDG.EQ.1)
        B3380...
        1 CALL BUDGET (ML,IBCT,VOL,SW,DSWDP,RHO,SOP,QIN,PVEC,PM1, B3390..
        2 PBC,QPLITR,IPBC,IQSOP,POR,UVEC,UM1,UM2,UIN,QUIN,IQSOU,UBC, B3400...
        3 CS1,CS2,CS3,SL,SR)
    8000 CONTINUE
C
C.....MAKE OBSERVATIONS AT OBSERVATION NODES EACH NOBCYC TIME STEPS
C.....MAKE OBSERVATIONS AT OBSERVATION NODES EACH NOBCYC TIME STEPS (NOBNA,
    1 PVEC,UVEC,ISTOP)
C
C.....STORE RESULTS FOR POSSIBLE RESTART OF SIMULATION EACH TIME STEP
        IF(ISTORE.NE.1) GOTO 8150
        CALL STORE (PVEC,UVEC, PM1,UM1,CS1,RCIT,SW,PBC)
C
    8150 IF(ISTOP.EQ.0) GOTO 1000
    B3410...
B3500...
    B3510...
    B3520...
    B3530...
    B3540...
    B3550...
    B3560...
    B3570...
    B3580...
    B3590...
```



```
C.....END TIME STEP *****************************************************B3620...
C *****************************************************************************
C B3640..
C
C.....COMPLETE OUTPUT AND TERMINATE SIMULATION B3660..
        IF(ISTORE.EQ.1) WRITE(K3,8100) B3670..
    8100 FORMAT(//////11X,'*** LAST SOLUTION HAS BEEN STORED ', B3680...
            1 'ON UNIT 66 ***')
B3690...
C B3700...
C....OUTPUT RESULTS OF OBSERVATIONS B3710..
    8200 IF (NOBSN-1.GT.0) CALL OBSERV(2,IOBS,ITOBS,POBS,UOBS,OBSTIM, B3720...
        1 PVEC,UVEC,ISTOP) B3730...
C
C.....OUTPUT END OF SIMULATION MESSAGE AND RETURN TO MAIN FOR STOP
        IF(ISTOP.GT.0) GOTO 8400
        IF(IGOI-2) 8230,8260,8290
    8230 WRITE (K3,8235)
    8235 FORMAT(////////11X,'SIMULATION TERMINATED DUE TO', B3790..
    B3740...
    B3750...
    B3760...
    B3770...
    B3780...
    1 'NON-CONVERGENT PRESSURE',
    1 'NON-CONVERGENT PRESSURE','
    B3800...
    3 '************** *********') B3820...
    RETURN
    8260 IF (ME) 8262,8262,8266
    8262 WRITE (K3,8264)
8264 FORMAT(////////11X,'SIMULATION TERMINATED DUE TO ', B3860...
    1 'NON-CONVERGENT CONCENTRATION', B3870...
    2 /11X,'********** ********** *** ** ',
        \prime************** **************')
    B3830...
B3840..
B3850..
    B3870...
B3880...
B3890...
    RETURN
8266 WRITE (K3, 8268)
B3900...
8268 FORMAT(////////11X,'SIMULATION TERMINATED DUE TO ',
B3910...
    B3920..
    1 'NON-CONVERGENT TEMPERATURE', B3930...
    | /11X,'********** ********** *** ** ',
B3940...
    3 r*************************') B
    RETURN
8290 IF (ME) 8292,8292,8296
B3960...
B3970...
8292 WRITE(K3,8294)
8294 FORMAT(////////11X,'SIMULATION TERMINATED DUE TO ', B3990..
B3980..
    1 'NON-CONVERGENT PRESSURE AND CONCENTRATION', B4000..
    2 /11X,'********** ********** *** *** ', B4010...
```

```
            3'************** ******** *** ***************') B4020...
            RETURN
    B4030...
    8296 WRITE (K3,8298)
8298 FORMAT(////////11X,'SIMULATION TERMINATED DUE TO ',
    B4040...
    B4050...
    1 'NON-CONVERGENT PRESSURE AND TEMPERATURE', B4060..
    2/11X,'********** ***************', B4070..
    1 'NON-CONVERGENT PRESSURE AND TEMPERATURE', B4060...
    2 /11X,'********** ***************', B4070..
    3'************** ******** *** *************r) B4080..
            RETURN
C
8400 IF(ISTOP.EQ.2) GOTO 8500
            WRITE (K3,8450)
8450 FORMAT(////////11X,'SUTRA SIMULATION TERMINATED AT COMPLETION ',
    1 'OF TIME STEPS'/ B4140.
    2 11X,'***** ********** *************************, B4150...
            3 r** **** *****')
            RETURN
    8500 WRITE(K3,8550) B4180..
    8550 FORMAT(////////11X,'SUTRA SIMULATION TERMINATED AT COMPLETION ',
    1 'OF TIME PERIOD'/
    1 OF TIME PERIOD''/
            \prime** **** *******)
            RETURN
C
            END
END SUBROUTINE I N D A T 1 SUTRA - VERSION 1284-2D C10....
C SUBROUTINE I N D A T 1 SUTRA - VERSION 1284-2D
SUBROUTINE
C
C *** PURPOSE :
C *** TO INPUT ,OUTPUT, AND ORGANIZE A MAJOR PORTION OF
C *** UNIT-5 INPUT DATA (DATASET 5 THROUGH DATASET 15B) C50.....
C
    SUBROUTINE INDAT1(X,Y,THICK,POR,ALMAX,ALMIN,ATAVG,PERMXX,PERMXY,
    1 PERMYX,PERMYY,PANGLE,SOP,IN)
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    CHARACTER*10 ADSMOD
    CHARACTER*14 UTYPE(2)
    CHARACTER*6 STYPE(2)
    COMMON/FUNITS/ K00,K0,K1,K2,K3,K4,K5,K6
    COMMON/MODSOR/ ADSMOD
    COMMON/DIMS/ NN,NE,NIN,IS,JT,NBIP,NBIS,NPT(9) ,NPBC,NUBC, C140NEW
    1 NSOP,NSOU,NBCN
    COMMON/TIME/ DELT,TSEC,TMIN,THOUR,TDAY,TWEEK,TMONTH,TYEAR,
    1 TMAX, DELTP,DELTU,DLTPM1,DLTUM1,IT, ITMAX
    COMMON/CNTRL1/ GNU,UP,DTMULT,DTMAX,ME,ISSFLO,ISSTRA,ITCYC,
    1 NPCYC, NUCYC, NPRINT, IREAD, ISTORE, NOUMAT, IUNSAT, ITIME
    COMMON/ITERAT/ RPM, RPMAX, RUM, RUMAX, ITER, ITRMAX, IPWORS,IUWORS,
    1 ICON, ITRMX2, OMEGA, RPMX2,RUMX2
    COMMON/TENSOR/ GRAVX,GRAVY 
    COMMON/TENSOR/ GRAVX,GRAVY C210....
1 RHOW0,URHOW0,VISC0,PRODF1,PRODS1,PRODF0,PRODS0,CHI1,CHI2 C C O30....
1 RHOW0,URHOW0,VISC0,PRODF1,PRODS1,PRODF0,PRODS0,CHI1,CHI2 C230....
    COMMON/SATPAR/ PCENT,SWRES,PCRES,SSLOPE,SINCPT
    C240....
    DIMENSION X(NN),Y(NN),THICK (NN),POR (NN),SOP (NN),IN (NIN)
C250....
C260NEW
    DIMENSION PERMXX (NE),PERMXY (NE),PERMYX (NE),PERMYY (NE),PANGLE (NE), C270....
    1 ALMAX (NE),ALMIN (NE),ATAVG (NE)
    DIMENSION IIN(4)
    DATA UTYPE(1)/' TEMPERATURES '/,UTYPE(2)/'CONCENTRATIONS'/
    DATA STYPE(1)/'ENERGY'/,STYPE(2)/'SOLUTE'/
C
INSTOP=0
C
C.....INPUT DATASET 5: NUMERICAL CONTROL PARAMETERS
C270....
NEW
    C290....
C300....
C310....
C310....
C320....
C330....
    3'************** ******** *** ************') B4080...
    B4090...
B4100...
B4110...
11x,B4120..
B4130...
    B4140...
B4160...
    B4170...
B4180.
B4190...
B4200...
    3'****** ******') B4220...
    B4230...
B4240...
    C10.....
C20.....
    C50.....
    C60.....
    C70.....
C80.....
C90.....
C100....
C110....
    C120\ldots
MODIFIED
C140NEW
C150....
C160....
C170....
C170....
C180....
C190NEW
C200....
NEW
    COMMON/KPRINT/ KNODAL,KELMNT,KINCID,KPLOTP,KPLOTU,KVEL,KBUDG
C340....
```

```
            READ (K1,50) UP,GNU
    50 FORMAT (G10.0,G15.0)
    WRITE (K3,70) UP,GNU
    70 FORMAT (////11X,'N U M E R I C A L C O N T R O L D A T A'//
    1 11X,F15.5,5X,'"UPSTREAM WEIGHTING" FACTOR' /
    2 11X,1PD15.4,5X,'SPECIFIED PRESSURE BOUNDARY CONDITION FACTOR')
C
C.....INPUT DATASET 6: TEMPORAL CONTROL AND SOLUTION CYCLING DATA
    READ(K1,100) ITMAX,DELT,TMAX, ITCYC,DTMULT,DTMAX,NPCYC,NUCYC
    100 FORMAT(I5,2G15.0,I10,G10.0,G15.0,2I5)
    WRITE(K3,120) ITMAX,DELT,TMAX,ITCYC,DTMULT,DTMAX,NPCYC,NUCYC
    120 FORMAT (1H1////11X,'T E M P O R A L C O N T R O L A N D ', C460....
        'S O L U T I ON C Y C L I N G D A T A',
    ll/IMX,I15,5X,'MAXIMUM ALLOWED NUMBER OF TIME STEPS'
    l/l1X,I15,5X,'MAXIMUM ALLOWED NUMBER OF TIME STEPS' 
    l/l1X,I15,5X,'MAXIMUM ALLOWED NUMBER OF TIME STEPS' 
    llll
```



```
        /11X,1PD15.4,5X,'MAXIMUM ALLOWED TIME STEP (IN SECONDS)'
    8 //11X,I15,5X,'FLOW SOLUTION CYCLE (IN TIME STEPS)'
    8 //11X,I15,5X,'FLOW SOLUTION CYCLE (IN TIME STEPS)'
            IF(NPCYC.GE.1.AND.NUCYC.GE.1) GOTO 140
            WRITE (K3,130)
    130 FORMAT(//11X,'* * * * ERROR DETECTED : BOTH NPCYC AND ',
        1 'NUCYC MUST BE SET GREATER THAN OR EQUAL TO 1.')
        INSTOP=INSTOP-1
    140 IF(NPCYC.EQ.1.OR.NUCYC.EQ.1) GOTO 160
        WRITE (K3,150)
    150 FORMAT (//11X,'* * * * ERROR DETECTED : EITHER NPCYC OR ',
        1 'NUCYC MUST BE SET TO 1.')
        INSTOP=INSTOP-1
    160 CONTINUE
C.....SET MAXIMUM ALLOWED TIME STEPS IN SIMULATION FOR
C STEADY-STATE FLOW AND STEADY-STATE TRANSPORT SOLUTION MODES
    IF(ISSFLO.EQ.1) THEN
        NPCYC=ITMAX+1
        NUCYC=1
        ENDIF
        IF(ISSTRA.EQ.1) ITMAX=1
C
C.....INPUT DATASET 7: OUTPUT CONTROLS AND OPTIONS C750....
            READ (K1, 170) NPRINT, KNODAL, KELMNT, KINCID, KPLOTP,KPLOTU, KVEL, KBUDG C760....
    170 FORMAT (16I5)
        WRITE (K3,172) NPRINT
    172 FORMAT(////11X,'O U T P U T C O N T R O L S A N D r, C790....
    1 'O P T I O N S'//11X,I6,5X,'PRINTED OUTPUT CYCLE ', C800....
    2 '(IN TIME STEPS)')
            IF (KNODAL.EQ.+1) WRITE (K3,174)
            IF (KNODAL.EQ.0) WRITE (K3,175)
174 FORMAT (/11X,' - PRINT NODE COORDINATES, THICKNESSES AND', C840....
    1 ' POROSITIES')
    175 FORMAT(/11X,'- CANCEL PRINT OF NODE COORDINATES, THICKNESSES AND',C860....
    1 ' POROSITIES')
        IF(KELMNT.EQ.+1) WRITE (K3,176)
        IF(KELMNT.EQ.0) WRITE (K3, 177)
    176 FORMAT(11X,' - PRINT ELEMENT PERMEABILITIES AND DISPERSIVITIES')
    177 FORMAT (11X,' - CANCEL PRINT OF ELEMENT PERMEABILITIES AND ',
    1 'DISPERSIVITIES')
        IF(KINCID.EQ.+1) WRITE(K3,178)
        IF(KINCID.EQ.0) WRITE (K3,179)
178 FORMAT(11X,'- PRINT NODE INCIDENCES IN EACH ELEMENT')
    C350....
    c360....
    c370....
    C380....
    C390....
    C390....
    C400....
C410....
C420....
C430....
C440....
C450....
C460....
C470....
C480....
        /11X,1PD15.4,5X,' INITIAL TIME STEP (IN SECONDS)', C490....
C530....
C540....
C550....
C560....
C570....
C580....
C590....
C590....
600...
C610....
C620....
C630....
C640....
C650....
C660....
C670....
C680....
C690...
C700....
C710....
C720....
C730....
C740....
C760....
    NPRINT (K3,172) N N
    FORMAT(////11X,'O U T P U T C O N T R O L S A N D , , C790.
C810....
C820....
C830....
C840....
C840....
C870....
C880....
C890....
C900.
C900....
C910....
C920....
C930....
C940....
C950NEW
```

```
    179 FORMAT(11X,' - CANCEL PRINT OF NODE INCIDENCES IN EACH ELEMENT') C97ONEW
    IME=2
    IF(ME.EQ.+1) IME=1
    IF(KVEL.EQ.+1) WRITE(K3,184)
    IF(KVEL.EQ.0) WRITE (K3,185)
    184 FORMAT(/11X,'- CALCULATE AND PRINT VELOCITIES AT ELEMENT ',
    1 'CENTROIDS ON EACH TIME STEP WITH OUTPUT')
    185 FORMAT(/11X,'- CANCEL PRINT OF VELOCITIES')
    IF(KBUDG.EQ.+1) WRITE(K3,186) STYPE(IME)
    IF(KBUDG.EQ.0) WRITE(K3,187)
    186 FORMAT (/11X,'- CALCULATE AND PRINT FLUID AND ',A6,' BUDGETS ',
    1 'ON EACH TIME STEP WITH OUTPUT')
    187 FORMAT (/11X,'_ CANCEL PRINT OF BUDGETS')
C
C.....INPUT DATASET 8: ITERATION CONTROLS
    READ (K1, 190) ITRMAX, RPMAX, RUMAX, ICON, ITRMX2, OMEGA, RPMX2 , RUMX2
    190 FORMAT (I10,2G10.0,2I10, 3G10.0)
    IF (ITRMAX.EQ.1) WRITE (K3,193)
    193 FORMAT(////11X,'I T E R A T I O N C O N T R O L D A T A',
        1 //11X,' NO ITERATION FOR NON-LINEARITIES')
        WRITE(K3,195) ITRMAX, RPMAX, RUMAX
    195 FORMAT(////11X,'I T E R A T I O N C O N T R O L D A T A',
        //11X,I15,5X,'MAXIMUM NUMBER OF ITERATIONS PER TIME STEP',
        /11X,1PD15.4,5X,'ABSOLUTE CONVERGENCE CRITERION FOR FLOW',
        ' SOLUTION'/11X,1PD15.4,5X,'ABSOLUTE CONVERGENCE CRITERION',
        ' FOR TRANSPORT SOLUTION')
            WRITE (K3, 1951) ICON, ITRMX2,OMEGA,RPMX2, RUMX2
1951 FORMAT(////11X,' I T E R A T I V E S O L V E R D A T A',
        //11X,I15,5X,'OPTION NUMBER FOR PRECONDITIONED CONJUGATE ',
        ' GRADIENT SOLVER'/11X,I15,5X,
        'MAXIMUM NUMBER OF ITERATIONS FOR ITERATIVE SOLVERS'/11X,
        1P1E15.4,5X,'ACCELERATION FACTOR FOR LSOR SOLUTION',
        /11X,1PD15.4,5X,'ABSOLUTE CONVERGENCE CRITERION FOR FLOW',
        ' SOLUTION'/11X,1PD15.4,5X,'ABSOLUTE CONVERGENCE CRITERION',
        ' FOR TRANSPORT SOLUTION')
        CONTINUE
C
C.....INPUT DATASET 9: FLUID PROPERTIES
        READ (K1, 200) COMPFL, CW, SIGMAW, RHOW0, URHOW0,DRWDU, VISC0
C.....INPUT DATASET 10: SOLID MATRIX PROPERTIES
        READ (K1,200) COMPMA,CS,SIGMAS,RHOS
    200 FORMAT(8G10.0)
        IF (ME.EQ.+1)
        1 WRITE (K3, 210) COMPFL, COMPMA, CW, CS,VISC0,RHOS,RHOW0,DRWDU,URHOW0,C1420..
        2 SIGMAW,SIGMAS C1430.
    210 FORMAT(1H1////11X,'C O N S T A N T P R O P E R T I E S O F', C1440...
    1, F L U I D A N D S O L I D M A T R I X' C1450..
        //11X,1PD15.4,5X,' COMPRESSIBILITY OF FLUID'/11X,1PD15.4,5X, C1460..
        ' COMPRESSIBILITY OF POROUS MATRIX'//11X,1PD15.4,5X, C1470.
        'SPECIFIC HEAT CAPACITY OF FLUID',/11X,1PD15.4,5X, C1480..
        'SPECIFIC HEAT CAPACITY OF SOLID GRAIN'//13X,'FLUID VISCOSITY',C1490...
        \prime IS CALCULATED BY SUTRA AS A FUNCTION OF TEMPERATURE IN ', C1500...
        'UNITS OF [kg/(m*s)]'//11X,1PD15.4,5X,'VISC0, CONVERSION ', C1510...
        'FACTOR FOR VISCOSITY UNITS, [desired units] = VISC0*', C1520...
        '[kg/(m*s)]'//11X,1PD15.4,5X,'DENSITY OF A SOLID GRAIN'
        //13X,'FLUID DENSITY, RHOW'/13X,'CALCULATED BY ',
        'SUTRA IN TERMS OF TEMPERATURE, U, AS:'/13X,'RHOW = RHOWO + ',
        'DRWDU* (U-URHOWO)'//11X,1PD15.4,5X,'FLUID BASE DENSITY, RHOWO'
        /11X,1PD15.4,5X,'COEFFICIENT OF DENSITY CHANGE WITH ',
        ' TEMPERATURE, DRWDU'/11X,1PD15.4,5X,'TEMPERATURE, URHOW0, ', C1580..
        'AT WHICH FLUID DENSITY IS AT BASE VALUE, RHOWO' C1590..
```

```
    6 //11X,1PD15.4,5X,' THERMAL CONDUCTIVITY OF FLUID' C1600...
    7 /11X,1PD15.4,5X,'THERMAL CONDUCTIVITY OF SOLID GRAIN') C1610...
    IF(ME.EQ.-1) C1620...
    1 WRITE (K3,220) COMPFL, COMPMA,VISC0,RHOS,RHOW0,DRWDU,URHOW0,SIGMAWC1630 ...
    220 FORMAT (1H1////11X,'C O N S T A N T P R O P E R T I E S O F', C1640...
    1, F L U I D A N D S O L I D M A T R I X', C1650...
    //11X,1PD15.4,5X,'COMPRESSIBILITY OF FLUID'/11X,1PD15.4,5X, C1660..
    'COMPRESSIBILITY OF POROUS MATRIX'
    //11X,1PD15.4,5X,'FLUID VISCOSITY'
    //11X,1PD15.4,5X,'DENSITY OF A SOLID GRAIN'
    //13X,'FLUID DENSITY, RHOW'/13X,'CALCULATED BY ',
    'SUTRA IN TERMS OF SOLUTE CONCENTRATION, U, AS:',
        /13X,'RHOW = RHOWO + DRWDU*(U-URHOWO)'
        //11X,1PD15.4,5X,'FLUID BASE DENSITY, RHOWO'
        /11X,1PD15 4 5X,'COEFFICIENT OF DENSITY CHANGE WITH ,
        ',SOLUTE CONCENTRATION, DRWDU'
        /11X,1PD15.4,5X,'SOLUTE CONCENTRATION, URHOWO, ',
        'AT WHICH FLUID DENSITY IS AT BASE VALUE, RHOWO'
        //11X,1PD15.4,5X,'MOLECULAR DIFFUSIVITY OF SOLUTE IN FLUID')
C
C.....INPUT DATASET 11: ADSORPTION PARAMETERS
        READ (K1, 230) ADSMOD,CHI1, CHI2
    230 FORMAT (A10,2G10.0)
        IF(ME.EQ.+1) GOTO 248
        IF(ADSMOD.EQ.'NONE ') GOTO 234
        WRITE (K3,232) ADSMOD
    P A A M ETE R S'
        1 //16X,A10,5X,'EQUILIBRIUM SORPTION ISOTHERM')
        GOTO 236
    234 WRITE (K3,235)
    235 FORMAT(////11X,'A D S O R P T I O N P A R A M E T E R S'
    1 //16X,'NON-SORBING SOLUTE')
    236 IF((ADSMOD.EQ.'NONE ').OR.(ADSMOD.EQ.'LINEAR ').OR.
        1 (ADSMOD.EQ.'FREUNDLICH').OR.(ADSMOD.EQ.'LANGMUIR ')) GOTO 238
        WRITE (K3,237)
    237 FORMAT (//11X,'* * * * ERROR DETECTED : TYPE OF SORPTION MODEL ',
    1 'IS NOT SPECIFIED CORRECTLY.'/11X,'CHECK FOR TYPE AND ',
    2 'SPELLING, AND THAT TYPE IS LEFT-JUSTIFIED IN INPUT FIELD')
        INSTOP=INSTOP-1
    238 IF(ADSMOD.EQ.'LINEAR ') WRITE(K3,242) CHI1
    242 FORMAT(11X,1PD15.4,5X,'LINEAR DISTRIBUTION COEFFICIENT')
        IF (ADSMOD.EQ.'FREUNDLICH') WRITE (K3,244) CHI1,CHI2
    244 FORMAT (11X,1PD15.4,5X,'FREUNDLICH DISTRIBUTION COEFFICIENT'
    1 /11X,1PD15.4,5X,'SECOND FREUNDLICH COEFFICIENT')
        IF(ADSMOD.EQ.'FREUNDLICH'.AND.CHI2.LE.O.DO) THEN
        WRITE (K3,245)
    245 FORMAT (11X,'* * * * ERROR DETECTED : SECOND COEFFICIENT ',
    1 'MUST BE GREATER THAN ZERO')
        INSTOP=INSTOP-1
        ENDIF
        IF(ADSMOD.EQ.'LANGMUIR ') WRITE(K3,246) CHI1,CHI2
    246 FORMAT(11X,1PD15.4,5X,'LANGMUIR DISTRIBUTION COEFFICIENT'
        1 /11X,1PD15.4,5X,'SECOND LANGMUIR COEFFICIENT')
C
C.....INPUT DATASET 12: PRODUCTION OF ENERGY OR SOLUTE MASS
    248 READ (K1, 200) PRODF0,PRODS0,PRODF1,PRODS1
        IF (ME.EQ.-1) WRITE (K3,250) PRODF0,PRODS0,PRODF1,PRODS1
    250 FORMAT(////11X,'P R O D U C T I ON N A N D D E C A Y O F
    1 'S P E C I E S M A S S'//13X,'PRODUCTION RATE (+)'/13X,
    2 'DECAY RATE (-)'//11X,1PD15.4,5X,' ZERO-ORDER RATE OF SOLUTE , C2190...
    3 'MASS PRODUCTION/DECAY IN FLUID'/11X,1PD15.4,5X, ' C2200..
```

```
            ' ZERO-ORDER RATE OF ADSORBATE MASS PRODUCTION/DECAY IN ', C2210...
            'IMMOBILE PHASE'/11X,1PD15.4,5X,'FIRST-ORDER RATE OF SOLUTE ', C2220...
            'MASS PRODUCTION/DECAY IN FLUID'/11X,1PD15.4,5X, C2230...
            'FIRST-ORDER RATE OF ADSORBATE MASS PRODUCTION/DECAY IN ', C2240...
            ' IMMOBILE PHASE')
            IF(ME.EQ.+1) WRITE(K3,260) PRODF0,PRODS0
            C2250...
            C2260...
    260 FORMAT(////11X,'P R O D U C T I O N A N D L O S S O F r, C2270...
            'E N E R G Y'//13X,' PRODUCTION RATE (+)'/13X, C2280...
            'LOSS RATE (-)'//11X,1PD15.4,5X,'ZERO-ORDER RATE OF ENERGY ', C2290...
            'PRODUCTION/LOSS IN FLUID'/11X,1PD15.4,5X,
            ' ZERO-ORDER RATE OF ENERGY PRODUCTION/LOSS IN ',
            'SOLID GRAINS')
C.....SET PARAMETER SWITCHES FOR EITHER ENERGY OR SOLUTE TRANSPORT
            IF (ME) 272,272,274
C FOR SOLUTE TRANSPORT:
    272 CS=0.0D0
            CW=1.D00
            SIGMAS=0.0DO
            GOTO 278
C FOR ENERGY TRANSPORT:
    274 ADSMOD='NONE
            CHI1=0.0D0
            CHI2=0.0D0
            PRODF1=0.0D0
            PRODS1=0.0D0
C DIVIDE SIGMA TO CANCEL MULTIPLICATION BY RHOW*CW
C IN SUBROUTINE ELEMEN.
    RC0=RHOWO *CW
    SIGMAW=SIGMAW/RC0
            SIGMAS=SIGMAS / RC0
    278 CONTINUE
C
C.....INPUT DATASET 13: ORIENTATION OF COORDINATES TO GRAVITY
    READ (K1,200) GRAVX, GRAVY
    WRITE(K3,320) GRAVX,GRAVY
    C2540...
    C2550...
    320 FORMAT(////IIX,'C O O R D I N A T E O R I E N T A T I O N r, C2560...
            1 'T O G R A V I T Y'//13X,' COMPONENT OF GRAVITY VECTOR',
            2 /13X,'IN +X DIRECTION, GRAVX'/11X,1PD15.4,5X,
            'GRAVX = -GRAV * D(ELEVATION)/DX'//13X,' COMPONENT OF GRAVITY',
            ' VECTOR'/13X,'IN +Y DIRECTION, GRAVY'/11X,1PD15.4,5X,
            'GRAVY = -GRAV * D(ELEVATION)/DY')
C
C.....INPUT DATASETS 14A AND 14B: NODEWISE DATA
            READ (K1, 330) SCALX,SCALY, SCALTH,PORFAC
    330 FORMAT (10X,4G10.0)
            DO 450 I=1,NN
            READ(K1,400) II,X(II),Y(II),THICK(II),POR(II)
    400 FORMAT (I5,5X,4G10.0)
            X(II) =X(II)*SCALX
            Y(II) =Y(II) *SCALY
            THICK(II)=THICK(II)*SCALTH
            POR(II)=POR(II)*PORFAC
C SET SPECIFIC PRESSURE STORATIVITY, SOP.
    450 SOP (II)=(1.D0-POR(II))*COMPMA+POR(II)*COMPFL
    460 IF(KNODAL.EQ.0) WRITE (K3,469) SCALX,SCALY,SCALTH,PORFAC
    469 FORMAT(1H1////11X,'N O D E I N F O R M A T I O N'//16X,
            'PRINTOUT OF NODE COORDINATES, THICKNESSES AND POROSITIES ',
            'CANCELLED.'//16X,'SCALE FACTORS :'/33X,1PD15.4,5X,'X-SCALE'/
            33X,1PD15.4,5X,'Y-SCALE'/33X,1PD15.4,5X,'THICKNESS FACTOR'/
            33X,1PD15.4,5X,'POROSITY FACTOR')
            IF (KNODAL.EQ.+1)WRITE (K3,470) (I,X(I),Y(I),THICK (I),POR(I),I=1,NN) C2810...
```

```
    4 7 0 ~ F O R M A T ( 1 H 1 / / 1 1 X , ' N ~ O ~ D ~ E ~ I ~ N ~ F ~ O ~ R ~ M ~ A ~ T ~ I ~ O ~ N ' / / 1 3 X , ~ C 2 8 2 0 . . . ~
    1 'NODE',7X,'X',16X,'Y',17X,'THICKNESS',6X,'POROSITY'//
    2 (11X,I6,3(3X,1PD14.5),6X,0PF8.5))
C
C.....INPUT DATASETS 15A AND 15B: ELEMENTWISE DATA
    READ (K1, 490) PMAXFA, PMINFA, ANGFAC, ALMAXF, ALMINF, ATAVGF
    490 FORMAT (10X,6G10.0)
    IF (KELMNT.EQ.+1) WRITE (K3,500)
    500 FORMAT (1H1//11X,'E L E M E N T I N F O R M A T I O N'//
    1 11X,' ELEMENT', 4X,'MAXIMUM',9X,'MINIMUM', 12X,
        'ANGLE BETWEEN', 3X,' MAXIMUM',5X,' MINIMUM',5X,
        ' AVERAGE'/22X,'PERMEABILITY', 4X,'PERMEABILITY', 4X,
        '+X-DIRECTION AND',3X,'LONGITUDINAL', 3X,' LONGITUDINAL' 3X,
        ' TRANSVERSE'/50X,'MAXIMUM PERMEABILITY',3X,'DISPERSIVITY',
        3X,'DISPERSIVITY', 3X,'DISPERSIVITY'/58X,'(IN DEGREES)'//)
            DO 550 LL=1,NE
            READ (K1,510) L, PMAX, PMIN, ANGLEX,ALMAX (L), ALMIN (L) ,ATAVG (L)
    510 FORMAT (I5, 5X, 6G10.0)
    PMAX=PMAX*PMAXFA
    PMIN=PMIN*PMINFA
            ANGLEX=ANGLEX*ANGFAC
            ALMAX (L) =ALMAX (L) *ALMAXF
            ALMIN (L) =ALMIN (L)*ALMINF
            ATAVG (L) =ATAVG (L) *ATAVGF
            IF(KELMNT.EQ.+1) WRITE (K3,520) L,PMAX,PMIN,ANGLEX,
        1 ALMAX (L),ALMIN (L),ATAVG (L)
    520 FORMAT(11X,I7,2X,2(1PD14.5,2X),8X,4(0PF10.3,5X))
C
C.....ROTATE PERMEABILITY FROM MAXIMUM/MINIMUM TO X/Y DIRECTIONS
        RADIAX=1.745329D-02*ANGLEX
        SINA=DSIN (RADIAX)
        COSA=DCOS (RADIAX)
        SINA2=SINA*SINA
        COSA2 =COSA*COSA
        PERMXX (L) =PMAX*COSA2+PMIN*SINA2
        PERMYY(L) =PMAX*SINA2+PMIN*COSA2
        PERMXY (L) = (PMAX-PMIN)*SINA*COSA
        PERMYX (L) =PERMXY (L)
        PANGLE (L) =RADIAX
    5 5 0 ~ C O N T I N U E ~
        IF(KELMNT.EQ.0)
        1 WRITE (K3,569) PMAXFA, PMINFA, ANGFAC, ALMAXF,ALMINF, ATAVGF
    569 FORMAT (////11X,'E L E M E N T I N F O R M A T I O N'//
        1 16X,'PRINTOUT OF ELEMENT PERMEABILITIES AND DISPERSIVITIES ',
        'CANCELLED.'//16X,'SCALE FACTORS :'/33X,1PD15.4,5X,'MAXIMUM ',
        'PERMEABILITY FACTOR'/33X,1PD15.4,5X,'MINIMUM PERMEABILITY ',
        'FACTOR'/33X,1PD15.4,5X,'ANGLE FROM +X TO MAXIMUM DIRECTION',
        ' FACTOR'/33X,1PD15.4,5X,'MAXIMUM LONGITUDINAL DISPERSIVITY',
        ' FACTOR'/33X,1PD15.4,5X,'MINIMUM LONGITUDINAL DISPERSIVITY',
        ' FACTOR'/33X,1PD15.4,5X,'TRANSVERSE DISPERSIVITY FACTOR')
C
C.....END SIMULATION FOR CORRECTIONS TO UNIT-5 DATA IF NECESSARY
        IF(INSTOP.EQ.0) GOTO 1000
        WRITE (K3,999)
    999 FORMAT(////////11X,'PLEASE CORRECT INPUT DATA AND RERUN.',
        1 ///22X,'S I M U L A T I O N H A L T E D',
        2 / 22X,'*******************************')
        ENDFILE(K3)
        STOP
C
C
```

```
1000 IF(KINCID.EQ.0) WRITE (K3,1) NEW
    1 FORMAT(1H1////11X,'M ES H CONNEC T I ON D A T A'// NEW
        1 16X,'PRINTOUT OF NODAL INCIDENCES CANCELLED.') NEW
            IF (KINCID.EQ.+1) WRITE (K3,2) NEW
    2 FORMAT(1H1////11X,'M ES H CONNECCTION D ATMA', NEW
        1 ///11X,'**** NODAL INCIDENCES ****'///) NEW
C
CALCULATE INCIDENCES FOR REGULAR GRID
    NEX=IS-1 NEW
    NEY=JT-1 NEW
    NELEMN=0 NEW
    DO 560 IE2=1,NEX NEW
    DO 560 IE1=1,NEY NEW
    NELEMN=NELEMN+1 NEW
    NO=IE1+(IE2-1)*JT NEW
    IIN(1)=NO NEW
    IIN (2) =NO+JT NEW
    IIN (3) =NO+JT+1 NEW
    IIN(4)=NO+1 NEW
C NEW
C....PREPARE NODE INCIDENCE LIST FOR MESH, IN. NEW
    DO 570 II=1,4 NEW
    III=II+(NELEMN-1)*4 NEW
    570 IN(III)=IIN(II) NEW
C
    IF(KINCID.EQ.O) GOTO 560 NEW
    WRITE (K3,650) NELEMN, (IIN (M),M=1,4) NEW
    650 FORMAT(11X,'ELEMENT',I6,5X,' NODES AT : ',6X,'CORNERS ', NEW
    1 5(1H*),4I6,1X,5(1H*)) NEW
C
    -
C
C *** NOTE: BANDWIDTH FOR A REGULAR GRID IS FIXED NEW
    WRITE (K3,2500) NBIP,NBIS NEW
    2500 FORMAT(////13X,'BANDWIDTH FOR PRESSURE MATRIX, ',I4/ NEW
    1 13X,'BANDWIDTH FOR TRANSPORT MATRIX, ',I4) NEW
C
C SET UP POINTER ARRAYS FOR MATRICES NEW
    NPT (1) =-JT
    NPT(2)=1-JT NEW
    NPT(3)=2-JT NEW
    NPT(4)=0 NEW
    NPT (5) =1 NEW
    NPT(6)=2 NEW
    NPT(7)=JT NEW
    NPT(8)=1+JT NEW
    NPT(9) =JT+2 NEW
C
    Fm
    REMR (an
    END C3440...
    SUBROUTINE S O U R C E SUTRA - VERSION 1284-2D E10.....
E20.....
E30.....
C *** PURPOSE :
C *** TO READ AND ORGANIZE FLUID MASS SOURCE DATA AND ENERGY OR E40.....
C *** SOLUTE MASS SOURCE DATA.
C
    SUBROUTINE SOURCE(QIN,UIN,IQSOP,QUIN,IQSOU,IQSOPT,IQSOUT)
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    COMMON/FUNITS/ K00,K0,K1,K2,K3,K4,K5,K6
    COMMON/DIMS/ NN,NE,NIN,IS,JT,NBIP,NBIS,NPT(9) ,NPBC,NUBC
    1 NSOP,NSOU,NBCN
E50.....
E60.....
E70.....
880.....
MODIFIED
MODIFIED
E90NEW
E100...
```

```
    COMMON/CNTRL1/ GNU,UP,DTMULT,DTMAX,ME,ISSFLO,ISSTRA,ITCYC, E11ONEW
        1 NPCYC, NUCYC, NPRINT, IREAD, ISTORE, NOUMAT, IUNSAT, ITIME E12ONEW
        DIMENSION QIN(NN),UIN(NN),IQSOP (NSOP),QUIN(NN),IQSOU(NSOU) E130....
C
C.....NSOPI IS ACTUAL NUMBER OF FLUID SOURCE NODES
C.....NSOUI IS ACTUAL NUMBER OF SOLUTE MASS OR ENERGY SOURCE NODES
        NSOP I=NSOP-1
        NSOUI=NSOU-1
        IQSOPT=1
        IQSOUT=1
        NIQP=0
        NIQU=0
        IF(NSOPI.EQ.O) GOTO 1000
        IF (ME) 50,50,150
        5 WRITE(K3,100)
    100 FORMAT (1H1////11X,'F L U I D S O U R C E D A T A'
        ////11X,'**** NODES AT WHICH FLUID INFLOWS OR OUTFLOWS ARE ',
        'SPECIFIED ****'//11X,'NODE NUMBER',10X,
        'FLUID INFLOW(+)/OUTFLOW(-)',5X,'SOLUTE CONCENTRATION OF'
        /11X,'(MINUS INDICATES',5X,'(FLUID MASS/SECOND)',
        12X,' INFLOWING FLUID' /12X,' TIME-VARYING',39X,
        '(MASS SOLUTE/MASS WATER)'/12X,'FLOW RATE OR'/12X,
        'CONCENTRATION)'//)
            GOTO 300
    150 WRITE (K3,200)
    200 FORMAT (1H1////11X,'F L U I D S O U R C E D A T A'
        ////11X,'**** NODES AT WHICH FLUID INFLOWS OR OUTFLOWS ARE ',
        'SPECIFIED ****'//11X,'NODE NUMBER',10X,
        'FLUID INFLOW(+)/OUTFLOW(-)',5X,'TEMPERATURE [DEGREES CELCIUS]'E390....
        /11X,'(MINUS INDICATES',5X,'(FLUID MASS/SECOND)',12X,
        'OF INFLOWING FLUID'/12X,'TIME-VARYING'/12X,'FLOW OR'/12X,
        ''TEMPERATURE)'//)
C
C.....INPUT DATASET }1
    300 CONTINUE
        READ (K1, 400) IQCP,QINC,UINC
    400 FORMAT(I10,2G15.0)
        IF(IQCP.EQ.0) GOTO 700
        NIQP=NIQP+1
        IQSOP (NIQP)=IQCP
        IF(IQCP.LT.0) IQSOPT=-1
        IQP=IABS (IQCP)
        QIN(IQP)=QINC
        UIN(IQP)=UINC
        IF(IQCP.GT.0) GOTO 450
        WRITE(K3,500) IQCP
        GOTO 600
    450 IF(QINC.GT.0) GOTO 460
        WRITE(K3,500) IQCP,QINC
        GOTO 600
    460 WRITE(K3,500) IQCP,QINC,UINC
    500 FORMAT (11X,I10,13X,1PE14.7,16X,1PE14.7)
    600 GOTO 300
    700 IF(NIQP.EQ.NSOPI) GOTO 890
C.....END SIMULATION IF THERE NEED BE CORRECTIONS TO DATASET 17
        WRITE(K3,750) NIQP,NSOPI
    750 FORMAT(////11X,'THE NUMBER OF FLUID SOURCE NODES READ, ',I5,
        ' IS NOT EQUAL TO THE NUMBER SPECIFIED, ',I5////
        11X,'PLEASE CORRECT DATA AND RERUN'////////
        22X,'S I M U L A T I O N H A L T E D'// E700....
        22x,'
        22X,'
```

\qquad

```
        ')
```

```
            ENDFILE(K3) E720....
            STOP
    890 IF(IQSOPT.EQ.-1) WRITE(K3,900)
    900 FORMAT(////11X,'THE SPECIFIED TIME VARIATIONS ARE ',
            1 'USER-PROGRAMMED IN SUBROUTINE B C T I M E .')
C
C
    1000 IF(NSOUI.EQ.O) GOTO 9000
    IF (ME) 1050,1050,1150
    1050 WRITE (K3,1100)
    1100 FORMAT(////////11X,'S O L U T E S O U R C E D A T A'
    1 ////11X,'**** NODES AT WHICH SOURCES OR SINKS OF SOLUTE ',
        'MASS ARE SPECIFIED ****'//11X,'NODE NUMBER',10X,
        'SOLUTE SOURCE(+)/SINK(-)'/11X,' (MINUS INDICATES',5X,
        '(SOLUTE MASS/SECOND)'/12X,' TIME-VARYING' /12X,
        'SOURCE OR SINK)'//)
            GOTO 1300
    1150 WRITE(K3,1200)
    1200 FORMAT(////////11X,'E N E R G Y S O U R C E D A T A'
        ////11X,'**** NODES AT WHICH SOURCES OR SINKS OF ',
        'ENERGY ARE SPECIFIED ****'//11X,' NODE NUMBER',10X,
        'ENERGY SOURCE(+)/SINK(-)'/11X,' (MINUS INDICATES',5X,
        '(ENERGY/SECOND)'/12X,'TIME-VARYING' / 12X,
        'SOURCE OR SINK)'//)
C
C.....INPUT DATASET 18
    1300 CONTINUE
        READ (K1,400) IQCU,QUINC
        IF(IQCU.EQ.O) GOTO 1700
        NIQU=NIQU+1
        IQSOU (NIQU)=IQCU
        IF(IQCU.LT.0) IQSOUT=-1
        IQU=IABS (IQCU)
        QUIN(IQU)=QUINC
        IF(IQCU.GT.0) GOTO 1450
        WRITE(K3,1500) IQCU
        GOTO 1600
    1450 WRITE (K3,1500) IQCU,QUINC
    1500 FORMAT (11X,I10,13X,1PE14.7)
    1600 GOTO 1300
    1700 IF(NIQU.EQ.NSOUI) GOTO 1890
C.....END SIMULATION IF THERE NEED BE CORRECTIONS TO DATASET }1
    IF (ME) 1740,1740,1760
1740 WRITE(K3,1750) NIQU,NSOUI
1750 FORMAT(////11X,'THE NUMBER OF SOLUTE SOURCE NODES READ, ',I5,
    1 ' IS NOT EQUAL TO THE NUMBER SPECIFIED, ',I5////
    2 11X,'PLEASE CORRECT DATA AND RERUN'////////
    3 22X,'S I M U L A T I O N H A L T E D'/
    4 22X,'
```

\qquad

``` ')
    ENDFILE(K3)
    STOP
1760 WRITE(K3,1770) NIQU,NSOUI
1770 FORMAT(////11X,'THE NUMBER OF ENERGY SOURCE NODES READ, ',I5,
                IS NOT EQUAL TO THE NUMBER SPECIFIED, ',I5////
        11X,'PLEASE CORRECT DATA AND RERUN'////////
        22X,'S I M U L A T I O N H A L T E D'/
        22X,' ')
            ')
        ENDFILE(K3)
        STOP
    1890 IF(IQSOUT.EQ.-1) WRITE(K3,900)
C
E730....
E740....
E750...
&750....
E760....
E770....
E780....
E790....
E800....
E810....
E820....
E830....
E840....
E850....
E860...
E870....
E880....
E890....
E900....
E910....
E920....
E930....
E930....
E950....
E950....
E960....
E970....
E980....
E990...
E990....
E1000...
E1010...
E1020...
E1030...
E1040...
E1050...
E1060...
E1070...
E1080...
E1090...
E1100...
E1110...
E1120...
E1130...
E1140...
E1150...
E1160...
E1170...
E1180...
E1190...
E1200...
E1210...
E1220...
E1230...
E1240...
E1250...
E1260...
E1260...
E1270...
E1280...
E1280...
E1300...
E1310...
E1320...
```

9000	RETURN	E1330...
C		E1340.
	END	E1350.
C	SUBROUTINE B O U N D SUTRA - VERSION 1284-2D	F10.
C		F20.
C ***	PURPOSE	F30.
C ***	to Read and organize Specified pressure data and	F40.
C ***	SPECIFIED TEMPERATURE OR CONCENTRATION DATA.	F50.
C		F60.
	SUBROUTINE BOUND (IPBC, PBC,IUBC, UBC, IPBCT, IUBCT)	F70.
	IMPLICIT DOUBLE PRECISION ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)	F80.
	COMMON/FUNITS/ K00, $60, \mathrm{~K} 1, \mathrm{~K} 2, \mathrm{~K} 3, \mathrm{~K} 4, \mathrm{~K} 5, \mathrm{~K} 6$	MODIFIED
	COMMON/DIMS/ NN,NE,NIN, IS, JT,NBIP,NBIS,NPT (9) , NPBC, NUBC,	F90NEW
	1 NSOP, NSOU,NBCN	F100
	COMMON/CNTRL1/ GNU, UP, DTMULT, DTMAX, ME, ISSFLO, ISSTRA, ITCYC,	F110.
	1 NPCYC, NUCYC, NPRINT, IREAD, ISTORE, NOUMAT, IUNSAT, ITIME	F120NEW
	DIMENSION IPBC (NBCN), PBC (NBCN), IUBC (NBCN) , UBC (NBCN)	F130.
C		F140..
C		F150.
	IPBCT $=1$	F160.
	IUBCT=1	F170.
	ISTOPP $=0$	F180....
	ISTOPU=0	F190.
	IPU=0	F200.
	WRITE (K3,50)	F210.
	FORMAT (1H1////11X, B O U N D A R Y C O N D I T I O N S')	F220....
	IF (NPBC.EQ.O) GOTO 400	F230.
	WRITE (K3,100)	F240.
100	FORMAT (//11X,'**** NODES AT WhICh Pressures Are',	F250.
	1 ' SPECIFIED ****'/)	F260.
	IF (ME) 107,107,114	F270.
107	WRITE (K3,108)	F280.
108	FORMAT (11X, (AS WELL AS SOLUTE CONCENTRATION OF ANY'	F290.
	1 /16x,' FLUID INFLOW WHICH MAY OCCUR AT THE POINT'	F300.
	2 /16X,' OF SPECIFIED PRESSURE)'//12X,'NODE',18X,'PRESSURE',	F310.
	3 13x,' CONCENTRATION'//)	F320.
	GOTO 120	F330.
114	WRITE (K3,115)	F340.
115	FORMAT (11X, (AS WELL AS TEMPERATURE [DEGREES CELCIUS] OF ANY'	F350.
	1 /16X,' FLUID INFLOW WHICH MAY OCCUR AT THE POINT'	F360.
	2 /16X,' OF SPECIFIED PRESSURE)'//12X,'NODE',18X,	F370.
	2 'PRESSURE',13X,' TEMPERATURE'//)	F380.
C		F390..
C. INPUT DATASET 14	F400....
120	IPU=IPU+1	F410..
	READ (K1,150) IPBC(IPU), PBC (IPU), UBC (IPU)	F420....
150	FORMAT (I5,2G20.0)	F430.
	IF (IPBC(IPU).LT.0) IPBCT=-1	F440....
	IF (IPBC(IPU).EQ.0) GOTO 180	F450.
	IF (IPBC(IPU).GT.0) WRITE (K3,160) IPBC(IPU), PBC (IPU), UBC (IPU)	F460....
	IF (IPBC(IPU).LT.0) WRITE (K3,160) IPBC(IPU)	F470.
160	FORMAT (11X, I5, 6X,1PD20.13,6X,1PD20.13)	F480....
	GOTO 120	F490....
180	IPU=IPU-1	F500....
	$I P=I P U$	F510....
	IF (IP.EQ.NPBC) GOTO 200	F520....
	ISTOPP=1	F530....
200	IF (IPBCT.NE.-1) GOTO 400	F540....
	IF (ME) 205,205,215	F550....
205	WRITE (K3, 206)	F560....
206	FORMAT (//12X,'tIME-DEPENDENT SPECIFIED PRESSURE'/12X,'OR INFLOW	F570

```
            1 'CONCENTRATION INDICATED'/12X,'BY NEGATIVE NODE NUMBER') F580....
            GOTO 400
    215 WRITE (K3,216)
    216 FORMAT (//11X,'TIME-DEPENDENT SPECIFIED PRESSURE'/12X,'OR INFLOW ',F610....
    1 'TEMPERATURE INDICATED'/12X,'BY NEGATIVE NODE NUMBER') F620....
    400 IF(NUBC.EQ.0) GOTO 2000
C
        IF (ME) 500,500,550
    500 WRITE (K3,1000)
1000 FORMAT (////11X,'**** NODES AT WHICH SOLUTE CONCENTRATIONS ARE ', F670....
    1 'SPECIFIED TO BE INDEPENDENT OF LOCAL FLOWS AND FLUID SOURCES',F680....
        2 ' ****'//12X,'NODE',13X,'CONCENTRATION'//) F690....
            GOTO 1120
    550 WRITE (K3,1001)
1001 FORMAT (////11X,'**** NODES AT WHICH TEMPERATURES ARE ',
            1 'SPECIFIED TO BE INDEPENDENT OF LOCAL FLOWS AND FLUID SOURCES',F730.....
    2 ' ****'//12X,'NODE',15X,'TEMPERATURE'//) F740....
C
C.....INPUT DATASET 20
    1120 IPU=IPU+1
        READ (K1,150) IUBC(IPU),UBC(IPU)
        IF(IUBC(IPU).LT.0) IUBCT=-1
        IF(IUBC(IPU).EQ.0) GOTO 1180
        IF(IUBC(IPU).GT.0) WRITE(K3,1150) IUBC(IPU),UBC(IPU)
        IF(IUBC(IPU).LT.0) WRITE (K3,1150) IUBC(IPU)
    1150 FORMAT (11X,I5,6X,1PD20.13)
        GOTO 1120
    1180 IPU=IPU-1
        IU=IPU-IP
        IF(IU.EQ.NUBC) GOTO }120
        ISTOPU=1
1200 IF(IUBCT.NE.-1) GOTO 2000
        IF (ME) 1205,1205,1215
1205 WRITE (K3,1206)
1206 FORMAT (//12X,' TIME-DEPENDENT SPECIFIED CONCENTRATION'/12X,'IS ', F920....
    1 'INDICATED BY NEGATIVE NODE NUMBER') F930....
        GOTO 2000
1215 WRITE (K3,1216)
1216 FORMAT (//11X,' TIME-DEPENDENT SPECIFIED TEMPERATURE'/12X,' IS ',
    1 'INDICATED BY NEGATIVE NODE NUMBER')
C
C.....END SIMULATION IF THERE NEED BE CORRECTIONS TO DATASET 19 OR 20
2000 IF(ISTOPP.EQ.O.AND.ISTOPU.EQ.0) GOTO 6000
        IF(ISTOPP.EQ.1) WRITE(K3,3000) IP,NPBC
3000 FORMAT(////11X,'ACTUAL NUMBER OF SPECIFIED PRESSURE NODES',
    1 ' READ, ',I5,', IS NOT EQUAL TO NUMBER SPECIFIED IN',
    2 ' INPUT, ',I5)
        IF (ME) 3500,3500,4600
3500 IF(ISTOPU.EQ.1) WRITE (K3,4000) IU,NUBC
4000 FORMAT(////11X,'ACTUAL NUMBER OF SPECIFIED CONCENTRATION NODES',
    1 ' READ, ',I5,', IS NOT EQUAL TO NUMBER SPECIFIED IN',
    2 ' INPUT, ',I5)
        GOTO 4800
4600 IF(ISTOPU.EQ.1) WRITE (K3,4700) IU,NUBC
4700 FORMAT (////11X,'ACTUAL NUMBER OF SPECIFIED TEMPERATURE NODES',
    1 ' READ, ',I5,', IS NOT EQUAL TO NUMBER SPECIFIED IN',
    2 ' INPUT, ',I5)
4800 WRITE(K3,5000)
5000 FORMAT (////11X,'PLEASE CORRECT DATA AND RERUN.'////////
    1 22X,'S I M U L A T I O N H A L T E D'/
    2 22X,',_')
```

\qquad

``` ')
F750....
    F760....
    F770....
    F780....
    F790....
    F800....
    F810....
    F820....
    F830....
    F840....
    F850....
    F860....
    F870....
F880
    F890....
    F900....
F910....
    F930....
F940....
F950....
F960....
F970....
F980....
F990....
F1000...
F1010...
F1010...
F1030...
F1040...
F1050...
F1060...
F1070...
F1080...
F1090...
F1100...
F1110...
F1120...
F1130...
F1140...
F1150...
F1160...
F1170...
F1180...
```



```
            4 11X,'PLEASE RECONFIRM THAT OBSERVATION COUNTS ARE CORRECT.'//) G500....
    100 READ (K1,150) INOB
    150 FORMAT (16I5)
    DO 200 JJ=1,16
    IF(INOB(JJ).EQ.0) GOTO 250
    IOB=IOB+1
    IOBS (IOB)=INOB (JJ)
    200 CONTINUE
    IF(IOB.LT.NOBS) GOTO 100
    250 IF(IOB.NE.NOBS) JSTOP=1
    WRITE(K3,300) (IOBS (JJ), JJ=1,NOBS)
    300 FORMAT((11X,16(3X,I6)))
    IF(JSTOP.EQ.0) GOTO 400
C.....END SIMULATION IF CORRECTIONS ARE NECESSARY IN DATASET 21
    WRITE (K3,350) IOB,NOBS
    350 FORMAT(////11X,'ACTUAL NUMBER OF OBSERVATION NODES',
        1 ' READ, ',I5,', IS NOT EQUAL TO NUMBER SPECIFIED IN',
        2 ' INPUT, ',I5////11X,'PLEASE CORRECT DATA AND RERUN.',
        3 ////////22X,'S I M U L A T I O N H A L T E D'/
        4 22X,
            STOP
    400 RETURN
C
C.....MAKE OBSERVATIONS EACH NOBCYC TIME STEPS
    500 CONTINUE
        IF (MOD (IT,NOBCYC).NE.O.AND.IT.GT.I.AND.ISTOP.EQ.O) RETURN
        IF(IT.EQ.0) RETURN
        ITCNT=ITCNT+1
        ITOBS (ITCNT)=IT
        OBSTIM(ITCNT)=TSEC
        DO 1000 JJ=1,NOBS
        I=IOBS (JJ)
        POBS (JJ,ITCNT) =PVEC (I)
        UOBS (JJ, ITCNT) =UVEC (I )
    1000 CONTINUE
        RETURN
C
C.....OUTPUT OBSERVATIONS
    5000 CONTINUE
    MN=2
    IF (ME.EQ.-1) MN=1
        JJ2=0
        MLOOP=(NOBS+3)/4
        DO 7000 LOOP=1,MLOOP
        JJ1=JJ2+1
        JJ2=JJ2 +4
        IF(LOOP.EQ.MLOOP) JJ2=NOBS
        WRITE(K3,5999) (IOBS(JJ), JJ=JJ1,JJ2)
        5999 FORMAT (1H1///5X,'O B S E R V A T I O N ',
            1 'N O D E D A T A'///23X,4(:8X,'NODE ',I5,8X))
            WRITE(K3,6000) (UNDERS,JJ=JJ1,JJ2)
    6 0 0 0 ~ F O R M A T ( ~ 2 3 X , 4 ( : 8 X , ~ A 1 0 ~ , ~ 8 X ) ) ,
        WRITE (K3, 6001) (UNAME (MN), JJ=JJ1, JJ2)
    6001 FORMAT (/1X,' TIME STEP',4X,' TIME (SEC)',4(:2X,'PRESSURE', 3X,A13))
        DO 6500 ITT=1,ITCNT
        WRITE(K3,6100) ITOBS(ITT),OBSTIM(ITT),
        1 (POBS (JJ,ITT), UOBS (JJ,ITT), JJ=JJ1, JJ2)
    6 1 0 0 ~ F O R M A T ( 5 X , I 5 , 1 X , 1 P D 1 2 . 5 , 8 ( 1 X , 1 P D 1 2 . 5 ) ) ,
    6500 CONTINUE
    7 0 0 0 ~ C O N T I N U E ~
    RETURN
G510....
G520....
G540....
G550.....
G560....
G560....
G570....
G580....
G590....
G600.... .
G610....
G620....
G630....
G640....
G650....
G660....
G670....
G680....
G690....
G700....
G710....
G720....
G730....
G740....
G750....
G760....
G770....
G780....
G790....
G800....
G810....
G820....
G830....
G840....
G850.... .
G860....
G870....
G880.... .
G890....
G900....
G910....
G920....
G930....
G940....
G950....
G960....
G970....
G970....
G990....
G1000...
G1000...
G1020...
G1030...
G1040...
G1050...
G1060...
G1070...
G1080...
G1090...
G1100...
G1100..
G1110...
```



```
    I=IPBC (IP) K580\ldots...
    I=IPBC(IP)
    700 PBC(IP)=PVEC(-I)
    7 3 0 ~ C O N T I N U E
C.....INITIALIZE P, U, AND CONSISTENT DENSITY
    740 DO 800 I=1,NN
    PM1 (I) =PVEC (I)
            UM1 (I) =UVEC (I)
            UM2 (I) =UVEC (I)
            RCIT (I) =RHOW0+DRWDU* (UVEC (I) -URHOW0)
    800 CONTINUE
C.....INITIALIZE SATURATION, SW(I)
            CALL ZERO(SW,NN,1.ODO)
            CALL ZERO(DSWDP,NN,O.ODO)
            IF(IUNSAT.NE.1) GOTO 990
            IUNSAT=3
            DO 900 I=1,NN
    900 IF(PVEC(I).LT.0) CALL UNSAT(SW(I),DSWDP(I),RELK,PVEC(I))
    990 CONTINUE
            CALL ZERO(CS1,NN,CS)
            CALL ZERO(CS2,NN,0.0D0)
            CALL ZERO(CS3,NN,0.ODO)
            CALL ZERO(SL,NN,O.ODO)
            CALL ZERO(SR,NN,O.ODO)
    1000 CONTINUE
C
C.....SET STARTING TIME OF SIMULATION CLOCK, TSEC
    TSEC=TSTART
C
C
    RETURN
    END
    SUBROUTINE P R I S O L
C
C *** PURPOSE
C *** TO PRINT PRESSURE AND TEMPERATURE OR CONCENTRATION
C *** SOLUTIONS AND TO OUTPUT INFORMATION ON TIME STEP, ITERATIONS,
C *** SATURATIONS, AND FLUID VELOCITIES.
C
    SUBROUTINE PRISOL(ML,ISTOP,IGOI,PVEC,UVEC,VMAG,VANG,SW)
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    COMMON/FUNITS/ K00,K0,K1,K2,K3,K4,K5,K6,K7,K8
    COMMON/DIMS/ NN,NE,NIN,IS,JT,NBIP,NBIS,NPT (9) ,NPBC,NUBC,
    1 NSOP,NSOU,NBCN
        COMMON/CNTRL1/ GNU,UP,DTMULT,DTMAX,ME,ISSFLO,ISSTRA,ITCYC,
            1 NPCYC, NUCYC,NPRINT, IREAD, ISTORE, NOUMAT, IUNSAT, ITIME
            COMMON/TIME/ DELT,TSEC,TMIN,THOUR,TDAY,TWEEK,TMONTH,TYEAR,
            1 TMAX,DELTP,DELTU,DLTPM1,DLTUM1,IT,ITMAX
        COMMON/ITERAT/ RPM, RPMAX,RUM,RUMAX,ITER,ITRMAX,IPWORS,IUWORS,
            1 ICON, ITRMX2,OMEGA, RPMX2, RUMX2
            COMMON/KPRINT/ KCOORD,KELINF,KINCID,KPLOTP,KPLOTU,KVEL,KBUDG
            DIMENSION PVEC (NN),UVEC (NN),VMAG (NE),VANG (NE),SW (NN)
C
C.....OUTPUT MAJOR HEADINGS FOR CURRENT TIME STEP
            IF(IT.GT.0.OR.ISSFLO.EQ.2.OR.ISSTRA.EQ.1) GOTO 100
            WRITE(K3,60)
        60 FORMAT(1H1////11X,' I N I T I A L C O N D I T I O N S',
            1 /11X,'_
            IF(IREAD.EQ.-1) WRITE (K3,65)
    65 FORMAT(//11X,'INITIAL CONDITIONS RETRIEVED FROM STORAGE ',
            1 'ON UNIT 55.')
    I=IPBC(IP)
    K600.....
    K610...
    K620...
    K630...
    K640...
    K650...
    K660....
K670...
K680....
K690....
K700....
K710...
K720....
K730...
K740....
K750....
760...
K760....
K770 . . . .
K780....
K790....
K800....
K810....
K820....
K830....
K840....
K850....
K860....
K870...
K880....
K890....
L10.....
L20.....
L30.....
L40.....
L50....
L60......
L70......
L80.....
L90.....
MODIFIED
L100NEW
L110....
L120NEW
L130NEW
L140....
L150....
L160....
NEW
L170....
L180....
L190....
L200....
L210...
L220....
L230....
L240...
L250....
L260....
L270...
```

```
            GOTO 500 L280.\ldots
C
    100 IF(IGOI.NE.0.AND.ISTOP.EQ.0) WRITE(K3,150) ITER,IT L300....
    150 FORMAT(////////11X,'ITERATION ',I3,' SOLUTION FOR TIME STEP ',I4) L310....
C
        IF(ISTOP.EQ.-1) WRITE (K3,250) IT,ITER
    250 FORMAT(1H1//11X,'SOLUTION FOR TIME STEP ',I4,
            1 ' NOT CONVERGED AFTER ',I3,' ITERATIONS.')
C
            IF(ISTOP.GE.0) WRITE(K3,350) IT
    350 FORMAT (1H1//11X,'RESULTS FOR TIME STEP ',I4/
```



```
            IF(ITRMAX.EQ.1) GOTO 500
            IF(ISTOP.GE.0.AND.IT.GT.0) WRITE(K3,355) ITER
            IF(IT.EQ.0.AND.ISTOP.GE.0.AND.ISSFLO.EQ.2) WRITE(K3,355) ITER
    355 FORMAT (11X,'(AFTER ',I3,' ITERATIONS) :')
            WRITE (K3,450) RPM, IPWORS, RUM, IUWORS
    450 FORMAT(//11X,'MAXIMUM P CHANGE FROM PREVIOUS ITERATION ',
            1 1PD14.5,' AT NODE ',I5/11X,'MAXIMUM U CHANGE FROM PREVIOUS ',
            2 'ITERATION ',1PD14.5,' AT NODE ',I5)
C
    500 IF(IT.EQ.O.AND.ISSFLO.EQ.2) GOTO }68
            IF(ISSTRA.EQ.1) GOTO 800
            WRITE(K3,550) DELT,TSEC,TMIN,THOUR,TDAY,TWEEK,
            1 TMONTH,TYEAR
    550 FORMAT(///11X,'TIME INCREMENT :',T27,1PD15.4,' SECONDS'//11X, L530....
            1 'ELAPSED TIME :',T27,1PD15.4,' SECONDS',/T27,1PD15.4,' MINUTES'L540....
            2 /T27,1PD15.4,' HOURS'/T27,1PD15.4,' DAYS'/T27,1PD15.4,' WEEKS'/L550....
            3 T27,1PD15.4,' MONTHS'/T27,1PD15.4,' YEARS') L560....
C
C.....OUTPUT PRESSURES FOR TRANSIENT FLOW SOLUTION (AND POSSIBLY, L580....
C SATURATION AND VELOCITY)
            IF(ML.EQ.2.AND.ISTOP.GE.0) GOTO 700
            IF(ISSFLO.GT.0) GOTO 700
            WRITE(K3,650) (I,PVEC (I), I=1,NN)
    650 FORMAT (///11X,'P R E S S U R E'//8X,6('NODE',17X)/
            1 (7X,6(1X,I4,1X,1PD15.8)))
            IF(IUNSAT.NE.0) WRITE (K3,651) (I,SW(I),I=1,NN)
    6 5 1 ~ F O R M A T ( / / / 1 1 X , ' S ~ A ~ T ~ U ~ R ~ A ~ T ~ I ~ O ~ N ' / / 8 X , 6 ( ' N O D E ' , 1 7 X ) /
            1 (7X,6(1X,I4,1X,1PD15.8)))
            IF(KVEL.EQ.1.AND.IT.GT.0) WRITE (K3,655) (L,VMAG(L), L=1,NE)
            IF(KVEL.EQ.1.AND.IT.GT.0) WRITE (K3,656) (L,VANG(L), L=1,NE)
    655 FORMAT (///11X,'F L U I D V V E L O C I T Y'//
            1 11X,'M A G N I T U D E AT CENTROID OF ELEMENT'//
            2 5X,6('ELEMENT',14X)/(7X,6(1X,I4,1X,1PD15.8)))
    6 5 6 ~ F O R M A T ~ ( / / / 1 1 X , ' F ~ L ~ U ~ I ~ D ~ V ~ V ~ E ~ L ~ O ~ C ~ I ~ T ~ Y ' / / ~
```



```
            2 'AT CENTROID OF ELEMENT'//
            3 5X,6('ELEMENT',14X)/(7X,6(1X,I4,1X,1PD15.8)))
                            L750....
                    L760....
            GOTO 700
C
C.....OUTPUT PRESSURES FOR STEADY-STATE FLOW SOLUTION
    680 WRITE (K3,690) (I,PVEC(I),I=1,NN)
    680 WRITE (K3,690) (I,PVEC(I),I=1,NN)
            1, S U R E'//8X,6('NODE',17X)/(7X,6(1X,I4,1X,1PD15.8))) L820....
            IF(IUNSAT.NE.0) WRITE (K3,651) (I,SW(I),I=1,NN)
            GOTO 1000
C
C.....OUTPUT CONCENTRATIONS OR TEMPERATURES FOR
C TRANSIENT TRANSPORT SOLUTION
    L770....
    L780....
    L790....
    L790....
    L830....
L850....
L860....
700 IF(ML.EQ.1.AND.ISTOP.GE.0) GOTO 1000
L870....
```

```
        IF (ME) 720,720,730
    L890....
    720 WRITE (K3,725) (I,UVEC(I),I=1,NN) L900....
    725 FORMAT(///11X,'C O N C E N T R A T I O N'//8X, L910....
    1 6('NODE',17X)/(7X,6(1X,I4,1X,1PD15.8)))
    L920....
        GOTO 900
    L930....
    730 WRITE(K3,735) (I,UVEC(I),I=1,NN) L940....
    735 FORMAT(///11X,'T E M P E R A T U R E'//8X,6('NODE',17X)/L950....
    1 (7X,6(1X,I4,1X,F15.9))) L960....
        GOTO 900 L970....
C
C.....OUTPUT CONCENTRATIONS OR TEMPERATURES FOR
C STEADY-STATE TRANSPORT SOLUTION
    800 IF (ME) 820,820,830
    820 WRITE (K3,825) (I,UVEC(I),I=1,NN) L1020...
    825 FORMAT (///11X,'S T E A D Y - S T A T E C O N C', L1030...
        1 ' E N T R A T I O N'//8X,6('NODE',17X)/ L1040...
            2 (7X,6(1X,I4,1X,1PD15.8))) L1050...
                GOTO 900 L1060...
    830 WRITE(K3,835) (I,UVEC(I),I=1,NN) L1070...
    835 FORMAT (///11X,'S T E A D Y - S T A T E T E E M P', L1080...
        1' E R A T U R E'//8X,6('NODE',17X)/ L1090...
        2 (7X,6(1X,I4,1X,F15.9))) L1100...
C
C....OUTPUT VELOCITIES FOR STEADY-STATE FLOW SOLUTION L1120...
    900 IF(ISSFLO.NE.2.OR.IT.NE.1.OR.KVEL.NE.1) GOTO 1000 L1130...
            WRITE (K3,925) (L,VMAG (L),L=1,NE) L1140...
            WRITE (K3,950) (L,VANG (L), L=1,NE) L1150...
    925 FORMAT (///11X,'S T E A D Y - S T A T E ', L1160...
            1 'F
            2 11X,'M A G N I T U D E AT CENTROID OF ELEMENT'// L1180...
            3 5X,6('ELEMENT',14X)/(7X,6(1X,I4,1X,1PD15.8))) L1190...
    950 FORMAT (///11X,'S T E A D Y - S T A T E , , L1200...
            1 'F
            2 11X,'A N G L E IN DEGREES FROM +X-AXIS TO FLOW DIRECTION ', L1220...
            3 'AT CENTROID OF ELEMENT' //
                                    L1230...
            4 5X,6('ELEMENT',14X)/(7X,6(1X,I4,1X,1PD15.8))) L1240...
C
    1000 RETURN
C
        END
C SUBROUTINE Z E R O SUTRA - VERSION 1284-2D M10.....
C
C *** PURPOSE
C *** TO FILL AN ARRAY WITH A CONSTANT VALUE.
        SUBROUTINE ZERO(A,IADIM,FILL)
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        DIMENSION A(IADIM)
C
C.....FILL ARRAY A WITH VALUE IN VARIABLE 'FILL'
        DO 10 I=1,IADIM
    10 A(I)=FILL
C
C
        RETURN
        END NOMTINE SUTRA _ VERSION 1284-2D N10.....
            M20\ldots...
L1250...
L1260...
L1270...
L1280...
M30 . . . . .
M40.....
C
M50 . . . . .
M60.....
M70.....
L1110...
M80 . . . . .
M90.....
M100....
M100....
M110....
M120....
M130....
M140...
M150....
        END N S S C T I M E M160....
C SUBROUTINE B C T I M E SUTRA - VERSION 1284-2D N10.....
C *** PURPOSE :
N30.....
C *** USER-PROGRAMMED SUBROUTINE WHICH ALLOWS THE USER TO SPECIFY: N40.....
C *** (1) TIME-DEPENDENT SPECIFIED PRESSURES AND TIME-DEPENDENT N50.....
```



```
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - N1240...
    N1250...
    N1260...
    N1270...
    N1280...
    N1290...
    N1300...
    440 IF (IQSOPT) 450,640,640 N1310...
C - - - - - - - - - - - - - - _ - - - _ - - - - - - - - - - - - - - - - N1320...
```



```
C....SECTION (3): SET TIME-DEPENDENT FLUID SOURCES/SINKS, N1340...
C OR CONCENTRATIONS (TEMPERATURES) OF SOURCE FLUID N1350...
C
    450 CONTINUE
C
*** THE FOLLOWING MODIFICATION IS MADE TO NEW
C TURN OF WITHDRAWL WELLS WHEN AVERAGE NEW
C
C
C
C
FIRST CALCULATE VOLUME AVERAGED CONCENTRATION
        CMAX=0.9980
        CBAR=0.0DO
```



```
        DO 605 IQP=1,NSOPI NEW
        I=IQSOP (IQP) NEW
        I=IABS (I) NEW
        CBAR=CBAR+UVEC (I) *QIN (I) NEW
        QTOT=QTOT+QIN (I) NEW
    605 CONTINUE
        CBAR=CBAR/QTOT NEW
            WRITE (K6,606) TDAY,CBAR NEW
    606 FORMAT (1HO,10X,'VOLUME AVERAGED SOLUTE CONCENTRATION', NEW
        +' AT TIME STEP ',F10.2,' =',F10.4) NEW
            IF (CBAR.LE.CMAX) GO TO 610 NEW
C
C CBAR EXCEEDS CMAX, TURN OFF THE WELLS AND NEW
C RESET IQSOPT SO PROGRAM DOES NOT RETURN HERE NEW
            IQSOPT=+1 NEW
            WRITE (K3,608) DELT,TSEC,TMIN, THOUR,TDAY,TWEEK,TMONTH,TYEAR NEW
    608 FORMAT (///11X,'TIME INCREMENT :',T27,1PD15.4,' SECONDS'//11X, NEW
            'ELAPSED TIME :',T27,1PD15.4,' SECONDS',/T27,1PD15.4,' MINUTES'NEW
            /T27,1PD15.4,' HOURS'/T27,1PD15.4,' DAYS'/T27,1PD15.4,' WEEKS'/NEW
            T27,1PD15.4,' MONTHS'/T27,1PD15.4,' YEARS') NEW
            CALL RUNDAT (TDAY)
            NEW
    607 FORMAT (1HO,10X,' CONCENTRATION EXCEEDS MAXIMUM VALUE (',F10.4, NEW
            1 ')'/1H ,10X,'WELLS AT R=0 ARE TURNED OFF '/) NEW
            DO 600 IQP=1,NSOPI N1380...
            I=IQSOP (IQP) N1390...
            I=IABS (I) NEW
            QIN(I) = 0.0D0 N1440...
            UIN(I) = 0.0D0 N1470...
    6 0 0 ~ C O N T I N U E ~
                                    N1480...
                                    NEW
                                    NEW
                                    NEW
                                    NEW
            ITCYC=0
C NEW
610 CONTINUE NEW
```



```
C _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - N1500...
```

C		N1510...
C		N1520...
C		N1530...
C		N1540...
C		N1550...
C		N1560...
640	IF (IQSOUT) 650,840,840	N1570.
C -	- -	N1580...
C -	- -	N1590.
C....	.SECTION (4): SET TIME-DEPENDENT SOURCES/SINKS	N1600...
C	OF SOLUTE MASS OR ENERGY	N1610...
C		N1620...
650	CONTINUE	N1630...
	DO 800 IQU=1,NSOUI	N1640...
	$I=I Q S O U(I Q U)$	N1650...
	IF (I) 700,800,800	N1660...
700	CONTINUE	N1670.
C	NOTE : A TRANSPORT SOLUTION MUST OCCUR FOR ANY	N1680...
C	TIME STEP IN WHICH QUIN() CHANGES.	N1690...
C	$\operatorname{QUIN}(-\mathrm{I})=$ (())	N1700...
800	CONTINUE	N1710...
C -	- -	N1720...
C	- - - - - - - - - - - - - - - - - -	N1730...
C		N1740...
C		N1750...
C		N1760...
C		N1770...
C		N1780...
C		N1790...
840	CONTINUE	N1800...
C		N1810...
	RETURN	N1820...
	END	N1830...
C	SUBROUTINE A D S O R B SUTRA - VERSION 1284-2D	010.....
C		020....
C ***	PURPOSE :	030....
C ***	TO CALCULATE VALUES OF EQUILIBRIUM SORPTION PARAMETERS FOR	O40....
C ***	LINEAR, FREUNDLICH, AND LANGMUIR MODELS.	050.....
C		060....
	SUBROUTINE ADSORB (CS1, CS2, CS3, SL, SR, U)	070.....
	IMPLICIT DOUBLE PRECISION ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)	080....
	CHARACTER*10 ADSMOD	090.....
	COMMON/MODSOR/ ADSMOD	O100....
	COMMON/DIMS/ NN, NE, NIN, IS, JT, NBIP, NBIS, NPT (9) , NPBC, NUBC,	0110NEW
	1 NSOP, NSOU, NBCN	0120....
	COMMON/PARAMS/ COMPFL, COMPMA, DRWDU, CW, CS, RHOS, DECAY, SIGMAW, SIGMAS,	0130....
	1 RHOW0, URHOW0,VISC0,PRODF1, PRODS1, PRODF 0, PRODS0, CHI 1, CHI2	0140....
	DIMENSION CS1 (NN), CS2 (NN), CS3 (NN), SL (NN), SR (NN), U (NN)	0150....
C		0160.
C...	. NOTE THAT THE CONCENTRATION OF ADSORBATE, CS(I), IS GIVEN BY:	0170....
C	$C S(I)=S L(I) * U(I)+S R(I)$	0180....
C		0190.
C....	. NO SORPTION	O200...
	IF (ADSMOD.NE.' NONE ') GOTO 450	0210..
	DO $250 \mathrm{I}=1$, NN	O220...
	CS1 (I) =0.D0	0230...
	CS2 $(\mathrm{I})=0 . \mathrm{DO}$	O240...
	CS3 $(\mathrm{I})=0 . \mathrm{D} 0$	O250...
	SL (I) $=0 . \mathrm{DO}$	O260...
	SR (I) = 0. D 0	0270.
250	CONTINUE	O280...

```
    GOTO 2000
C
C.....LINEAR SORPTION MODEL
    450 IF (ADSMOD.NE.'LINEAR ') GOTO 700
            DO 500 I=1,NN
            CS1(I)=CHI1*RHOW0
            CS2(I)=0.D0
            CS3(I)=0.D0
            SL (I) =CHI1*RHOW0
            SR(I)=0.D0
    500 CONTINUE
    GOTO 2000
C
C.....FREUNDLICH SORPTION MODEL
    700 IF(ADSMOD.NE.'FREUNDLICH') GOTO 950
            CHCH=CHI1/CHI2
            DCHI2=1.D0/CHI2
            RH2=RHOW0**DCHI2
            CHI2F=((1.D0-CHI2)/CHI2)
            CH12=CHI1**DCHI2
            DO 750 I=1,NN
            IF(U(I)) 720,720,730
    720 UCH=1.0D0
        GOTO 740
    7 3 0 \text { UCH=U(I)**CHI2F}
    740 RU=RH2*UCH
            CS1(I) =CHCH*RU
            CS2(I) =0.D0
            CS3(I)=0.D0
            SL (I) =CH12*RU
            SR (I) =0.DO
    7 5 0 ~ C O N T I N U E
            GOTO 2000
C
C.....LANGMUIR SORPTION MODEL
    950 IF (ADSMOD.NE.' LANGMUIR ') GOTO 2000
            DO 1000 I=1,NN
            DD=1.D0+CHI2*RHOWO*U(I)
            CS1 (I) = (CHI1*RHOW0) / (DD*DD)
            CS2(I)=0.D0
            CS3(I)=0.D0
            SL(I)=CS1(I)
            SR(I)=CS1 (I) *CHI2*RHOW0 *U(I) *U(I)
    1000 CONTINUE
C
    2000 RETURN
        END
    SUBROUTINE E L E M E N
C
C *** PURPOSE :
C *** TO CONTROL AND CARRY OUT ALL CALCULATIONS FOR EACH ELEMENT BY
C *** OBTAINING ELEMENT INFORMATION FROM THE BASIS FUNCTION ROUTINE,
C *** CARRYING OUT GAUSSIAN INTEGRATION OF FINITE ELEMENT INTEGRALS,
C *** AND SENDING RESULTS OF ELEMENT INTEGRATIONS TO GLOBAL ASSEMBLY
C *** ROUTINE. ALSO CALCULATES VELOCITY AT EACH ELEMENT CENTROID FOR
C *** PRINTED OUTPUT.
C
    SUBROUTINE ELEMEN(ML,IN,X,Y,THICK,PITER,UITER,RCIT,RCITM1,POR,
    1 ALMAX,ALMIN,ATAVG,PERMXX,PERMXY, PERMYX,PERMYY,PANGLE,
    2 VMAG, VANG, VOL, PMAT, PVEC, UMAT, UVEC , GXSI, GETA, PVEL, CWRK)
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
```

```
    COMMON/FUNITS/ K00,K0,K1,K2,K3,K4,K5,K6,K7,K8 MODIFIED
    COMMON/DIMS/ NN,NE,NIN,IS,JT,NBIP,NBIS,NPT(9) ,NPBC,NUBC, P150NEW
    1 NSOP,NSOU,NBCN
    COMMON/TENSOR/ GRAVX,GRAVY
    COMMON/PA
    L, COMPMA, DRWDU, CW, CS,RHOS,DECAY,SIGMAW, SIGMAS,P180 . . . 
    1 RHOW0,URHOW0,VISC0,PRODF1,PRODS1,PRODF0,PRODS0,CHI1,CHI2 P190....
    COMMON/TIME/ DELT,TSEC,TMIN,THOUR,TDAY,TWEEK,TMONTH,TYEAR, P200....
    1 TMAX, DELTP,DELTU,DLTPM1,DLTUM1,IT, ITMAX
    COMMON/CNTRL1/ GNU,UP,DTMULT,DTMAX,ME,ISSFLO,ISSTRA,ITCYC,
    1 NPCYC, NUCYC, NPRINT, IREAD, ISTORE, NOUMAT, IUNSAT, ITIME
    COMMON/KPRINT/ KNODAL,KELMNT,KINCID,KPLOTP,KPLOTU,KVEL,KBUDG
    DIMENSION IN(NIN),X(NN),Y(NN),THICK(NN),PITER(NN),
1 UITER (NN), RCIT (NN) , RCITM1 (NN),POR (NN), PVEL (NN)
    DIMENSION PERMXX (NE), PERMXY (NE),PERMYX(NE), PERMYY (NE),PANGLE (NE), P270....
1 ALMAX (NE),ALMIN (NE),ATAVG (NE),VMAG (NE),VANG (NE), P280....
2 GXSI(NE,4),GETA(NE,4) P290....
    DIMENSION VOL (NN), PMAT (NN,NBIP), PVEC (NN), UMAT (NN,NBIS),UVEC (NN) P3OONEW
    DIMENSION CWRK (NN)
    DIMENSION BFLOWE (4,4),DFLOWE (4), BTRANE (4,4),DTRANE (4,4),VOLE (4)
    DIMENSION F(4,4),W(4,4),DET(4),DFDXG(4,4),DFDYG(4,4),
    1 DWDXG (4,4), DWDYG (4,4)
    DIMENSION SWG(4),RHOG(4),VISCG(4),PORG(4),VXG(4),VYG(4),
    1 RELKG (4),RGXG (4),RGYG (4),VGMAG (4),THICKG (4)
    DIMENSION RXXG (4),RXYG (4),RYXG (4),RYYG (4)
    DIMENSION BXXG(4),BXYG(4),BYXG(4),BYYG(4),
1 EXG(4),EYG (4)
    DIMENSION GXLOC(4),GYLOC(4)
    DATA GLOC/0.577350269189626D0/
    DATA INTIM/0/,ISTOP/0/,GXLOC/-1.D0,1.D0,1.D0,-1.D0/,
    1 GYLOC/-1.D0,-1.D0,1.D0,1.D0/
C
C.....DECIDE WHETHER TO CALCULATE CENTROID VELOCITIES ON THIS CALL
        IVPRNT=0
        IF(MOD(IT,NPRINT).EQ.0.AND.ML.NE.2.AND.IT.NE.0) IVPRNT=1
        IF(IT.EQ.1) IVPRNT=1
        KVPRNT=IVPRNT+KVEL
C
C.....ON FIRST TIME STEP, PREPARE GRAVITY VECTOR COMPONENTS,
C GXSI AND GETA, FOR CONSISTENT VELOCITIES,
C AND CHECK ELEMENT SHAPES
        IF(INTIM) 100,100,2000
    100 INTIM=1
C.....LOOP THROUGH ALL ELEMENTS TO OBTAIN THE JACOBIAN
C AT EACH OF THE FOUR NODES IN EACH ELEMENT
    DO 1000 L=1,NE
        DO 500 IL=1,4
        XLOC=GXLOC (IL)
        YLOC=GYLOC (IL)
        CALL BASIS2(0000,L,XLOC,YLOC,IN,X,Y,F(1,IL),W(1,IL),DET(IL),
            DFDXG (1,IL), DFDYG (1,IL) , DWDXG (1,IL), DWDYG (1,IL),
            PITER,UITER,PVEL,POR,THICK,THICKG(IL),VXG(IL),VYG(IL),
            SWG (IL),RHOG(IL),VISCG (IL),PORG(IL),VGMAG (IL), RELKG(IL),
            PERMXX,PERMXY,PERMYX, PERMYY, CJ11, CJ12, CJ21, CJ22,
                GXSI,GETA,RCIT,RCITM1,RGXG(IL) ,RGYG(IL))
        GXSI (L,IL) =CJ11*GRAVX+CJ12*GRAVY
        GETA (L,IL) =CJ21*GRAVX+CJ22*GRAVY
C.....CHECK FOR NEGATIVE- OR ZERO-AREA ERRORS IN ELEMENT SHAPES
        IF(DET(IL)) 200,200,500
    200 ISTOP=ISTOP+1
        WRITE(K3,400) IN((L-1)*4+IL),L,DET(IL)
        FORMAT(11X,' THE DETERMINANT OF THE JACOBIAN AT GAUSS POINT ,,I4,P730....
```

```
P740....
    500 CONTINUE P750....
    1000 CONTINUE
    P760....
    P770....
    P780....
    P790....
        IF(ISTOP.EQ.O) GOTO 2000
        WRITE (K3,1500)
    1500 FORMAT(//////11X,'SOME ELEMENTS HAVE INCORRECT GEOMETRY.'
    1 //11X,'PLEASE CHECK THE NODE COORDINATES AND ',
    2 'INCIDENCE LIST, MAKE CORRECTIONS, AND THEN RERUN.'////////
    3 11X,'S I M U L A T I O N H A L T E D'/
    4 11X,'
```

\qquad
\qquad

``` ')
        ENDFILE(K3)
        STOP
C
C.....LOOP THROUGH ALL ELEMENTS TO CARRY OUT SPATIAL INTEGRATION
C OF FLUX TERMS IN P AND/OR U EQUATIONS
    2000 IF(IUNSAT.NE.0) IUNSAT=2
```



```
C - - - - - - - - - - - - _ - _ - _ - _ - _ - _ - _ - - - - - - - - - - P920....
C _ - _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ - _ - _ - - P930....
    DO 9999 L=1,NE
        XIX=-1.D0
        YIY=-1.D0
        KG=0
C.....OBTAIN BASIS FUNCTION AND RELATED INFORMATION AT EACH OF
C FOUR GAUSS POINTS IN THE ELEMENT
        DO 2200 IYL=1,2
            DO 2100 IXL=1,2
                KG=KG+1
                XLOC=XIX*GLOC
                YLOC=YIY*GLOC
            CALL BASIS2(0001,L,XLOC,YLOC,IN,X,Y,F(1,KG),W(1,KG),DET(KG),
                    DFDXG (1,KG), DFDYG (1,KG), DWDXG (1,KG), DWDYG (1, KG),
                    PITER,UITER,PVEL,POR,THICK,THICKG(KG),VXG(KG),VYG(KG),
                    SWG (KG),RHOG (KG),VISCG (KG) ,PORG (KG),VGMAG (KG) ,RELKG (KG),
                    PERMXX,PERMXY,PERMYX,PERMYY, CJ11,CJ12,CJ21,CJ22,
                    GXSI, GETA, RCIT, RCITM1, RGXG (KG) , RGYG (KG))
    2100 XIX=-XIX
    2200 YIY=-YIY
C
C.....CALCULATE VELOCITY AT ELEMENT CENTROID WHEN REQUIRED
        IF(KVPRNT-2) 3000,2300,3000
    2300 AXSUM=0.0D0
        AYSUM=0.0DO
        DO 2400 KG=1,4
        AXSUM=AXSUM+VXG (KG)
2400 AYSUM=AYSUM+VYG (KG)
    VMAG (L) =DSQRT (AXSUM*AXSUM+AYSUM*AYSUM) / 4.0D0
        IF (AXSUM) 2500,2700,2800
2500 AYX=AYSUM/AXSUM
        VANG (L) =DATAN (AYX)/1.745329D-02
        IF(AYSUM.LT.O.ODO) GOTO 2600
        VANG (L) =VANG (L) +180.0D0
        GOTO 3000
2600 VANG (L)=VANG (L) -180. OD0
        GOTO 3000
2700 VANG (L)=90.0D0
        IF(AYSUM.LT.0.OD0) VANG(L)=-90.0D0
        GOTO 3000
2800 AYX=AYSUM/AXSUM
    VANG (L) =DATAN (AYX)/1.745329D-02
```

```
C
C.....INCLUDE MESH THICKNESS IN NUMERICAL INTEGRATION
    3000 DO 3300 KG=1,4
    3300 DET(KG)=THICKG (KG) *DET (KG)
C
C.....CALCULATE PARAMETERS FOR FLUID MASS BALANCE AT GAUSS POINTS
        IF (ML-1) 3400,3400,6100
    3400 SWTEST=0.D0
        DO 4000 KG=1,4
        SWTEST=SWTEST+SWG(KG)
        ROMG=RHOG (KG)*RELKG(KG)/VISCG (KG)
        RXXG (KG) =PERMXX (L) *ROMG
        RXYG (KG) =PERMXY (L) *ROMG
        RYXG (KG) =PERMYX (L) *ROMG
        RYYG (KG) =PERMYY (L) *ROMG
    4000 CONTINUE
C
C.....INTEGRATE FLUID MASS BALANCE IN AN UNSATURATED ELEMENT
C USING ASYMMETRIC WEIGHTING FUNCTIONS
    IF(UP.LE.1.OD-06) GOTO 5200
    IF(SWTEST-3.999D0) 4200,5200,5200
    4200 DO 5000 I=1,4
        DF=0.D0
        VO=0.DO
        DO 4400 KG=1,4
        VO}=\textrm{VO}+\textrm{F}(\textrm{I},\textrm{KG})*DET (KG
    4400 DF=DF+((RXXG (KG)*RGXG (KG) +RXYG (KG)*RGYG (KG))
                *DWDXG (I,KG)
                    + (RYXG(KG)*RGXG(KG) +RYYG (KG)*RGYG (KG))
                        *DWDYG(I,KG)) *DET (KG)
        DO 4800 J=1,4
                BF=0.D0
        DO 4600 KG=1,4
            BF=BF+((RXXG (KG)*DFDXG (J,KG) +RXYG (KG)*DFDYG (J,KG))*DWDXG (I,KG)P1680...
                    +(RYXG (KG)*DFDXG (J,KG) +RYYG (KG)*DFDYG (J,KG)) *DWDYG (I,KG))P1690...
                        *DET(KG) P1700...
        BFLOWE (I,J)=BF
        VOLE (I) =VO
    5000 DFLOWE (I)=DF
        GOTO 6200
C
C.
C ELEMENT USING SYMMETRIC WEIGHTING FUNCTIONS
    5200 DO 6000 I=1,4
        DF=0.D0 P1790...
        VO=0.DO P1800...
        DO 5400 KG=1,4
        VO=VO+F (I,KG)*DET (KG)
    5400 DF=DF+((RXXG (KG)*RGXG (KG) +RXYG (KG)*RGYG (KG))*DFDXG (I,KG)
    2
            +(RYXG(KG)*RGXG(KG) +RYYG (KG)*RGYG (KG))*DFDYG (I,KG))
                *DET(KG)
        DO 5800 J=1,4
        BF=0.D0
        DO 5600 KG=1,4
            BF=BF+((RXXG (KG)*DFDXG (J,KG) +RXYG (KG)*DFDYG (J,KG))*DFDXG (I,KG)P1890...
                    +(RYXG(KG)*DFDXG (J,KG) +RYYG (KG)*DFDYG (J,KG))*DFDYG (I,KG))P1900...
                *DET(KG) P1910...
    1
    BFLOWE (I, J) =BF
        VOLE (I) =VO
    6000 DFLOWE (I) =DF
    6 2 0 0 ~ C O N T I N U E ~
P1920...
5800 BFLOWE (I,J)=BF
P1930...
    P1940...
P1950...
```

	IF (ML-1) 6100, 9000,6100	P1960.
6100	IF (NOUMAT.EQ.1) GOTO 9000	P1970.
C		P1980.
C		P1990.
C....CALCULATE PARAMETERS FOR ENERGY BALANCE OR SOLUTE MASS BALANCE		P2000.
C	AT GAUSS POINTS	P2010.
	DO $7000 \mathrm{KG}=1,4$	P2020.
	ESWG=PORG (KG) *SWG (KG)	P2030.
	RHOCWG=RHOG (KG) *CW	P2040.
	ESRCG=ESWG*RHOCWG	P2050.
	IF (VGMAG (KG)) 6300,6300,6600	P2060.
6300	EXG (KG) $=0.0 \mathrm{D} 0$	P2070.
	EYG (KG) $=0.0 \mathrm{D} 0$	P2080.
	DXXG=0.0D0	P2090.
	DXYG=0.0D0	P2100.
	DYXG $=0.0 \mathrm{D} 0$	P2110.
	DYYG $=0.0 \mathrm{D} 0$	P2120.
	GOTO 6900	P2130.
6600	EXG (KG) = ESRCG*VXG (KG)	P2140.
	EYG (KG) $=\mathrm{ESRCG} *$ VYG (KG)	P2150.
C		P2160.
C. . .	DISPERSIVITY MODEL FOR ANISOTROPIC MEDIA	P2170.
C	WITH PRINCIPAL DISPERSIVITIES: ALMAX,ALMIN, AND ATAVG	P2180.
	VANGG=1.570796327D0	P2190.
	IF (VXG (KG) *VXG (KG).GT.0.D0) VANGG=DATAN (VYG (KG)/VXG (KG))	P2200.
	VKANGG=VANGG-PANGLE (L)	P2210.
	DCO=DCOS (VKANGG)	P2220.
	DSI=DSIN (VKANGG)	P2230.
	EFFECTIVE LONGITUDINAL DISPERSIVITY IN FLOW DIRECTION, ALEFF	P2240.
	ALEFF=0.0D0	P2250.
	IF (ALMAX (L) +ALMIN (L)) 6800, 6800,6700	P2260.
6700	ALEFF=ALMAX (L) *ALMIN (L) / (ALMIN (L) *DCO*DCO+ALMAX (L) *DSI*DSI)	P2270.
6800	DLG=ALEFF*VGMAG (KG)	P2280.
	DTG=ATAVG (L) *VGMAG (KG)	P2290.
C		P2300.
	V2 GMI = 1. D0 (VGMAG (KG) *VGMAG (KG))	P2310.
	V2ILTG=V2GMI * (DLG-DTG)	P2320.
	VX2G=VXG (KG) *VXG (KG)	P2330.
	VY2G=VYG (KG) *VYG (KG)	P2340.
C.....DISPERSION TENSOR		P2350.
	DXXG=V2GMI* (DLG*VX2G+DTG*VY2G)	P2360.
	DYYG=V2GMI* (DTG*VX2G+DLG*VY2G)	P2370.
	DXYG=V2ILTG*VXG (KG) *VYG (KG)	P2380.
	DYXG=DXYG	P2390.
C		P2400.
C. .	IN-PARALLEL CONDUCTIVITIES (DIFFUSIVITIES) FORMULA	P2410.
6900	ESE=ESRCG*SIGMAW+(1.D0-PORG (KG)) *RHOCWG*SIGMAS	P2420.
7000	ADD DIFFUSION AND DISPERSION TERMS TO TOTAL DISPERSION TENSOR	P2430.
	BXXG (KG) =ESRCG*DXXG+ESE	P2440.
	BXYG (KG) =ESRCG*DXYG	P2450.
	BYXG (KG) =ESRCG*DYXG	P2460.
	BYYG (KG) =ESRCG*DYYG+ESE	P2470.
C		P2480.
C.....INTEGRATE SOLUTE MASS BALANCE OR ENERGY BALANCE		P2490.
C	USING SYMMETRIC WEIGHTING FUNCTIONS FOR DISPERSION TERM AND	P2500.
C	USING EITHER SYMMETRIC OR ASYMMETRIC WEIGHTING FUNCTIONS	P2510.
C	FOR ADVECTION TERM	P2520.
	DO $8000 \mathrm{I}=1,4$	P2530.
	DO $8000 \mathrm{~J}=1,4$	P2540.
	BT=0.D0	P2550.
	DT=0.D0	P2560.


```
    XF1=1.D0-XLOC Q400...
    XF2=1.D0+XLOC Q410....
    YF1=1.D0-YLOC
    YF2=1.D0+YLOC
C
C.....CALCULATE BASIS FUNCTION, F.
    FX(1) =XF1
    FX(2)=XF2
    FX(3) =XF2
    FX(4)=XF1
    FY(1)=YF1
    FY(2)=YF1
    FY(3)=YF2
    FY(4)=YF2
    DO 10 I=1,4
    10 F(I)=0.250D0*FX(I)*FY(I)
C
C.....CALCULATE DERIVATIVES WITH RESPECT TO LOCAL COORDINATES.
    DO 20 I=1,4
    DFDXL(I)=XIIX(I)*0.250D0*FY(I)
    20 DFDYL(I)=YIIY(I)*0.250D0*FX(I)
C
C.....CALCULATE ELEMENTS OF JACOBIAN MATRIX, CJ.
    CJ11=0.D0
    CJ12=0.D0
    CJ21=0.D0
    CJ22=0.D0
    DO 100 IL=1,4
    II=(L-1)*4+IL
    I=IN(II)
    CJ11=CJ11+DFDXL(IL)*X(I)
    CJ12=CJ12+DFDXL(IL)*Y(I)
    CJ21=CJ21+DFDYL(IL)*X(I)
    100 CJ22=CJ22+DFDYL(IL)*Y(I)
C
C.....CALCULATE DETERMINANT OF JACOBIAN MATRIX.
    DET=CJ11*CJ22-CJ21*CJ12
C
C.....RETURN TO ELEMEN WITH JACOBIAN MATRIX ON FIRST TIME STEP.
    IF(ICALL.EQ.0) RETURN
C
C.....CALCULATE ELEMENTS OF INVERSE JACOBIAN MATRIX, CIJ.
    ODET=1.DO/DET
    CIJ11=+ODET*CJ22
    CIJ12=-ODET*CJ12
    CIJ21=-ODET*CJ21
    CIJ22=+ODET*CJ11
C
C.....CALCULATE DERIVATIVES WITH RESPECT TO GLOBAL COORDINATES
    DO 200 I=1,4
    DFDXG(I) =CIJ11*DFDXL(I) +CIJ12*DFDYL(I)
    200 DFDYG(I)=CIJ21*DFDXL(I)+CIJ22*DFDYL(I)
C
C.....CALCULATE CONSISTENT COMPONENTS OF (RHO*GRAV) TERM IN LOCAL
C COORDINATES AT THIS LOCATION, (XLOC,YLOC)
    RGXL=0.DO
    RGYL=0.DO
    RGXLM1=0.D0
    RGYLM1=0.D0
    DO 800 IL=1,4
    II= (L-1)*4+IL
```

```
        I=IN(II) Q1010...
        ADFDXL=DABS (DFDXL (IL))
        ADFDYL=DABS (DFDYL (IL))
        RGXL=RGXL+RCIT(I)*GXSI(L,IL)*ADFDXL
        RGYL=RGYL+RCIT (I) *GETA(L,IL)*ADFDYL
        RGXLM1=RGXLM1+RCITM1 (I) *GXSI (L,IL) *ADFDXL
        RGYLM1=RGYLM1 +RCITM1 (I) *GETA(L,IL) *ADFDYL
    800 CONTINUE
C
C.....TRANSFORM CONSISTENT COMPONENTS OF (RHO*GRAV) TERM TO
C GLOBAL COORDINATES
    RGXG=CIJ11*RGXL+CIJ12*RGYL
    RGYG=CIJ21*RGXL+CIJ22*RGYL
    RGXGM1=CIJ11*RGXLM1+CIJ12*RGYLM1
    RGYGM1=CIJ21*RGXLM1+CIJ22*RGYLM1
C
C.....CALCULATE PARAMETER VALUES AT THIS LOCATION, (XLOC,YLOC)
C
    PITERG=0.DO
    UITERG=0.DO
    DPDXG=0.DO
    DPDYG=0.D0
    PORG=0.D0
    THICKG=0.0DO
    DO 1000 IL=1,4
    II=(L-1)*4 +IL
    I=IN(II)
    DPDXG=DPDXG+PVEL(I) *DFDXG(IL)
    DPDYG=DPDYG+PVEL (I) *DFDYG (IL)
    PORG=PORG+POR(I)*F(IL)
    THICKG=THICKG+THICK(I)*F(IL)
    PITERG=PITERG+PITER(I)*F(IL)
    UITERG=UITERG+UITER(I)*F(IL)
    1000 CONTINUE
C
C.....SET VALUES FOR DENSITY AND VISCOSITY
C.....RHOG = FUNCTION(UITER)
    RHOG=RHOWO+DRWDU* (UITERG-URHOWO)
C....VISCG = FUNCTION(UITER)
C VISCOSITY IN UNITS OF VISCO*(KG/(M*SEC))
    IF (ME) 1300,1300,1200
    1200 VISCG=VISC0*239.4D-07*(10.D0**(248.37D0/(UITERG+133.15D0)))
        GOTO 1400
C.....FOR SOLUTE TRANSPORT... VISCG IS TAKEN TO BE CONSTANT
    1300 VISCG=VISC0
    1400 CONTINUE
C
C.....SET UNSATURATED FLOW PARAMETERS SWG AND RELKG
        IF (IUNSAT-2) 1600,1500,1600
    1500 IF(PITERG) 1550,1600,1600
    1550 CALL UNSAT(SWG,DSWDPG,RELKG,PITERG)
        GOTO 1700
    1600 SWG=1.0D0
        RELKG=1. OD0
    1700 CONTINUE
C
C.....CALCULATE CONSISTENT FLUID VELOCITIES WITH RESPECT TO GLOBAL
C COORDINATES, VXG, VYG, AND VGMAG, AT THIS LOCATION, (XLOC,YLOC)
    DENOM=1.D0/(PORG*SWG*VISCG)
    PGX=DPDXG-RGXGM1
    PGY=DPDYG-RGYGM1
```

```
C.....zERO OUT RANDOM BOUYANT DRIVING FORCES DUE TO DIFFERENCING
C..... NUMBERS PAST PRECISION LIMIT
C..... MINIMUM DRIVING FORCE IS 1.D-10 OF PRESSURE GRADIENT
C..... (THIS VALUE MAY BE CHANGED DEPENDING ON MACHINE PRECISION)
        IF(DPDXG) 1720,1730,1720
    1720 IF (DABS (PGX/DPDXG)-1.0D-10) 1725,1725,1730
    1725 PGX=0.0D0
    1730 IF(DPDYG) 1750,1760,1750
    1750 IF (DABS (PGY/DPDYG)-1.0D-10) 1755,1755,1760
    1755 PGY=0.0D0
    1760 VXG=-DENOM*(PERMXX(L)*PGX+PERMXY(L)*PGY)*RELKG
        VYG=-DENOM* (PERMYX (L)*PGX+PERMYY (L)*PGY)*RELKG
        VXG2=VXG*VXG
        VYG2=VYG*VYG
        VGMAG=DSQRT(VXG2+VYG2)
C
C.....AT THIS POINT IN LOCAL COORDINATES, (XLOC,YLOC),
C CALCULATE ASYMMETRIC WEIGHTING FUNCTIONS, W(I),
C AND SPACE DERIVATIVES, DWDXG(I) AND DWDYG(I).
C
C.....ASYMMETRIC FUNCTIONS SIMPLIFY WHEN UP=0.0
    IF(UP.GT.1.OD-06.AND.NOUMAT.EQ.0) GOTO 1790
    DO 1780 I=1,4
    W(I) =F (I)
    DWDXG(I)=DFDXG (I)
    DWDYG(I)=DFDYG(I)
    1780 CONTINUE
C.....RETURN WHEN ONLY SYMMETRIC WEIGHTING FUNCTIONS ARE USED
        RETURN
C
C.....CALCULATE FLUID VELOCITIES WITH RESPECT TO LOCAL COORDINATES,
C..... VXL, VYL, AND VLMAG, AT THIS LOCATION, (XLOC,YLOC).
    1790 VXL=CIJ11*VXG+CIJ21*VYG
        VYL=CIJ12*VXG+CIJ22*VYG
        VLMAG=DSQRT (VXL*VXL+VYL*VYL)
C
        AA=0.0D0
        BB=0.0D0
        IF (VLMAG) 1900,1900,1800
    1800 AA=UP*VXL/VLMAG
    BB=UP*VYL/VLMAG
C
    1900 XIXI=.750D0*AA*XF1*XF2
        YIYI=.750D0*BB*YF1*YF2
        DO 2000 I=1,4
        AFX(I)=.50D0*FX(I)+XIIX(I)*XIXI
    2000 AFY(I)=.50D0*FY(I)+YIIY(I)*YIYI
C
C....CALCULATE ASYMMETRIC WEIGHTING FUNCTION, W.
    DO 3000 I=1,4
    3000 W(I)=AFX(I)*AFY(I)
C
    THAAX=0.50D0-1.50D0*AA*XLOC
    THBBY=0.50D0-1.50D0*BB*YLOC
    DO 4000 I=1,4
    XDW(I)=XIIX(I)*THAAX
    4000 YDW(I)=YIIY(I)*THBBY
C
C.....CALCULATE DERIVATIVES WITH RESPECT TO LOCAL COORDINATES.
    DO 5000 I=1,4
    DWDXL (I) =XDW (I) *AFY (I)
```



```
        IMPLICIT DOUBLE PRECISION (A-H,O-Z) S100....
        COMMON/DIMS/ NN,NE,NIN,IS,JT,NBIP,NBIS,NPT (9) ,NPBC,NUBC,
        1 NSOP, NSOU,NBCN
        COMMON/CNTRL1/ GNU,UP,DTMULT,DTMAX,ME,ISSFLO,ISSTRA,ITCYC,
        1 NPCYC, NUCYC,NPRINT, IREAD, ISTORE, NOUMAT, IUNSAT, ITIME
        DIMENSION BFLOWE (4,4),DFLOWE (4), BTRANE (4,4),DTRANE (4,4),VOLE (4)
        DIMENSION VOL (NN), PMAT (NN,NBIP), PVEC (NN), UMAT (NN, NBIS), UVEC (NN)
        DIMENSION CWRK (NN)
        DIMENSION IN(NIN)
C
    N1=(L-1) * 4+1
    N4=N1+3
C
C.....ADD RESULTS OF INTEGRATIONS OVER ELEMENT L TO GLOBAL
C P-MATRIX AND P-VECTOR
        IF(ML-1) 50,50,150
    50 IE=0
C (NBHALF=1 FOR PRESSURE EQN)
        NBHALF=1
            NBWR=JT+2
        DO 100 II=N1,N4
C ZERO OUT WORK ARRAY
            DO 60 IR=1,NBWR
    60 CWRK (IR) =0.0
        IE=IE+1
        IB=IN(II)
        VOL(IB)=VOL(IB)+VOLE (IE)
        PVEC (IB) = PVEC (IB) +DFLOWE (IE)
        JE=0
        DO 110 JJ=N1,N4
        JE=JE+1
C SAVE ONLY SYMMETRIC HALF IN CONDENSED FORM
        JB=IN(JJ) -IB+NBHALF
            IF(JB.LT.1) GO TO 110
            CWRK (JB) =CWRK (JB) +BFLOWE (IE , JE)
    110 CONTINUE
C ADD TERMS FROM WORK ARRAY TO GLOBAL MATRIX
    DO 120 IR=1,NBIP
    NR=NPT(IR+4)
    120 PMAT (IB, IR) = PMAT (IB, IR) +CWRK (NR)
    100 CONTINUE
        IF (ML-1) 150, 300,150
C
C.....ADD RESULTS OF INTEGRATIONS OVER ELEMENT L TO GLOBAL
C U-MATRIX
    150 IF(NOUMAT.EQ.1) GOTO 300
        IE=0
C (NBHALF=JT+2 FOR TRANSPORT EQN)
        NBHALF=JT+2
        NBWR=2*JT+3
    DO 200 II=N1,N4
C ZERO OUT WORK ARRAY
        DO 70 IR=1,NBWR
    70 CWRK (IR) =0.0
        IE=IE+1
        IB=IN(II)
C.....POSITION FOR ADDITION TO U-VECTOR
C UVEC (IB) =UVEC (IB) + (( ))
    JE=0
    DO 210 JJ=N1,N4
    JE=JE+1
```

S100....
S110NEW
S120....
S130NEW
S140NEW
S150....
S160NEW
NEW
S170....
S180....
S190....
S200....
S210....
S220....
S230...
S240....
S250....
NEW
NEW
NEW
S260....
NEW
NEW
NEW
S270....
S280...
S290....
S300....
S310....
S320....
S330....
NEW
S340....
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
S360....
S370....
S380....
S390....
S400...
S410....
NEW
NEW
NEW
S420....
NEW
NEW
NEW
S430....
S440....
S450....
S460....
S470....
S480....
S490....

```
        JB=IN(JJ)-IB+NBHALF S500....
C
    SAVE FULL ROW IN CONDENSED FORM NEW
        JB=IN (JJ) -IB+NBHALF NEW
        CWRK (JB) =CWRK (JB) +DTRANE (IE, JE) +BTRANE (IE, JE) NEW
```



```
C
    ADD TERMS FROM WORK ARRAY TO GLOBAL MATRIX NEW
        DO 220 IR=1,NBIS NEW
        NR=NBHALF+NPT(IR) -1 NEW
    220 UMAT (IB,IR) =UMAT (IB,IR) +CWRK (NR) NEW
    200 CONTINUE NEW
C
    300 CONTINUE
        RETURN
        END
        SUBROUTINE N O D A L B
            SUTRA - VERSION 1284-2D T10.....
T20.....
C
C *** PURPOSE
T30.....
C *** (1) TO CARRY OUT ALL CELLWISE CALCULATIONS AND TO ADD CELLWISE
T40.....
T50.....
C *** TERMS TO THE GLOBAL BANDED MATRIX AND GLOBAL VECTOR FOR
C *** BOTH FLOW AND TRANSPORT EQUATIONS.
T60.....
C *** (2) TO ADD FLUID SOURCE AND SOLUTE MASS OR ENERGY SOURCE TERMS
T70.....
T80....
T90.....
    SUBROUTINE NODALB(ML,VOL,PMAT,PVEC,UMAT,UVEC,PITER,UITER,PM1,UM1, T100....
    1 UM2,POR,QIN,UIN,QUIN,CS1,CS2,CS3,SL,SR,SW,DSWDP,RHO,SOP) T110....
        IMPLICIT DOUBLE PRECISION (A-H,O-Z) T120....
        COMMON/DIMS/ NN,NE,NIN,IS,JT,NBIP,NBIS,NPT(9),NPBC,NUBC, T130NEW
            1 NSOP,NSOU,NBCN T140....
        COMMON/TIME/ DELT,TSEC,TMIN,THOUR,TDAY,TWEEK,TMONTH,TYEAR, T150....
            1 TMAX,DELTP,DELTU,DLTPM1,DLTUM1,IT,ITMAX T160....
        COMMON/PARAMS/ COMPFL, COMPMA,DRWDU,CW,CS,RHOS,DECAY,SIGMAW,SIGMAS,T170....
            1 RHOW0,URHOW0,VISC0,PRODF1,PRODS1,PRODF0,PRODS0,CHI1,CHI2 T180....
        COMMON/SATPAR/ PCENT,SWRES,PCRES,SSLOPE,SINCPT T190....
        COMMON/CNTRL1/ GNU,UP,DTMULT,DTMAX,ME,ISSFLO,ISSTRA,ITCYC, T2OONEW
            1 NPCYC,NUCYC, NPRINT, IREAD, ISTORE, NOUMAT, IUNSAT, ITIME T210NEW
            DIMENSION VOL (NN), PMAT (NN,NBIP),PVEC (NN),UMAT (NN,NBIS),UVEC (NN) T22ONEW
            DMENSION PITER(NN),UITER(NN), PM1 (NN),UM1 (NN),
        1 POR (NN),QIN (NN),UIN (NN),QUIN (NN),CS1 (NN),CS2 (NN),CS3 (NN),
            2 SL (NN),SR (NN),SW (NN),RHO (NN) ,DSWDP (NN), SOP (NN)
C
C
    IF(IUNSAT.NE.0) IUNSAT=1
C
C.....DO NOT UPDATE NODAL PARAMETERS ON A TIME STEP WHEN ONLY U IS
C SOLVED FOR BY BACK SUBSTITUTION (IE: WHEN NOUMAT=1)
        IF (NOUMAT) 50,50,200
C.....SET UNSATURATED FLOW PARAMETERS AT NODES, SW(I) AND DSWDP (I)
    50 DO 120 I=1,NN
        IF(IUNSAT-1) 120,100,120
    100 IF(PITER(I)) 110,120,120
    110 CALL UNSAT(SW(I),DSWDP(I),RELK,PITER(I))
    120 CONTINUE
C.....SET FLUID DENSITY AT NODES, RHO(I)
C RHO = F (UITER(I))
        DO 150 I=1,NN
    150 RHO(I)=RHOW0+DRWDU* (UITER(I) -URHOW0)
    200 CONTINUE
C
    DO 1000 I=1,NN
```

```
        SWRHON=SW(I)*RHO(I) T460....
C
        IF(ML-1) 220,220,230
C
C.....CALCULATE CELLWISE TERMS FOR P EQUATION
C.....FOR STEADY-STATE FLOW, ISSFLO=2; FOR TRANSIENT FLOW, ISSFLO=0
    220 AFLN=(1-ISSFLO/2)*
        1 (SWRHON*SOP (I) +POR (I)*RHO (I)*DSWDP (I))*VOL (I) /DELTP
        CFLN=POR(I) *SW(I) *DRWDU*VOL (I)
        DUDT=(1-ISSFLO/2) * (UM1 (I) -UM2 (I)) /DLTUM1
        CFLN=CFLN*DUDT
C.....ADD CELLWISE TERMS AND FLUID SOURCES OR FLUXES TO P EQUATION
C LOAD TERMS ON DIAGONAL (NBHALF=1 FOR PRESSURE EQN)
            NBHALF=1
        PMAT(I,NBHALF) = PMAT(I,NBHALF) + AFLN
        PVEC(I) = PVEC(I) - CFLN + AFLN*PM1 (I) + QIN(I)
C
        IF(ML-1) 230,1000,230
C
C.....CALCULATE CELLWISE TERMS FOR U-EQUATION
    230 EPRS=(1.D0-POR(I))*RHOS
        ATRN=(1-ISSTRA)* (POR (I) *SWRHON*CW+EPRS*CS1 (I)) *VOL (I) /DELTU
        GTRN=POR(I) *SWRHON*PRODF1*VOL (I)
        GSV=EPRS*PRODS1*VOL (I)
        GSLTRN=GSV*SL (I)
        GSRTRN=GSV*SR (I)
        ETRN=(POR (I)*SWRHON*PRODF0+EPRS*PRODS0)*VOL (I)
C.....CALCULATE SOURCES OF SOLUTE OR ENERGY CONTAINED IN
C SOURCES OF FLUID (ZERO CONTRIBUTION FOR OUTFLOWING FLUID)
        QUR=0.0D O
        QUL=0.0D0
        IF(QIN(I)) 360,360,340
    340 QUL=-CW*QIN(I)
        QUR=-QUL*UIN (I)
C.....ADD CELLWISE TERMS, SOURCES OF SOLUTE OR ENERGY IN FLUID INFLOWS,
C AND PURE SOURCES OR FLUXES OF SOLUTE OR ENERGY TO U-EQUATION
    360 IF (NOUMAT) 370,370,380
C LOAD TERMS ON DIAGONAL (NBHALF=5 FOR TRANSPORT EQN)
    370 NBHALF=5
        UMAT(I,NBHALF) = UMAT(I,NBHALF) + ATRN - GTRN - GSLTRN - QUL
        380 UVEC(I) = UVEC(I) + ATRN*UM1(I) + ETRN + GSRTRN + QUR + QUIN(I)
C
    1000 CONTINUE
C
        RETURN
        END
        C SUBROUTINE B C B
C
C *** PURPOSE :
C *** TO IMPLEMENT SPECIFIED PRESSURE AND SPECIFIED TEMPERATURE OR
C *** CONCENTRATION CONDITIONS BY MODIFYING THE GLOBAL FLOW AND
C *** TRANSPORT MATRIX EQUATIONS.
C
    SUBROUTINE BCB (ML,PMAT,PVEC,UMAT,UVEC,IPBC,PBC,IUBC,UBC,QPLITR)
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    COMMON/DIMS/ NN,NE,NIN,IS,JT,NBIP,NBIS,NPT (9) ,NPBC,NUBC,
    1 NSOP,NSOU,NBCN
    COMMON/TIME/ DELT,TSEC,TMIN,THOUR,TDAY,TWEEK, TMONTH,TYEAR,
    1 TMAX,DELTP,DELTU,DLTPM1,DLTUM1,IT,ITMAX
        U130....
        COMMON/PARAMS/ COMPFL,COMPMA,DRWDU,CW,CS,RHOS,DECAY,SIGMAW,SIGMAS,U140....
    1 RHOW0,URHOW0,VISC0,PRODF1,PRODS1,PRODF0,PRODS0,CHI1,CHI2 U150....
```

```
    COMMON/CNTRL1/ GNU,UP,DTMULT,DTMAX,ME,ISSFLO,ISSTRA,ITCYC, U160NEW
        1 NPCYC, NUCYC,NPRINT, IREAD, ISTORE,NOUMAT, IUNSAT, ITIME U170NEW
    DIMENSION PMAT (NN, NBIP), PVEC (NN), UMAT (NN, NBIS), UVEC (NN), U180NEW
    1 IPBC (NBCN), PBC (NBCN),IUBC (NBCN),UBC (NBCN), QPLITR (NBCN)
C
C
    IF(NPBC.EQ.O) GOTO 1050
C....SPECIFIED P BOUNDARY CONDITIONS
    DO 1000 IP=1,NPBC
    I=IABS (IPBC(IP))
C
    IF(ML-1) 100,100,200
C.....MODIFY EQUATION FOR P BY ADDING FLUID SOURCE AT SPECIFIED
C PRESSURE NODE
    100 GINL=-GNU
    GINR=GNU*PBC (IP)
C LOAD TERMS ON DIAGONAL (NBHALF=1 FOR PRESSURE EQN)
        NBHALF=1
    PMAT(I,NBHALF) =PMAT (I,NBHALF) -GINL
    PVEC (I) = PVEC (I) +GINR
C
    IF(ML-1) 200,1000,200
C.....MODIFY EQUATION FOR U BY ADDING U SOURCE WHEN FLUID FLOWS IN
C AT SPECIFIED PRESSURE NODE
    200 GUR=0.0D0
    GUL=0.0D0
    IF(QPLITR(IP)) 360,360,340
    340 GUL=-CW*QPLITR(IP)
        GUR=-GUL *UBC (IP)
    360 IF (NOUMAT) 370,370,380
C LOAD TERMS ON DIAGONAL (NBHALF=5 FOR TRANSPORT EQN)
    370 NBHALF=5
    UMAT (I,NBHALF) =UMAT (I NBHALF) -GUL
    380 UVEC (I) = UVEC (I) +GUR
    1000 CONTINUE
C
C
    1050 IF (ML-1) 1100,3000,1100
C.....SPECIFIED U BOUNDARY CONDITIONS
C MODIFY U EQUATION AT SPECIFIED U NODE TO READ: U = UBC
    1100 IF(NUBC.EQ.O) GOTO 3000
        DO 2000 IU=1,NUBC
        IUP=IU+NPBC
        I=IABS (IUBC (IUP))
        IF (NOUMAT) 1200,1200,2000
    1200 DO 1500 JB=1,NBIS
    1500 UMAT (I,JB)=0.0D0
C LOAD TERMS ON DIAGONAL (NBHALF=5 FOR TRANSPORT EQN)
            NBHALF=5
        UMAT (I,NBHALF)=1.0D0
    2000 UVEC (I)=UBC (IUP)
C
    3000 CONTINUE
C
C
    RETURN
    END
C SUBROUTINE B U D D G E T
C
C *** PURPOSE :
C *** TO CALCULATE AND OUTPUT FLUID MASS AND SOLUTE MASS OR
```

```
C *** ENERGY BUDGETS.
C
    SUBROUTINE BUDGET (ML,IBCT,VOL,SW,DSWDP,RHO,SOP,QIN,PVEC,PM1,
    1 PBC,QPLITR,IPBC,IQSOP,POR,UVEC,UM1,UM2,UIN,QUIN, IQSOU, UBC,
    2 CS1,CS2,CS3,SL,SR)
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    CHARACTER*10 ADSMOD
    COMMON/FUNITS/ K00,K0,K1,K2,K3,K4,K5,K6,K7,K8
    COMMON/MODSOR/ ADSMOD
    COMMON/DIMS/ NN,NE,NIN,IS,JT,NBIP,NBIS,NPT(9),NPBC,NUBC, X130NEW
    1 NSOP,NSOU,NBCN
    COMMON/TIME/ DELT,TSEC,TMIN,THOUR,TDAY,TWEEK,TMONTH,TYEAR,
1 TMAX,DELTP,DELTU,DLTPM1,DLTUM1,IT,ITMAX X160....
    COMMON/PARAMS/ COMPFL,COMPMA,DRWDU,CW,CS,RHOS,DECAY,SIGMAW,SIGMAS,X170....
    1 RHOW0,URHOW0,VISC0,PRODF1,PRODS1,PRODF0,PRODS0,CHI1,CHI2
    COMMON/CNTRL1/ GNU,UP,DTMULT,DTMAX,ME,ISSFLO,ISSTRA,ITCYC,
    1 NPCYC, NUCYC, NPRINT, IREAD,ISTORE,NOUMAT,IUNSAT ,ITIME X2OONEW
    CHARACTER*13 UNAME (2)
    DIMENSION QIN(NN),UIN(NN),IQSOP (NSOP),QUIN(NN),IQSOU (NSOU)
    DIMENSION IPBC (NBCN), UBC (NBCN), QPLITR (NBCN), PBC (NBCN)
    DIMENSION POR(NN),VOL (NN), PVEC (NN),UVEC (NN), SW (NN),DSWDP (NN),
    1 RHO (NN), SOP (NN), PM1 (NN), UM1 (NN), UM2 (NN),
    2 CS1 (NN), CS2 (NN), CS3 (NN),SL (NN),SR(NN)
    DATA UNAME (1)/'CONCENTRATION'/,UNAME (2)/' TEMPERATURE '/
C
C
        MN=2
    IF(IUNSAT.NE.0) IUNSAT=1
    IF(ME.EQ.-1) MN=1
    WRITE (K3,10)
    10 FORMAT(1H1)
C.....SET UNSATURATED FLOW PARAMETERS, SW(I) AND DSWDP(I)
        IF(IUNSAT-1) 40,20,40
    20 DO 30 I=1,NN
        IF (PVEC(I)) 25,27,27
    25 CALL UNSAT(SW(I),DSWDP(I),RELK,PVEC(I))
        GOTO 30
    27 SW (I)=1.0D0
        DSWDP (I) =0.0D0
    30 CONTINUE
C
C.....CALCULATE COMPONENTS OF FLUID MASS BUDGET
    40 IF (ML-1) 50,50,1000
    5 0 ~ C O N T I N U E ~
        STPTOT=0.DO
        STUTOT=0.DO
        QINTOT=0.DO
        DO 100 I=1,NN
        STPTOT=STPTOT+(1-ISSFLO/2)*RHO(I)*VOL (I) *
        1 (SW (I)*SOP (I) +POR (I)*DSWDP (I))*(PVEC (I) -PM1 (I))/DELTP
            STUTOT=STUTOT+(1-ISSFLO/2)*POR(I)*SW(I) *DRWDU*VOL (I)*
        1 (UM1 (I)-UM2 (I))/DLTUM1
        QINTOT=QINTOT+QIN(I)
    100 CONTINUE
C
        QPLTOT=0.DO
        DO 200 IP=1,NPBC
        I=IABS (IPBC (IP))
        QPLITR(IP)=GNU*(PBC (IP) -PVEC (I))
        QPLTOT=QPLTOT+QPLITR(IP)
    200 CONTINUE
    x50.....
    x60.....
    X70.....
    X80.....
    X90.....
    X100....
    X110....
MODIFIED
X120...
X140....
X150....
X180....
    COMMON/CNTRL1/ GNU,UP,DTMULT,DTMAX,ME,ISSFLO,ISSTRA,ITCYC, X190NEW
X200NEW
X210....
X220....
X230....
X240....
X250....
x260....
X270....
X280....
X290....
X300...
X310....
X320....
X330....
X340....
X340\ldots
X360....
X370....
X380....
X390...
X400....
X400....
X410....
X420....
X430....
X430....
X440....
X450....
X460\ldots
X470....
X480....
X490\ldots...
X500....
X510....
X520....
X530....
X540....
X550....
X560....
X570....
X580....
X590....
X600....
X610....
X620....
X630....
X640....
```

```
C
C.....OUTPUT FLUID MASS BUDGET
    WRITE (K3, 300) IT,STPTOT,STUTOT,UNAME (MN),QINTOT,QPLTOT X670...
    300 FORMAT (//11X,'F L U I D M A S S B U D G E T AFTER TIME', X680....
    1 ' STEP ',I5,', IN (MASS/SECOND)'///11X,1PD15.7,5X, X690....
        2 'RATE OF CHANGE IN TOTAL STORED FLUID DUE TO PRESSURE CHANGE', X700....
        ', INCREASE (+)/DECREASE (-)',/11X,1PD15.7,5X, X710....
        'RATE OF CHANGE IN TOTAL STORED FLUID DUE TO ',A13,' CHANGE',
        ', INCREASE (+)/DECREASE (-)',
        /11X,1PD15.7,5X,'TOTAL OF FLUID SOURCES AND SINKS, ,, X740..
        'NET INFLOW(+)/NET OUTFLOW(-)'/11X,1PD15.7,5X,
        'TOTAL OF FLUID FLOWS AT POINTS OF SPECIFIED PRESSURE, ',
        'NET INFLOW(+)/NET OUTFLOW(-)')
C
    IF(IBCT.EQ.4) GOTO 600
    NSOPI=NSOP-1
    INEGCT=0
        DO 500 IQP=1,NSOPI
        I=IQSOP (IQP)
        IF(I) 325,500,500
    325 INEGCT=INEGCT+1
        IF(INEGCT.EQ.1) WRITE(K3,350)
    350 FORMAT (///22X,'TIME-DEPENDENT FLUID SOURCES OR SINKS'//22X,
        1 ' NODE',5X,'INFLOW (+)/OUTFLOW(-)'/37X,' (MASS/SECOND)'//)
        WRITE(K3,450) -I,QIN(-I)
    450 FORMAT (22X,I5,10X,1PD15.7)
    500 CONTINUE
C
    600 IF(NPBC.EQ.0) GOTO 800
        WRITE (K3,650)
    X650....
        X720....
        X730....
        X740....
        X750....
    X760....
    x770....
x780....
X790....
X800....
x810....
X820....
X830....
x840\ldots
X850....
X860....
X860....
X870....
X880....
X890....
X900....
X910....
X920....
X930....
X940....
    650 FORMAT(///22X,'FLUID SOURCES OR SINKS DUE TO SPECIFIED PRESSURES',X950....
        1 //22X,' NODE',5X,'INFLOW(+)/OUTFLOW(-)'/37X,' (MASS/SECOND)'/)X960....
        DO }700\textrm{IP}=1,NPBC X970\ldots..
        I=IABS (IPBC(IP))
        WRITE(K3,450) I,QPLITR(IP) X990....
    700 CONTINUE
X1000...
C
C.....CALCULATE COMPONENTS OF ENERGY OR SOLUTE MASS BUDGET
X1010...
X1020...
    800 IF (ML-1) 1000,4500,1000 X1030..
    1000 CONTINUE
        FLDTOT=0.DO
X1040...
X1050...
        SLDTOT=0.D0 X1060...
        P1FTOT=0.D0 X1070...
        P1STOT=0.D0 X1080...
        POFTOT=0.DO X1090...
        POSTOT=0.DO X1100...
        QQUTOT=0.DO X1110...
        QIUTOT=0.DO X1120...
C.....SET ADSORPTION PARAMETERS
        IF (ME.EQ.-1.AND.ADSMOD.NE.'NONE ' ')
        1 CALL ADSORB (CS1,CS2,CS3,SL,SR,UVEC) X1150...
        DO 1300 I=1,NN X1160\ldots
        ESRV=POR(I)*SW(I)*RHO (I)*VOL (I)
X1170...
        EPRSV=(1.D0-POR(I))*RHOS*VOL (I)
X1180...
        DUDT=(1-ISSTRA) * (UVEC (I) -UM1 (I))/DELTU
X1190...
        FLDTOT=FLDTOT+ESRV*CW*DUDT
X1200...
    SLDTOT=SLDTOT+EPRSV*CS1 (I)*DUDT
X1210...
    P1FTOT=P1FTOT+ESRV*PRODF1
        P1STOT=P1STOT+EPRSV*PRODS1*(SL (I) *UVEC (I) +SR (I))
X1220...
X1230...
        POFTOT=POFTOT+ESRV*PRODFO
X1240...
        POSTOT=POSTOT+EPRSV*PRODSO
X1250...
```

```
            QQUTOT=QQUTOT+QUIN(I) X1260...
            IF(QIN(I)) 1200,1200,1250
    1200 QIUTOT=QIUTOT+QIN(I)*CW*UVEC(I)
    GOTO 1300
    1250 QIUTOT=QIUTOT+QIN(I) *CW*UIN(I)
    1300 CONTINUE
C
    QPUTOT=0.DO
    DO 1500 IP=1,NPBC
    IF (QPLITR(IP)) 1400,1400,1450
    1400 I=IABS(IPBC(IP))
    QPUTOT=QPUTOT+QPLITR(IP) *CW*UVEC (I)
    GOTO 1500
    1450 QPUTOT=QPUTOT+QPLITR(IP)*CW*UBC (IP)
    1500 CONTINUE
C
    IF (ME) 1550,1550,1615
C
C.....OUTPUT SOLUTE MASS BUDGET
    1550 WRITE(K3,1600) IT,FLDTOT,SLDTOT,P1FTOT,P1STOT,P0FTOT,P0STOT,
            1 QIUTOT,QPUTOT,QQUTOT
    1600 FORMAT(//11X,'S O L U T E B U D G E T AFTER TIME STEP ',I5,X1470...
        ', IN (SOLUTE MASS/SECOND)'///11X,1PD15.7,5X,'NET RATE OF ', X1480...
        'INCREASE (+)/DECREASE (-) OF SOLUTE'/11X,1PD15.7,5X, X1490..
        'NET RATE OF INCREASE(+)/DECREASE(-) OF ADSORBATE'/11X,1PD15.7,X1500...
        5X,'NET FIRST-ORDER PRODUCTION(+)/DECAY(-) OF SOLUTE'/11X, X1510...
        1PD15.7,5X,'NET FIRST-ORDER PRODUCTION(+)/DECAY(-) OF ', X1520..
        'ADSORBATE'/11X,1PD15.7,5X,'NET ZERO-ORDER PRODUCTION(+)/', X1530...
        'DECAY(-) OF SOLUTE'/11X,1PD15.7,5X,'NET ZERO-ORDER ', X1540...
        'PRODUCTION(+)/DECAY(-) OF ADSORBATE'/11X,1PD15.7,5X, X1550...
        'NET GAIN(+)/LOSS(-) OF SOLUTE THROUGH FLUID SOURCES AND SINKS'X1560...
        /11X,1PD15.7,5X,'NET GAIN(+)/LOSS(-) OF SOLUTE THROUGH ', X1570...
        'INFLOWS OR OUTFLOWS AT POINTS OF SPECIFIED PRESSURE' X1580...
        /11X,1PD15.7,5X,'NET GAIN(+)/LOSS (-) OF SOLUTE THROUGH ', X1590...
        'SOLUTE SOURCES AND SINKS')
    X1600...
    GOTO 1645
C
C.....OUTPUT ENERGY BUDGET X1630...
    1615 WRITE(K3,1635) IT,FLDTOT,SLDTOT,POFTOT,P0STOT,QIUTOT,QPUTOT,QQUTOTX1640...
    1635 FORMAT(//11X,'E N E R G Y B U D G E T AFTER TIME STEP ',I5,X1650...
                ', IN (ENERGY/SECOND)'///11X,1PD15.7,5X,'NET RATE OF ', X1660...
        'INCREASE (+) /DECREASE (-) OF ENERGY IN FLUID'/11X,1PD15.7,5X, X1670...
        'NET RATE OF INCREASE (+)/DECREASE(-) OF ENERGY IN SOLID GRAINS'X1680...
        /11X,1PD15.7,5X,'NET ZERO-ORDER PRODUCTION(+)/LOSS(-) OF ', X1690...
        'ENERGY IN FLUID'/11X,1PD15.7,5X,'NET ZERO-ORDER ', X1700...
        'PRODUCTION(+)/LOSS(-) OF ENERGY IN SOLID GRAINS' X1710..
        /11X,1PD15.7,5X,'NET GAIN(+)/LOSS(-) OF ENERGY THROUGH FLUID ',X1720...
        'SOURCES AND SINKS'/11X,1PD15.7,5X,'NET GAIN(+)/LOSS(-) OF ', X1730...
        'ENERGY THROUGH INFLOWS OR OUTFLOWS AT POINTS OF SPECIFIED ', X1740...
        'PRESSURE' /11X,1PD15.7,5X,'NET GAIN(+)/LOSS(-) OF ENERGY ', X1750...
        'THROUGH ENERGY SOURCES AND SINKS')
C
    1645 NSOPI=NSOP-1
            IF(NSOPI.EQ.O) GOTO 2000
            IF (ME) 1649,1649,1659
    1649 WRITE (K3,1650)
    1650 FORMAT(///22X,'SOLUTE SOURCES OR SINKS AT FLUID SOURCES AND ',
            1 'SINKS'//22X,' NODE',8X,'SOURCE(+)/SINK(-)'/32X, X1830..
            2 '(SOLUTE MASS/SECOND)'/)
            GOTO 1680
    X1760...
    X1770..
    x1780...
    X1790..
    X1800...
    x1810..
    X1820...
X1840...
X1850...
    1659 WRITE (K3,1660)
X1860...
```

```
    1660 FORMAT (///22X,'ENERGY SOURCES OR SINKS AT FLUID SOURCES AND ', X1870...
    1 'SINKS'//22X,' NODE', 8X,'SOURCE(+)/SINK(-)'/37X,
    2 '(ENERGY/SECOND)'/)
    1680 DO 1900 IQP=1,NSOPI
        I=IABS (IQSOP (IQP))
        IF(QIN(I)) 1700,1700,1750
    1700 QU=QIN(I)*CW*UVEC(I)
        GOTO 1800
    1750 QU=QIN(I)*CW*UIN(I)
    1800 WRITE(K3,450) I,QU
    1900 CONTINUE
C
    2000 IF(NPBC.EQ.0) GOTO 4500
        IF (ME) 2090,2090,2150
    2090 WRITE(K3,2100)
    2100 FORMAT(///22X,'SOLUTE SOURCES OR SINKS DUE TO FLUID INFLOWS OR ', X2020...
        1 'OUTFLOWS AT POINTS OF SPECIFIED PRESSURE'//22X,' NODE',8X, X2030...
        2 'SOURCE (+)/SINK (-)'/32X,'(SOLUTE MASS/SECOND)' /)
        GOTO 2190
    2150 WRITE (K3,2160)
    2160 FORMAT(///22X,'ENERGY SOURCES OR SINKS DUE TO FLUID INFLOWS OR ', X2
        , , X2070..
        1 'OUTFLOWS AT POINTS OF SPECIFIED PRESSURE'//22X,' NODE',8X, X2080...
        2 'SOURCE (+)/SINK (-)'/37X,'(ENERGY/SECOND)'/) X2090..
    2190 DO 2400 IP=1,NPBC
        I=IABS (IPBC(IP))
        IF(QPLITR(IP)) 2200,2200,2250
    2200 QPU=QPLITR(IP)*CW*UVEC (I)
        GOTO 2300
    2250 QPU=QPLITR(IP)*CW*UBC(IP)
    2300 WRITE (K3,450) I,QPU
    2400 CONTINUE
C
        IF(IBCT.EQ.4) GOTO 4500
        NSOUI=NSOU-1
        INEGCT=0
        DO 3500 IQU=1,NSOUI
        I=IQSOU (IQU)
        IF(I) 3400,3500,3500
    3400 INEGCT=INEGCT+1
        IF (ME) 3450,3450,3460
    3450 IF(INEGCT.EQ.1) WRITE (K3,3455)
    3455 FORMAT (///22X,' TIME-DEPENDENT SOLUTE SOURCES AND SINKS'//22X,
        1 ' NODE',10X,'GAIN(+)/LOSS(-)'/30X,' (SOLUTE MASS/SECOND)'//)
        GOTO 3475
    3460 IF(INEGCT.EQ.1) WRITE(K3,3465)
    3465 FORMAT (///22X,'TIME-DEPENDENT ENERGY SOURCES AND SINKS'//22X,
        1 ' NODE',10X,'GAIN(+)/LOSS(-)'/35X,' (ENERGY/SECOND)'//)
    3475 CONTINUE
        WRITE (K3, 3490) -I,QUIN(-I)
    3490 FORMAT (22X,I5,10X,1PD15.7)
    3500 CONTINUE
C
C
    4500 CONTINUE
C
        RETURN
        END
        SUBROUTINE S T O R E
C
C *** PURPOSE :
C *** TO STORE RESULTS THAT MAY LATER BE USED TO RE-START
```

```
C *** THE SIMULATION.
C
        SUBROUTINE STORE (PVEC,UVEC,PM1,UM1,CS1,RCIT,SW,PBC)
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    COMMON/FUNITS/ K00,K0,K1,K2,K3,K4,K5,K6,K7,K8
        COMMON/DIMS/ NN,NE,NIN,IS,JT,NBIP,NBIS,NPT (9) ,NPBC,NUBC,
        1 NSOP,NSOU,NBCN
        COMMON/TIME/ DELT,TSEC,TMIN,THOUR,TDAY,TWEEK,TMONTH,TYEAR,
    1 TMAX,DELTP,DELTU,DLTPM1,DLTUM1,IT,ITMAX
        DIMENSION PVEC (NN),UVEC (NN),PM1 (NN),UM1 (NN),CS1 (NN),RCIT (NN),
        1 SW (NN), PBC (NBCN)
C
C.....REWIND UNIT-66 FOR WRITING RESULTS OF CURRENT TIME STEP
        REWIND (66)
C
C.....STORE TIME INFORMATION
        WRITE(K4,100) TSEC,DELTP,DELTU
    100 FORMAT(4D20.10)
C
C.....STORE SOLUTION
    WRITE(K4,110) (PVEC(I),I=1,NN)
        WRITE (K4,110) (UVEC (I),I=1,NN)
        WRITE(K4,110) (PM1 (I), I=1,NN)
        WRITE(K4,110) (UM1 (I), I=1,NN)
        WRITE (K4,110) (CS1 (I), I=1,NN)
        WRITE(K4,110) (RCIT(I), I=1,NN)
        WRITE(K4,110) (SW(I),I=1,NN)
        WRITE(K4,110) (PBC(IP),IP=1,NBCN)
    110 FORMAT (4(1PD20.13))
C
        ENDFILE (K4)
C
        RETURN
        END
    SUBROUTINE F O P E N
C
C
C *** PURPOSE :
C *** OPENS FILES FOR SUTRA SIMULATION.
C *** OPENS ERROR OUTPUT FILE, READS FILE NUMBERS AND NAMES,
C *** CHECKS FOR EXISTENCE OF INPUT FILES, AND WRITES ERROR MESSAGES.
C
    SUBROUTINE FOPEN (UNAME, ENAME, FNAME, IUNIT, NFILE)
    CHARACTER*80 FN, UNAME, ENAME, FNAME
    LOGICAL IS
    COMMON/FUNITS/ K00,K0,K1,K2,K3,K4,K5,K6,K7,K8
    DIMENSION FNAME (8),IUNIT (8)
c
C.....OPEN FILE UNIT CONTAINING UNIT NUMBERS AND FILE ASSIGNMENTS
    IU=KO
    FN=UNAME
    INQUIRE (FILE=UNAME , EXIST=IS)
    IF(IS) THEN
    OPEN (UNIT=IU, FILE=UNAME , STATUS=' OLD' , FORM=' FORMATTED',
    1 IOSTAT=KERR)
        ELSE
            GOTO 8000
        ENDIF
        IF(KERR.GT.O) GOTO 9000
C
C.....READ FILE CONTAINING UNIT NUMBERS AND FILE ASSIGNMENTS
        NFILE=0
        Y50.....
Y60.....
C
```

```
    100 READ (KO,*,END=200) IU
    READ (K0, 150, END=200) FN
    150 FORMAT (A80)
    NFILE=NFILE+1
    IUNIT (NFILE) =IU
    FNAME (NFILE) =FN
    GOTO 100
    200 CONTINUE
C.....CHECK FOR EXISTENCE OF INPUT FILES
C AND OPEN BOTH INPUT AND OUTPUT FILES
    DO 300 NF=1,NFILE
    IU=IUNIT (NF)
    FN=FNAME (NF)
    IF (NF.LE.2) THEN
        INQUIRE (FILE=FN, EXIST=IS)
        IF(IS) THEN
            OPEN(UNIT=IU, FILE=FN, STATUS=' OLD' ,FORM=' FORMATTED', IOSTAT=KERR)
            ELSE
                GOTO 8000
            ENDIF
        ELSE
            OPEN(UNIT=IU,FILE=FN, STATUS='UNKNOWN',FORM=' FORMATTED' ,
        1 IOSTAT=KERR)
            ENDIF
            IF(KERR.GT.O) GOTO 9000
    300 CONTINUE
    K1=IUNIT (1)
    K2=IUNIT (2)
    K3=IUNIT (3)
    K4=IUNIT (4)
    K5=IUNIT (5)
    K6=IUNIT (6)
    K7=IUNIT(7)
    K8=IUNIT (8)
    RETURN
C
C....OPEN FILE UNIT FOR ERROR MESSAGES
    8000 OPEN (UNIT=KOO,FILE=ENAME, STATUS='UNKNOWN',FORM='FORMATTED')
C.....WRITE ERROR MESSAGE AND STOP
    WRITE (KOO, 8888) FN
    8888 FORMAT('* E R R O R *'/'tHE FILE:'/A80/'DOES NOT EXIST!')
    ENDFILE (KOO)
    STOP
C
C.....OPEN FILE UNIT FOR ERROR MESSAGES
    9000 OPEN(UNIT=KOO,FILE=ENAME,STATUS='UNKNOWN',FORM='FORMATTED') Z700...MODIFIED
C.....WRITE ERROR MESSAGE AND STOP
    WRITE(KOO, 9999) IU,FN
    9999 FORMAT('* E R R O R *'/'UNIT ',I3/'ASSIGNED TO FILE:'/A80/
        1 'CANNOT BE OPENED!')
        ENDFILE (KOO)
        STOP
C
    END
```


Appendix III

Subprograms SOLVEC and LSORA Used to Solve System of Equations

```
C SUBROUTINE N E W S O L V E
C.....SUBROUTINE N E W S O L V E
C
C.....PURPOSE: SOLVE FLOW EQUATIONS USING THE INCOMPLETE
C CHOLESKY-CONJUGATE GRADIENT TECHNIQUE
C
C.....SOLVE SYSTEM OF EQUATIONS FOR FLOW
C
        SUBROUTINE SOLVEC (NBW, A, OLDH, RHS, P, R, AP , XK1, AB)
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        COMMON/FUNITS/ K00,K0,K1,K2,K3,K4,K5,K6,K7,K8
        COMMON/DIMS/ NN,NE,NIN,IS,JT,NBIP,NBIS,NPT(9) ,NPBC,NUBC,
            1 NSOP,NSOU,NBCN
        COMMON/ITERAT/ RPM, RPMAX, RUM, RUMAX,ITER, ITRMAX, IPWORS, IUWORS,
            1 ICON, ITRMX2,OMEGA, RPMX2,RUMX2
        DIMENSION A (NN,NBW), OLDH (NN),RHS (NN)
        DIMENSION P (NN),R(NN),AP (NN) ,XK1 (NN),AB (NN, 5)
C
    EPS1=RPMX2
C
C.....INITIALIZE R1 AND P1, AND STORE OLDH IN RHS FOR ITERATIVE SOLUTION
        CALL MATMLP (A,OLDH, R,NBW)
        DO 20 I=1,NN
        R(I) =RHS (I) -R (I)
        RHS (I) =OLDH (I)
20 CONTINUE
        IDC=0
        CALL SDCOMP (A, AB, R, P,NBW, IDC)
        IDC=1
        CALL SDCOMP (A,AB,R,P,NBW,IDC)
C
C.....BEGIN ITERATIVE LOOP -- SOLUTION MUST CONVERGE IN NN ITERATIONS
    NN1=NN+1
    DO 30 ITR=1,NN1
    CALL MATMLP (A, P,AP,NBW)
C
C.....FORM DOT PRODUCT OF P AND AP AND STORE IT AS LAMDA
    XLAM=0.0
    DO 110 K=1,NN
110 XLAM=XLAM+P (K) *AP (K)
        IDC=1
        CALL SDCOMP (A,AB, R, XK1,NBW,IDC)
C
C.....FORM DOT PRODUCT OF R AND XK1 AND STORE IT AS RR1
    RR1=0.0
    DO 120 K=1,NN
120 RR1=RR1+R (K)*XK1 (K)
C
C.....UPDATE H (BUT STORE IT IN RHS)
C.....UPDATE R AND XKI AND CHECK MAXIMUM ERROR
    ALPHA=RR1/XLAM
    RMAX=0.0
    DO 40 J=1,NN
    RHS (J) =RHS (J) +ALPHA*P (J)
```

```
    R(J)=R(J)-ALPHA*AP (J)
    RABS=DABS (R(J))
40 IF (RABS.GT.RMAX) RMAX=RABS
C
C.....CHECK IF METHOD HAS CONVERGED
    IF(RMAX.LT.EPS1) GOTO }7
C
C.....CHECK IF USER SPECIFIED ITERATION LIMIT IS EXCEEDED
    IF(ITR.GE.ITRMX2) GOTO 50
C
    IF(MOD(ITR,10).EQ.0) WRITE (6,533) ITR,RMAX
C
C.....UPDATE P AND GO ON TO NEXT ITERATION
        IDC=1
        CALL SDCOMP (A, AB, R, XK1,NBW, IDC)
C FORM DOT PRODUCT OF R AND XK1 AND STORE IT AS RR2
        RR2=0.0
        DO 130 K=1,NN
130 RR2=RR2+R(K)*XK1 (K)
        BETA= RR2/RR1
            DO 35 J=1,NN
            P(J) =XK1 (J) +BETA*P (J)
35 P(J)=XK
70 CONTINUE
    WRITE (K3,99) ITR
99 FORMAT (/10X,' ICCG METHOD CONVERGED IN',I5,' ITERATIONS')
    GO TO 60
    WRITE (K3,98) ITRMX2
    FORMAT(//,5X,'FAILED TO CONVERGE AFTER ',I6,' ITERATIONS'/
    1 /,5X,'PROGRAM WILL STOP')
533 FORMAT(1H ,3X,'RMAX AT ITERATION',I5,' =',1P1E15.5)
    STOP 151
60 RETURN
    END
C
C SUBROUTINE MATMLP-- WRITTEN BY E.J. WEXLER
C PURPOSE: TO MULTIPLY A VECTOR B BY A NN X NN BANDED MATRIX
C WITH ONLY THE UPPER NON-ZERO BANDS OF A STORED.
C
C
LOOP THROUGH ALL ROWS OF MATRIX A
    SUBROUTINE MATMLP (A,B,C,NBW)
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    COMMON/DIMS/ NN,NE,NIN,IS,JT,NBIP,NBIS,NPT(9) ,NPBC,NUBC,
    1 NSOP,NSOU,NBCN
        DIMENSION A (NN,NBW),B(NN),C (NN)
        DO 100 K=1,NN
        SUM=0.0
        DO 300 J=1,NBW
        NPTJ=NPT(J+4)
        IC1=NPTJ+K-1
        IC2=K-NPTJ+1
```

```
    IF(IC1.LE.NN) SUM=SUM+A (K,J) *B (IC1)
    IF (J.LT.2) GOTO 300
    IF(IC2.GT.0) SUM=SUM+A(IC2,J)*B(IC2)
```

CONTINUE C (K) =SUM

CONTINUE
RETURN
END

C
SDCOMP--MODIFIED BY E.J. WEXLER TO DO AN INCOMPLETE
CHOLESKY DECOMPOSITION OF A SYMMETRIC BANDED MATRIX SSOLVE DOES THE FOWARD AND BACKWARDS SUBSTITUTION

SUBROUTINE SDCOMP (A,AB, R,XK1,NBW, IDC)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON/FUNITS/ K00,K0,K1,K2,K3,K4, K5, K6, K7, K8
COMMON/DIMS/ NN,NE,NIN,IS, JT,NBIP,NBIS,NPT (9) ,NPBC, NUBC,
1 NSOP, NSOU, NBCN
DIMENSION A (NN, NBW) , AB (NN, 5) , R (NN) , XK1 (NN)
C
IF (IDC.GT.O) GOTO 300
C
C.....DECOMPOSE SYM. MATRIX A AND STORE IN AB

DO $100 \mathrm{~K}=1$,NN
DO $100 \mathrm{~J}=1$, NBW
NPTJ=NPT ($\mathrm{J}+4$)
IC1 $=$ NPTJ $+\mathrm{K}-1$
IF (IC1.GT.NN) GO TO 100
SUM=A (K, J)
DO $10 \mathrm{~L}=2, \mathrm{NBW}$
NPTL=NPT (L+4)
IC2 $=\mathrm{K}-\mathrm{NPTL}+1$
IF (IC2.LT.1) GO TO 10
IC3=NPTJ+NPTL-1
M=J+L-1
IF (M.GT.NBW) GO TO 10
NPTM=NPT (M+4)
IF (NPTM.NE.IC3) GO TO 10
SUM=SUM-AB (IC2, L) *AB (IC2, M)
10 CONTINUE
IF (NPTJ.EQ.1) THEN
STOP IF DIVIDING BY ZERO.
IF (SUM.LE.O.O) THEN
C WRITE (*, 120) K, SUM
C WRITE $(K 3,120) \mathrm{K}$, SUM
STOP
END IF
ADIAGN=1. /DSQRT (SUM)
AB $(K, J)=A D I A G N$
END IF
IF (NPTJ.GT.1) AB (K, J) =SUM*ADIAGN
100 CONTINUE
RETURN

```
C
C
C
    ENTRY SSOLVE
C
C.....FORWARD SUBSTITUTE FOR LOWER TRIANGLE
300 DO }80\textrm{K}=1\mathrm{ ,NN
    SUM=R (K)
        DO 60 J=2,NBW
        NPTJ=NPT (J+4)
        IC2=K-NPTJ+1
        IF (IC2.LT.1) GO TO 80
        SUM=SUM-AB (IC2,J) *XK1 (IC2)
    6 0 ~ C O N T I N U E ~
    80 XK1 (K)=SUM*AB (K,1)
C
C.....BACKWARD SUBSTITUTE FOR UPPER TRIANGLE
        DO 110 K=1,NN
        IJ=NN-K+1
        SUM=XK1 (IJ)
        DO 90 J=2,NBW
        NPTJ=NPT (J+4)
        IC1=NPTJ+IJ-1
        IF (IC1.GT.NN) GO TO 110
        90 SUM=SUM-AB(IJ,J) *XK1 (IC1)
    110 XK1 (IJ) =SUM*AB (IJ,1)
        RETURN
C
C
    120 FORMAT (1H1,5X,'**ERROR**',5X,'DIVIDE BY ZERO AT LINE ',I4,' IN DE
        1COMPOSITION ROUTINE',3X,'SUM =',1P1E13.5)
        END
C
C SUBROUTINE LSORA
C
C
C
C
C
C
C
C SOLVE SYSTEM OF EQUATIONS FOR TRANSPORT
C LINE-SUCCESSIVE OVER-RELAXATION TECHNIQUE (LSOR)
C A = FULL ASYMETRIC MATRIX
C LOAD XO INTO X AS INITIAL GUESS
        SUBROUTINE LSORA (NBW,A,B,XO,X,XP,AA)
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        COMMON/FUNITS/ K00,K0,K1,K2,K3,K4,K5,K6,K7,K8
        COMMON/DIMS/ NN,NE,NIN,IS,JT,NBIP,NBIS,NPT(9) ,NPBC,NUBC,
    1 NSOP,NSOU,NBCN
        COMMON/ITERAT/ RPM, RPMAX,RUM, RUMAX,ITER,ITRMAX, IPWORS,IUWORS,
        1
                            ICON, ITRMX2, OMEGA, RPMX2, RUMX2
        DIMENSION A (NN,NBW), B (NN),XO (NN),X (NN),AA (NN,5),XP (NN)
        EPS=RUMX2
```

```
    DO 5 I=1,NN
    XP (I) =XO (I)
5 X(I) = XP (I)
C
C.....BEGIN ITERATION LOOP
    ITER1 = 0
10 ITER1 = ITER1 + 1
C
C.....LOOP THROUGH ALL I
    DO 50 I=1,IS
    II=(I-1)*JT
C
C.....LOAD COEFFICIENTS FOR LINE INTO AA
    DO 20 J=1,JT
    JJ=II+J
    AA(J,1) =A (JJ,4)
    AA (J, 2) =A (JJ, 5)
    AA (J, 3) =A (JJ, 6)
    DD=B (JJ)
    DO 30 K=1,3
    NPTK=NPT (K+6)
    IC1=JJ+NPTK-1
    IF(IC1.LE.NN) DD=DD-A(JJ,K+6)*X(IC1)
    NPTK=NPT(K)
    IC2=JJ+NPTK-1
    IF(IC2.GE.1) DD=DD-A (JJ,K)*X(IC2)
30 CONTINUE
    AA (J,4) =DD
20 CONTINUE
C
C.....SOLVE ROW EQUATIONS USING THOMAS ALGORITHM
    CALL THOMAS (AA,JT,NN)
C
C.....LOAD NEW BLOCK VALUES INTO X ARRAY
    DO 45 J=1,JT
    JJ=II+J
    X(JJ) =XP (JJ) + OMEGA* (AA (J,5) -XP (JJ))
45 CONTINUE
50 CONTINUE
C
C.....FIND LARGEST CHANGE AND STORE NEW VALUE FOR X(I) IN XP(I)
    DIFMAX=0.0
    DO 40 I=1,NN
    DIF = DABS (X(I)-XP (I))
    IF(DIF.GT.DIFMAX) DIFMAX=DIF
    XP (I) = X (I)
40 CONTINUE
C
C.....CHECK FOR MAXIMUM NUMBER OF ITERATIONS
    IF (ITER1.GT.ITRMX2) THEN
        WRITE (K3,901)
901
        FORMAT (5X,'MAXIMUM ITERATIONS EXCEEDED, PROGRAM WILL STOP')
        STOP
    END IF
```

C
C.....CHECK FOR CONVERGENCE

IF (MOD (ITER1,10).EQ.0) WRITE (K3, 105) ITER1,DIFMAX
105 FORMAT (5X,' MAXIMUM DIFFERENCE AT ITERATION NUMBER', I5,' = ',
1 1P1E12.5)
IF (DIFMAX.GT.EPS) GO TO 10
C
C. . . . CONVERGENCE ACHIEVED

WRITE (K3,101) ITER1
101 FORMAT (10X,'LSOR METHOD CONVERGED IN',I5,' ITERATIONS' /)
C LOAD SOLUTION INTO B
DO $70 \mathrm{I}=1$, NN
$70 \quad \mathrm{~B}(\mathrm{I})=\mathrm{X}(\mathrm{I})$
RETURN
END
C
C SUBROUTINE THOMAS ALGORITHIM
C
C THOMAS ALGORITHIM FOR A TRIDIAGONAL MATRIX
C $\quad A(I, 1), A(I, 2), A(I, 3)$ ARE THE DIAGONALS OF THE MATRIX
C $A(I, 4)$ IS THE RHS, $A(I, 5)$ IS THE SOLUTION VECTOR
SUBROUTINE THOMAS (A,N,NN)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A (NN,5)
DO $10 \mathrm{I}=2, \mathrm{~N}$
$\mathbf{A}(I, 2)=A(I, 2)-A(I, 1) * A(I-1,3) / A(I-1,2)$
$A(I, 4)=A(I, 4)-A(I, 1) * A(I-1,4) / A(I-1,2)$
10 CONTINUE
C
C.....BACK SUBSTITUTE
$A(N, 5)=A(N, 4) / A(N, 2)$
$\mathrm{N} 1=\mathrm{N}-1$
DO 20 I=1,N1
$\mathrm{NI}=\mathrm{N}-\mathrm{I}$
$A(N I, 5)=(A(N I, 4)-A(N I, 3) * A(N I+1,5)) / A(N I, 2)$
20 CONTINUE
RETURN
END

Appendix IV

Comparison of Results from SUTRA and QSUTRA for Henry's (1964) Seawater
Intrustion Problem [See Voss (1984, p. 196-203) for details on problem]

Comparison of concentration profiles for Henry's (1964) problem using QSUTRA and the original SUTRA codes.
Comparison of mass flux across the model boundary for Henry's (1964)
problem using QSUTRA and the original SUTRA codes
[Fluid sources or sinks due to specified pressures]

QSUTRA			SUTRA
Node	Inflow(+)/outflow(-) (mass per second)	Node	Inflow(+)/outflow(-) (mass per second)
221	$2.0505180 \mathrm{D}-03$	221	$2.0445683 \mathrm{D}-03$
222	$3.9052976 \mathrm{D}-03$	222	$3.8945305 \mathrm{D}-03$
223	$3.6464678 \mathrm{D}-03$	223	$3.6372692 \mathrm{D}-03$
224	$3.1973050 \mathrm{D}-03$	224	$3.1903238 \mathrm{D}-03$
225	$2.4313601 \mathrm{D}-03$	225	$2.4270948 \mathrm{D}-03$
226	$1.0648645 \mathrm{D}-03$	226	$1.0642539 \mathrm{D}-03$
227	-1.8302268D-03	227	-1.8264702D-03
228	-7.0298556D-03	228	-7.0211951D-03
229	-1.5196096D-02	229	-1.5180209D-02
230	-2.8955106D-02	230	-2.8933956D-02
231	-2.9209879D-02	231	-2.9197070D-02

