CP Violation in ${B^0}_s$ mesons Results from flavor tagged analyses of ${B^0}_s \to J/\psi\, \varphi$

Joe Boudreau University of Pittsburgh For the CDF and D0 Collaborations

A very brief abstract of this talk first. The following topics will be developed:

CDF and D0 use $B_s^0 \rightarrow J/\psi \phi$ to measure CKM phases. We determine from this decay the quantity β_s .

This is in exact analogy to B factory measurement of the β , an angle of the unitarity triangle.

The standard model makes very precise predictions for both angles.

But other new particles & processes, lurking potentially in quantum mechanical loops such as *box diagrams* and *penguin diagrams* can change the prediction.

Example of new physics: a fourth generation quark that contributes to the mixing phase

(a)

Wei-Shu Hou, arXiv:hep-ph/0803.1234

Would have other measureable consequences: e.g. an impact on direct CP violation in $B^0 \rightarrow K^+\pi^-$ and $B^+ \rightarrow K^+\pi^0$

$B^0_s \rightarrow J/\psi \phi$

* $B_{s}^{0} \rightarrow J/\psi \phi$ is two particles decaying to three final states..

Two particles:

$$|B^{0}_{S,L}\rangle = p |B^{0}_{S}\rangle + q |\overline{B}^{0}_{S}\rangle |B^{0}_{S,H}\rangle = p |B^{0}_{S}\rangle - q |\overline{B}^{0}_{S}\rangle$$

Light, CP-even, shortlived in SM Heavy, CP-odd, longlived in SM

Three final states:

 $\begin{array}{l} J/\psi \ \phi \ in \ an \ S \ wave \\ J/\psi \ \phi \ in \ a \ D \ wave \\ J/\psi \ \phi \ in \ a \ P \ wave \end{array}$

CP Even CP Even CP Odd

Manifestations of CP violation in $B_s^0 \rightarrow J/\psi \phi$

A supposedly CP even initial state decays to a supposedly CP odd final state.... like the neutral kaons

Measurement needs $\Delta \Gamma \neq 0$ but not flavor tagging.

The polarization of the two vector mesons in the decay evolves with a frequency of Δm_s

Measurement needs flavor tagging, resolution, and knowledge of Δm_s

Time dependence of the angular distributions: use a basis of linear polarization $\{ \{ \mathsf{S}, \mathsf{P}, \mathsf{D} \} \longrightarrow \{ \mathscr{F}_{\perp}, \mathscr{F}_{\parallel}, \mathscr{F}_{0} \}$ states of the two vector mesons CP odd states decay CP even states decay to \mathscr{T}_{+} to \mathscr{T}_{\parallel} , \mathscr{T}_{0} If [H,CP] ≠ 0 The polarization correlation depends on decay time. $\frac{d}{dt} \langle CP \rangle \neq 0$ Then Angular distribution of decay products of the J/ ψ and the ϕ analyze the rapidly oscillating $\Delta m_{s} \sim 17.77 \text{ ps}^{-1}$. correlation. A. S. Dighe, I. Dunietz, H. J. Lipkin, and J. L. Rosner, Phys. Lett. B 369, 144 (1996), 184 hep-

Joe Boudreau HQL Melbourne June 5-9 2008

ph/9511363.

The measurement is an analysis of time-dependent angular distributions

$$\hat{n} = (\sin\theta\cos\varphi, \sin\theta\sin\phi, \cos\theta)$$
$$\vec{A} = (A_0(t)\cos\psi, \frac{-A_{\parallel}(t)\sin\psi}{\sqrt{2}}, i\frac{A_{\perp}(t)}{\sqrt{2}})$$
$$P(\theta, \phi, \psi, t) = \frac{9}{16\pi} |\vec{A}(t) \times \hat{n}|^2$$

... formula suggests an analysis of an oscillating polarization. -

This innocent expression hides a lot of richness:

- * CP Asymmetries through flavor tagging.
- * sensitivity to CP without flavor tagging.
- * sensitivity to *both* sin($2\beta_s$) and cos($2\beta_s$) simultaneously.
- * Width difference
- * Mixing Asymmetries

CP Violation in the interference of mixing and decay for the B⁰_s system

Take:

Take:

Form:

q/p from the mixing of $\overline{B^0}_s$ - B^0_s

Ā/A from the decay into $\{\mathcal{P}_{\perp}, \overline{\mathcal{P}}_{\parallel}, \mathcal{P}_{0}\}$

the (phase) convention-independent and observable quantity:

$$\lambda = \frac{q}{p} \frac{\overline{A}}{A}$$

This number is real and unimodular if [H,CP]=0

Very famous measurement of CP Asymmetries in $B^0 \rightarrow J/\psi K_s^0$

BABAR, BELLE have used this decay to measure precisely the value of $sin(2\beta)$ an angle of the **bd** unitarity triangle.

There was a fourfold ambiguity

http://ckmfitter.in2p3.fr/

Babar, Belle resolve an ambiguity in β by analyzing the decay

 $B^0 \rightarrow J/\psi K^{0*}$ which is $B \rightarrow V V$ and measures $sin(2\beta)$ and $cos(2\beta)$

This involves angular analysis as described previously

Today I will tell you about an analysis of an almost exact analogy, $|B_s^0> \rightarrow J/\psi \phi$ (but I think that in the B_s^0 system the phenomenology is even richer! Because of the width difference!)

The decay $B^{0}_{s} \rightarrow J/\psi \phi$ obtains from the decay $B^{0} \rightarrow J/\psi K^{0^{*}}$ by the replacement of a d antiquark by an s antiquark

We are measuring then not the (bd) unitarity triangle but the (bs) unitarity triangle:

The analysis of $B^0_s \rightarrow J/\psi \phi$ can extract these physics parameters:

β_s	CP phase
$\Delta \Gamma = \Gamma_{\rm H} - \Gamma_{\rm L}$	Width difference
$\tau = 2/(\Gamma_{H} + \Gamma_{L})$	Average lifetime
A $_{\perp}$ (phase δ_{\perp})	Decay Amplitude t=0
A_{\parallel} (phase δ_{\parallel})	Decay Amplitude t=0
A ₀ (phase 0)	Decay Amplitude t=0

The measurement of β_s and $\Delta\Gamma$ are correlated; from theory one has the relation $\Delta\Gamma = 2|\Gamma_{12}|\cos(2\beta_s)$ with $|\Gamma_{12}| = 0.048 \pm 0.018$ and

A. Lenz and U. Nierste, J. High Energy Phys. 0706, 072 (2007).

The exact symmetry...

$$\beta_s \rightarrow \frac{\pi}{2} - \beta_s,$$

$$\Delta \Gamma \rightarrow -\Delta \Gamma,$$

$$\delta_{\parallel} \rightarrow 2\pi - \delta_{\parallel},$$

$$\delta_{\perp} \rightarrow \pi - \delta_{\perp}.$$

... is an experimental headache.

2019 ± 73 events

1967 ± 65 events

Flavor Tagging

SST +OST: $\varepsilon D^2 = 4.68 \pm 0.54\%$

SST:	$\epsilon D^2 \cong 3.6\%$
OST:	$\epsilon D^2 \cong 1.2\%$

Each tag decision comes with an error estimate validated:

1. Using B[±] (OST)

2. In the B_s^0 mixing (SST)

CDF Untagged Analysis (1.7 fb⁻¹)

Phys. Rev. Lett. 100, 121803 (2008)

 $c\tau_s = 456 \pm 13 \pm 7 \ \mu \text{m}$ $\Delta\Gamma = 0.076^{+0.059}_{-0.063} \pm 0.006 \text{ ps}^{-1}$ $|A_0|^2 = 0.530 \pm 0.021 \pm 0.007$ $|A_{||}|^2 = 0.230 \pm 0.027 \pm 0.009$

HQET: $c\tau(B_s^0) = (1.00 \pm 0.01) c\tau(B^0)$ PDG: $c\tau(B^0) = 459 \pm 0.027 \mu m$

Feldman-Cousins confidence region in the space of the parameters $2\beta_s$ and $\Delta\Gamma$

Tagged analysis: likelihood contour in the space of the parameters β_s and $\Delta\Gamma$ Phys. Rev. Lett. 100, 161802 (2008)

One ambiguity is gone, now this one

$$\beta_s \rightarrow \frac{\pi}{2} - \beta_s,$$

$$\Delta \Gamma \rightarrow -\Delta \Gamma,$$

$$\delta_{\parallel} \rightarrow 2\pi - \delta_{\parallel},$$

$$\delta_{\perp} \rightarrow \pi - \delta_{\perp}.$$

remains

A frequentist confidence region in the β_s - $\Delta\Gamma$ including systematic errors is the main result. This interval is based on p-values obtained from Monte Carlo and represents regions that contain the true value of the parameters 68% (95%) of the time.

The standard model agrees with the data at the 15% CL

There is no way that this measurement can remove the remaining ambiguity alone. External constraints on the phases, from B factories, can do, but they may not be applicable:

using values reported in:

B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 71, 032005 (2005).

The D0 Result is a confidence interval using an external constraint:

Strong phases varying around the world average values (for $B^0 \rightarrow J/\psi K^*$); Gaussian constraint with $\sigma = \pi/5$ is applied.

D0 Result

arXiv:0802.2255 Prev result: PRD 76, 057101 (2007)

TABLE I: Summary of the likelihood fit results for three cases: free ϕ_s , ϕ_s constrained to the SM value, and $\Delta\Gamma_s$ constrained by the expected relation $\Delta\Gamma_s^{SM} \cdot |\cos(\phi_s)|$.

	free ϕ_s	$\phi_s \equiv \phi_s^{SM}$	$\Delta \Gamma_s^{th}$
$\overline{\tau}_s \text{ (ps)}$	$1.52 {\pm} 0.06$	1.53 ± 0.06	$1.49 {\pm} 0.05$
$\Delta \Gamma_s \ (\mathrm{ps}^{-1})$	$0.19 {\pm} 0.07$	$0.14 {\pm} 0.07$	0.083 ± 0.018
$A_{\perp}(0)$	$0.41 {\pm} 0.04$	$0.44 {\pm} 0.04$	$0.45 {\pm} 0.03$
$ A_0(0) ^2 - A_{ }(0) ^2$	$0.34{\pm}0.05$	0.35 ± 0.04	0.33 ± 0.04
δ_1	$-0.52 {\pm} 0.42$	-0.48 ± 0.45	-0.47 ± 0.42
δ_2	3.17 ± 0.39	3.19 ± 0.43	3.21 ± 0.40
ϕ_s	$-0.57^{+0.24}_{-0.30}$	$\equiv -0.04$	-0.46 ± 0.28
$\Delta M_s \ (\mathrm{ps}^{-1})$	$\equiv 17.77$	$\equiv 17.77$	$\equiv 17.77$

and $0.06 < \Delta \Gamma_s < 0.30 \text{ ps}^{-1}$. To quantify the level of agreement with the SM, we use pseudo-experiments with the "true" value of the parameter ϕ_s set to -0.04. We find the probability of 6.6% to obtain a fitted value of ϕ_s lower than -0.57.

Contours are 68% CL and 90% CL

 $\phi_s = -2\beta_s$

1 D Contours & Confidence Intervals

Likelihood contours for just $\Delta\Gamma$ and for just ϕ_s =-2 β_s

(1) $2\beta_s$ [0.32, 2.82] at the 68% CL.

Assuming $|\Gamma_{12}| = 0.048 \pm 0.018$ and the relation $\Delta\Gamma = 2|\Gamma_{12}|\cos(2\beta_s)$:

(2) $2\beta_s$ [0.24,1.36] U [1.78, 2.90] at the 68% CL.

FC Confidence Intervals:

Outlook

Note $\phi_s = -2\beta_s$

- Fluctuation or something more, it does go in the same direction.
- CDF estimates a p-value of 15% for the standard model, using Monte Carlo
- D0 estimates a p-value of 6.6% using Monte Carlo

UTFit group has made an "external" combination.

arXiv:hep-ph/0803.0659

We combine all the available experimental information on B_s mixing, including the very recent tagged analyses of $B_s \to J/\Psi \phi$ by the CDF and DØ collaborations. We find that the phase of the B_s mixing amplitude deviates more than 3σ from the Standard Model prediction. While no single measurement has a 3σ significance yet, all the constraints show a remarkable agreement with the combined result. This is a first evidence of physics beyond the Standard Model. This result disfavours New Physics models with Minimal Flavour Violation with the same significance.

t INTERNET INC 1999 73 EUROPE A LA CARTE 1999 74, 27 22 aug 73 48 BOUND FOR THE STARS? 1999 75 CAMPAIGN KICK-OFF 1999 75

The trouble with mergers

- "re-introduces" the ambiguity into the D0 result.
- does so by symmetrizing.
- cannot fully undo the strong phase constraint.
- I am showing you this conclusion, but not endorsing it very enthusiastically.

D0 is now producing a result without the strong phase constraint.

HFAG is preparing to combine the two unconstrained results

Further comments:

• We have assumed so far that:

$$\lambda = \frac{q}{p} \frac{\overline{A}}{A} = e^{2i\beta_s}$$

and thus $|\lambda| = 1$.. To a very good approximation. In higher order however $|q| \neq |p|$ and $|\lambda| \neq 1$ (at the level of $1 - |\lambda| < 2.5 \times 10^{-3}$)

Semileptonic asymmetry:

$$\mathcal{A}_{\rm SL}(t) \equiv \frac{d\Gamma/dt \left[\overline{M}_{\rm phys}^{0}(t) \to \ell^{+} X\right] - d\Gamma/dt \left[M_{\rm phys}^{0}(t) \to \ell^{-} X\right]}{d\Gamma/dt \left[\overline{M}_{\rm phys}^{0}(t) \to \ell^{+} X\right] + d\Gamma/dt \left[M_{\rm phys}^{0}(t) \to \ell^{-} X\right]}$$
$$= \frac{1 - |q/p|^{4}}{1 + |q/p|^{4}}.$$

$$A_{sl} = \frac{\Gamma_{12}^{s}}{M_{12}^{s}} \sin(\varphi_{s})$$

HQET: $\Gamma_{12}/M_{12}^{s} = (49.7 \pm 9.4) \pm 10^{-4}$

• $A_{SL}^{s} = 0.020 \pm 0.028$ (CDF)

http://www-cdf.fnal.gov/physics/new/bottom/070816.blessed-acp-bsemil

• $A_{SL}^{s} = 0.0001 \pm 0.0090 \text{ (stat)} \text{ (D0)}$

Phys. Rev. D 76, 057101 (2007)

Conclusion

- Towards the end of a 20-year program in proton-antiproton physics: some terribly interesting times for the physics of the b-quark.
- An anomaly from the B factories Lin, S.-W. et al. Nature 452,332-335 (2008).
- Are quantum loop corrections to the $b \rightarrow s$ transitions to blame?
- If so, precision measurements of the CP asymmetries in the B⁰_s system are a clean way to sort it out.
- D0 and CDF have just demonstrated the feasibility of doing those measurements; more work needed now to understand the true significance.

 Higher precision, higher statistics measurements could give us a even stronger hint as the LHC begins taking data.

FIN

Free Bonus Slides

$$\hat{n} = (\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\theta)$$
$$\vec{A}(t) = (A_0(t)\cos\psi, -\frac{A_{\parallel}(t)\sin\psi}{\sqrt{2}}, i\frac{A_{\perp}(t)}{\sqrt{2}})$$
$$P(\theta, \varphi, \psi, t) = \frac{9}{16\pi} |\vec{A}(t) \times \hat{n}|^2$$
$$A_i(t) = \frac{a_i e^{-imt} e^{-\Gamma t/2}}{\sqrt{\tau_H + \tau_L \pm \cos 2\beta_s \cdot (\tau_L - \tau_H)}} \begin{bmatrix} E_+(t) \pm e^{2i\beta_s} E_-(t) \end{bmatrix}$$
B
$$\overline{A}_i(t) = \frac{a_i e^{-imt} e^{-\Gamma t/2}}{\sqrt{\tau_H + \tau_L \pm \cos 2\beta_s \cdot (\tau_L - \tau_H)}} \begin{bmatrix} \pm E_+(t) + e^{-2i\beta_s} E_-(t) \end{bmatrix}$$

An analysis of the decay can be done with either a mix of B and \overline{B} mesons (untagged) or with a partially separated sample (flavor tagged). Latter is more difficult and more powerful.

$$\overline{A}_{i}(t) = \frac{a_{i}e^{-imt}e^{-1t/2}}{\sqrt{\tau_{H} + \tau_{L} \pm \cos 2\beta_{s}} \cdot (\tau_{L} - \tau_{H})} \Big[\pm E_{+}(t) + e^{-2i\beta_{s}}E_{-}(t) \Big] \cdot$$

where i = 0, para, perp and

 $E_{\pm}(t) = \frac{1}{2} \left[e^{+(\frac{-\Delta\Gamma}{4} + i\frac{\Delta m}{2})t} \pm e^{-(\frac{-\Delta\Gamma}{4} + i\frac{\Delta m}{2})t} \right]$

These expressions are:

- * used directly to generate simulated events.
- * expanded, smeared, and used in a Likelihood function.
- * summed over B and \overline{B} (untagged analysis only)

$$\mathbf{A}(t) = \mathbf{A}_{+}(t) + \mathbf{A}_{-}(t), \quad \bar{\mathbf{A}}(t) = \bar{\mathbf{A}}_{+}(t) + \bar{\mathbf{A}}_{-}(t)$$

$$\mathbf{A}_{+}(t) = \mathbf{A}_{+}f_{+}(t) = (a_{0}\cos\psi, -\frac{a_{\parallel}\sin\psi}{\sqrt{2}}, 0) \cdot f_{+}(t)$$
$$\bar{\mathbf{A}}_{+}(t) = \bar{\mathbf{A}}_{+}\bar{f}_{+}(t) = (a_{0}\cos\psi, -\frac{a_{\parallel}\sin\psi}{\sqrt{2}}, 0) \cdot \bar{f}_{+}(t),$$

$$\mathbf{A}_{-}(t) = \mathbf{A}_{-}f_{-}(t) = (0, 0, i\frac{a_{\perp}\sin\psi}{\sqrt{2}}) \cdot f_{-}(t)$$
$$\bar{\mathbf{A}}_{-}(t) = \bar{\mathbf{A}}_{-}\bar{f}_{-}(t) = (0, 0, i\frac{a_{\perp}\sin\psi}{\sqrt{2}}) \cdot \bar{f}_{-}(t).$$

obtain the overall time and angular dependence

$$P(\theta, \psi, \phi, t) = \frac{9}{16\pi} \left\{ |\mathbf{A}_{+}(\mathbf{t}) \times \hat{n}|^{2} + |\mathbf{A}_{-}(\mathbf{t}) \times \hat{n}|^{2} + 2Re((\mathbf{A}_{+}(\mathbf{t}) \times \hat{n}) \cdot (\mathbf{A}_{-}^{*}(\mathbf{t}) \times \hat{n})) \right\}$$

$$= \frac{9}{16\pi} \left\{ |\mathbf{A}_{+} \times \hat{n}|^{2} |f_{+}(t)|^{2} + |\mathbf{A}_{-} \times \hat{n}|^{2} |f_{-}(t)|^{2} + 2Re((\mathbf{A}_{+} \times \hat{n}) \cdot (\mathbf{A}_{-}^{*} \times \hat{n}) \cdot f_{+}(t) \cdot f_{-}^{*}(t)) \right\}.$$

and

$$\begin{split} P(\theta,\psi,\phi,t) &= \frac{9}{16\pi} \left\{ |\bar{\mathbf{A}}_{+}(t) \times \hat{n}|^{2} + |\bar{\mathbf{A}}_{-}(t) \times \hat{n}|^{2} + 2Re(\bar{\mathbf{A}}_{+}(t) \times \hat{n}) \cdot (\bar{\mathbf{A}}_{-}^{*}(t) \times \hat{n})) \right\} \\ &= \frac{9}{16\pi} \left\{ |\mathbf{A}_{+} \times \hat{n}|^{2} |\bar{f}_{+}(t)|^{2} + |\mathbf{A}_{-} \times \hat{n}|^{2} |\bar{f}_{-}(t)|^{2} + 2Re((\mathbf{A}_{+} \times \hat{n}) \cdot (\mathbf{A}_{-}^{*} \times \hat{n}) \cdot \bar{f}_{+}(t) \cdot \bar{f}_{-}^{*}(t)) \right\}. \end{split}$$

Explicit time dependence is here:

where the diagonal terms are:

$$|\bar{f_{\pm}}(t)|^{2} = \frac{1}{2} \frac{(1 \pm \cos 2\beta_{s})e^{-\Gamma_{L}t} + (1 \mp \cos 2\beta_{s})e^{-\Gamma_{H}t} \pm 2\sin 2\beta_{s}e^{-\Gamma t}\sin\Delta mt}{\tau_{L}(1 \pm \cos 2\beta_{s}) + \tau_{H}(1 \mp \cos 2\beta_{s})},$$
$$|f_{\pm}(t)|^{2} = \frac{1}{2} \frac{(1 \pm \cos 2\beta_{s})e^{-\Gamma_{L}t} + (1 \mp \cos 2\beta_{s})e^{-\Gamma_{H}t} \mp 2\sin 2\beta_{s}e^{-\Gamma t}\sin\Delta mt}{\tau_{L}(1 \pm \cos 2\beta_{s}) + \tau_{H}(1 \mp \cos 2\beta_{s})}.$$

and the cross-terms, or interference terms, are: $f_+(t)f_-^*(t)$. For \bar{B} and B, those terms are

$$\bar{f}_{+}(t)\bar{f}_{-}^{*}(t) = \frac{-e^{-\Gamma t}\cos\Delta mt - i\cos2\beta_{s}e^{-\Gamma t}\sin\Delta mt + i\sin2\beta_{s}(e^{-\Gamma_{L}t} - e^{-\Gamma_{H}t})/2}{\sqrt{[(\tau_{L} - \tau_{H})\sin2\beta_{s}]^{2} + 4\tau_{L}\tau_{H}}},$$

$$f_{+}(t)f_{-}^{*}(t) = \frac{e^{-\Gamma t}\cos\Delta mt + i\cos2\beta_{s}e^{-\Gamma t}\sin\Delta mt + i\sin2\beta_{s}(e^{-\Gamma_{L}t} - e^{-\Gamma_{H}t})/2}{\sqrt{[(\tau_{L} - \tau_{H})\sin2\beta_{s}]^{2} + 4\tau_{L}\tau_{H}}}.$$

... then, replace exp, sin*exp, cos*exp with smeared functions

Curiosity #1: $cos(2\beta_s)$ is easier to measure than $sin(2\beta_s)$. It can be done in the untagged analysis for which the PDF contains time dependent terms:

$$|\bar{f}_{\pm}(t)|^{2} = \frac{1}{2} \frac{(1 \pm \cos 2\beta_{s})e^{-\Gamma_{L}t} + (1 \mp \cos 2\beta_{s})e^{-\Gamma_{H}t} \pm 2\sin 2\beta_{s}e^{-\Gamma t}\sin\Delta mt}{\tau_{L}(1 \pm \cos 2\beta_{s}) + \tau_{H}(1 \mp \cos 2\beta_{s})},$$
$$|f_{\pm}(t)|^{2} = \frac{1}{2} \frac{(1 \pm \cos 2\beta_{s})e^{-\Gamma_{L}t} + (1 \mp \cos 2\beta_{s})e^{-\Gamma_{H}t} \mp 2\sin 2\beta_{s}e^{-\Gamma t}\sin\Delta mt}{\tau_{L}(1 \pm \cos 2\beta_{s}) + \tau_{H}(1 \mp \cos 2\beta_{s})},$$

Physically this is accessible because one particular lifetime state (long or short) decays to the "wrong" angular distributions. Needs $\Delta\Gamma \neq 0$; no equivalent in $B^0 \rightarrow J/\psi \ K^{0^*}$.

Some fine print: in the interference term, in an untagged analysis, there is a term including $sin(2\beta_s)$; however this term does not determine the sign of $sin(2\beta_s)$ so it does not solve any ambiguity.

Curiosity #2:

Sensitivity to Δm_s (tagged analysis only; even in the absence of CP)

$$\bar{f}_{+}(t)\bar{f}_{-}^{*}(t) = \frac{-e^{-\Gamma t}\cos\Delta mt - i\cos2\beta_{s}e^{-\Gamma t}\sin\Delta mt + i\sin2\beta_{s}(e^{-\Gamma_{L}t} - e^{-\Gamma_{H}t})/2}{\sqrt{[(\tau_{L} - \tau_{H})\sin2\beta_{s}]^{2} + 4\tau_{L}\tau_{H}}},$$

$$f_{+}(t)\bar{f}_{-}^{*}(t) = \frac{e^{-\Gamma t}\cos\Delta mt + i\cos2\beta_{s}e^{-\Gamma t}\sin\Delta mt + i\sin2\beta_{s}(e^{-\Gamma_{L}t} - e^{-\Gamma_{H}t})/2}{\sqrt{[(\tau_{L} - \tau_{H})\sin2\beta_{s}]^{2} + 4\tau_{L}\tau_{H}}}.$$

How much sensitivity? Well, we did not exploit it yet but it could be important news at the LHC!

$$\begin{split} V_{\rm CKM} &= \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \\ & \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + \frac{1}{2}A^2\lambda^5[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4(1 + 4A^2) & A\lambda^2 \\ A\lambda^3[1 - (1 - \frac{1}{2}\lambda^2)(\rho + i\eta)] & -A\lambda^2 + \frac{1}{2}A\lambda^4[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}A^2\lambda^4 \end{pmatrix} \end{split}$$

$$V_{ub}^* V_{ud} = O(\lambda^3)$$

$$V_{tb}^* V_{td} = O(\lambda^3)$$

$$\beta$$

$$V_{cb}^* V_{cd} = O(\lambda^3)$$

 $V_{ub}^*V_{us} = O(\lambda^4)$

 $V_{cb}^*V_{cs} = O(\lambda^2)$

 $V_{tb}^{*}V_{ts} = O(\lambda^2)$

<u><u></u>B'</u>

With $\lambda = 0.2272 \pm 0.0010$ A = 0.818 (+0.007 - 0.017) $\rho = 0.221 (+0.064 - 0.028)$ $\eta = 0.340 (+0.017 - 0.045)$

One easily obtains a prediction for β_s :

 $2\beta_{\rm s} = 0.037 \pm 0.002$

Elsewhere there is another anomaly that may also have to do with $b \rightarrow s$

* Direct CP in B⁺ \rightarrow K⁺ π^{0} and B⁰ \rightarrow K⁺ π^{-} are generated by the $b \rightarrow s$ transition. These should have the same magnitude.

* But Belle measures

$$\Delta \mathcal{A} \equiv \mathcal{A}_{K^{\pm}\pi^{0}} - \mathcal{A}_{K^{\pm}\pi^{\mp}} = +0.164 \pm 0.037, \quad (4.4 \text{ or})$$

* Including BaBar measurements: > 5σ Lin, S.-W. et al. (The Belle collaboration) Nature 452,332-335 (2008).

•The electroweak penguin can break the isospin symmetry •But then extra sources of CP violating phase would be required in the penguin Joe Boudreau HQL Melbourne June 5-9 2008

In general the most important components of a general purpose detector system, for B physics, is:

- tracking.
- muon [+electron] id
- triggering: B hadrons comprise is $O(10^{-3})$ of all events.

η=0 η = 1 **Muon Scintillators** [**m**] Muon Chambers 5 η=3 Shielding 0 Calorimeter Toroid -6 -10 10

Charmless decay modes have branching fractions $O(10^{-6})$

The D0 Silicon tracker.....

- surrounded by a fibre tracker at a distance 19.5 cm < r <51.5 cm
- now augmented by a high-precision inner layer ("Layer 0")
 - \bullet 71 (81) μm strip pitch
 - factor two improvement in impact parameter resolution

CDF Detector showing as seen by the B physics group.

Muon chambers for triggering on the J/ $\psi \rightarrow \mu^+\mu^-$ and μ Identification.

Strip chambers, calorimeter for electron ID

Central outer tracker dE/dX and TOF system for particle ID r < 132 cm B = 1.4 T for momentum resolution.

L00: 1.6 cm from the beam. 50 μm strip pitch Low mass, low M-S.

Uses precise impact parameter information at trigger level 2, to collect hadronic decays of *b*-hadrons.

The extent to which these features show up depends upon numerical values of the constants governing mixing, decay, direct CP violation and CP asymmetries:

Species	x=∆m/Г	$y = \Delta \Gamma / \Gamma$	Striking feature
K ⁰	0.474	0.997	Width difference
B ⁰	0.77	<0.01	CP violation
B ⁰ _s	27	0.15	Fast Oscillation
D ⁰	0.01	0.01	None

The B⁰_s system is characterized by the following standard model expectations:

- Very fast oscillation frequency.
- Small but observable (~10%) lifetime difference.
- Very small CP violation in the standard model.

Contrast this phenomenology with that of B⁰ mesons.

$$\left| B^{0} \right\rangle = \left| \overline{b} d \right\rangle$$
$$\left| \overline{B}^{0} \right\rangle = \left| b \overline{d} \right\rangle$$

Slow oscillation $\Delta m_d = 0.507 \pm 0.005 \text{ ps}^{-1}$ \rightarrow Oscillation lengthcT = 3.7 mmLarge Standard Model CP violation

$$\beta = -Arg\left(\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$
$$\sin(2\beta) = 0.668 \pm 0.028$$

 $\begin{vmatrix} B^{0}_{s} \rangle = \left| \overline{b} s \right\rangle \\ \left| \overline{B}^{0}_{s} \rangle = \left| b \overline{s} \right\rangle \end{vmatrix}$

$$\beta_s = -Arg\left(\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right)$$
$$\sin(2\beta_s) = 0.037 \pm 0.002$$

http://utfit.roma1.infn.it/

Tagger performance in J/ $\psi \phi$ decays:

The quality of the Prediction of dilution Can be checked against the data:

We reconstruct a sample Of B[±] decays in which one knows the sign of the B meson.

We then "predict" the sign of the meson and plot the predicted dilution vs the actual dilution.

Separately for B^+ and B^-

Scale (from lepton SVT this sample; take the difference B⁺/B⁻ as an uncertainty).

41

