ISO/IEC JTC1/SC18/WG8 N1729


ISO/IEC JTC1/SC18/WG8�Document Processing and Related Communication—�Document Description and Processing Languages


Title:�
Towards a Simple Model of an SGML Document�
�
Source:�
Sam Wilmott�
�
Project:�
1.18.15.1 (SGML)�
�
Project editor:�
C. F. Goldfarb�
�
Status of document:�
Individual contribution�
�
Requested action:�
For information�
�
Date�
25 August 1994�
�
Distribution:�
WG8 and liaisons�
�
References:�
�
�
Supersedes:�
�
�
Towards a Simple Model of an SGML Document


Sam Wilmott





This note presents some of the issues that need discussing in building a model of the Òinformation contentÓ of an SGML Document, and outlines a starting point for those discussions. In particular, it suggests what should and what should not be part of the model used in the SGML standard.


Information in an SGML Document


A parsed SGML Document can be viewed in a number of different ways:





¥	Parsed token information: The delimiters, data characters and name-like tokens of a document form an a simply ordered sequence as seen by an SGML parser.


¥	Markup information: Markup information is a linear sequence of the different kinds of markup and data characters in a document instance as recognized by an SGML parser after the replacement of text entities, the recognition of delimiters, data characters and other lexical structures (e.g. names), after the conversion and ignoring of white space and after the recognition of declarations and tags, but prior to the interpretation of that markup and data as element structure, entity structure and marked section structure. Markup information includes comments, marked section declarations, USEMAP and USELINK declarations and short reference delimiters.


	Markup information can be a structure, like those described below, but it differs from them in that it is linear, not hierarchical: in the simplest view of an SGML document, markup and data, together with the boundaries of entity replacement text, form a single sequence.





From the markup information can be derived (at least) five different kinds of structure. They are:





¥	Element structure: Element structure is a hierarchical tree structure with elements as its non-terminal nodes and with attribute values, declared and contingently empty elements, data characters, data entity references and processing instructions as its terminal nodes.


¥	Entity structure: Entity structure is a hierarchical tree structure with text entity references of all sorts as its non-terminal nodes and with parsed and unparsed character data, and data entity references as its terminal nodes.


¥	Marked section structure: Marked section structure is a hierarchical tree structure with marked section declarations as its non-terminal nodes and all data and other markup as its terminal nodes.


¥	Short reference mapping structure: There is a subset of markup information, represented by USEMAP declarations in both the DTD and instance, that is not part of the element structure, that can nonetheless be viewed as a companion to the element structure. The way in which short reference maps and link sets are ÒpushedÓ and ÒpoppedÓ by element boundaries makes the subparts of content influenced by them properly nested with respect to element structure.


	Note that short reference mapping structure is an artifact of SGML parsing and may very well be of no interest to any application of SGML.


¥	Link set mapping structure: There is a subset of markup information, represented by USELINK declarations, that is analogous to short reference mapping structure.





A number of observations can be made about the different types of structure:





¥	There is a mapping between element structure and markup information in the sense that for each node in the element structure tree, markup or data characters that correspond to that node can be identified in the markup information. This mapping includes identification of the locations of omitted tags. Note that this mapping is Òone-wayÓ in that although it maps all components of the element structure into markup information, it does not map all components of markup information into element structure. Unmapped components include marked section and comment declarations in the instance, white space matched by the ÒsÓ production in ISO 8879, and, most importantly, the non-terminal nodes of the entity structure.


¥	The components which are unique to markup information (e.g. declarations and ÒsÓ white-space) cannot in general, based on ISO 8879, be assigned unique locations within element structure. The element to which a comment applies, for example, may be the one containing it, or it may, especially if intervening end tags are omitted, be the following element. The fact that, in a linear parse, these markup components are ÒdiscoveredÓ within a particular node of the element structure is an artifact of the parsing process, so care must be taken in attaching too much significance to the exact point in the parsing process at which they are discovered.


¥	As with element structure, there is a mapping between entity structure and markup information. Markup and data can be mapped to the entities of which they are the replacement text and vice-versa. This mapping, unlike the element structure mapping, is fully Òbi-directionalÓ Ñ every component of markup information can be identified as resulting from parsing the replacement text of a particular entity.


¥	There is also a mapping between markup information and marked section structure. This mapping is Òbi-directionalÓ, in the same sense as is entity structure: all components of the markup information have a well-defined location in the marked section structure.


¥	Element structure, entity structure and marked section structure overlap: Apart from entities referenced within attribute values and markup declarations, text entities can start and end anywhere in element or mixed content. Even short references declared as STARTTAG, for example cannot, in general, be mapped to individual tags Ñ whether such an entity is recognized as a start tag depends on its replacement text and from where it is referenced. Similarly, INCLUDE marked sections can overlap with the starts and ends of elements.


Addressing Parsed Document Structures


Any node of a tree structure can be addressed by the simple expedient of first selecting a node, say the ÒrootÓ node of the tree or a node within the tree identified by a ÒlabelÓ, and then counting across the subnodes of the selected node to a specific subnode and recursively counting across its subnodes until the addressed node is reached. This process allows any node of a tree structure to be identified. In SGML terms the initially selected node of an element structure can be the document element of the current document instance, the document element of another document that is identified by an external identifier, or an element identified by a specified ID attribute value (its label). HyTime provides a set of SGML-based standard notations for representing such addressing.


There is no unique addressing scheme. For example, HyTime clumps together contiguous sequences of data characters into tree nodes called ÒpseudoelementsÓ. Character addressing is done by first addressing the containing pseudoelement and then the character within it. Each data character could have as easily been considered a direct subnode of its containing element and addressed as such.


Addressing is not addressed by ISO 8879. Many applications of SGML need to support some addressing scheme as part of processing the document. HyTime was developed in order to help standardize addressing schemes between applications, and in particular, to define a standard notation for representing such addresses within SGML documents. As a consequence, the contributors to the HyTime standard agreed on a set of addressing schemes that were deemed most appropriate for the widest range of applications.


The choice of a particular addressing scheme is based on the requirements of a particular application or set of applications. For example, text-based addressing often needs to address ÒwordsÓ, as defined by a human language or a computer-based notation, and may wish to address the tenth word of a paragraph, even though the word is the third word within an <emph> element that follows the seventh word of the paragraph. Similarly, an internal SDATA entity may represent what is to the application, a letter, a word break or a sequence of characters, and the preferred method of counting both words and characters may be affected by the application interpretation of the entityÕs text. As these examples show, although there are many benefits to using a standard addressing scheme, particular application requirements may lead to greater benefits in not adhering to a particular standard in some contexts. 


The Simplest Model of an SGML Document


The simplest and most complete model of an SGML document is the linear markup information, fleshed out with rules that specify, given a particular markup information, how to determine the represented element structure, entity structure and marked section structure. Design of the markup information model will require determining which things are ÒsignificantÓ and which are not, although the requirements for fully supporting markup-sensitive applications of SGML will tend to favor the view that ÒeverythingÓ is significant at the markup level, including such things as ignored white space. The real questions will arise when determining what is properly part of the derivative element structure and entity structure models, but this is detail work.


The simplest model on which to base the derivative element structure, entity structure and marked section structure is a simple hierarchical tree, each node having associated with it an ordered sequence of zero or more subnodes.


The purpose of these models is descriptive. As a consequence, no application-specific structures are represented by these models, but rather the models form the basis on which application-specific structures are described and defined. In this context, ÒapplicationÓ includes other standards which are based on ISO 8879. Examples of application-specific structures include ÒclumpingÓ of data characters. In the simplest, and, in the context of describing SGML (though not necessarily preferred in the context of any particular application of SGML), preferred model, each data character is a direct subnode of the element, attribute or other structure that contains it.


Modularity of Standards and Their ÒEnablingÓ Role


The purpose of technological standards is to ÒenableÓ new technologies by minimizing the effort that is spent on common details and allowing application designers and implementors to spend their time on Òhigher-levelÓ and application-specific issues. Care has to be taken that the strictures imposed by standards are, in fact, enabling and do not prevent the development of new technology.


There are now many ISO standards, many of which overlap or are even mutually exclusive in their provisions. It is important, for standards to be maximally useful, for standards to be modular: that is, each standard should deal with the problems it addresses, and as little as possible directly deal with issues addressed by other standards.


In addition, the models in terms of which standards are defined should be as simple as possible, consistent with the descriptive requirements of the standards.


In the context of SGML, this means that the normative text of SGML standard itself should not step into the realms of addressing or object-oriented models, but should provide as simple a model as possible that enables these models. The use and form of addressing and object-oriented models can, and should be noted in ISO 8879, through references to other standards and to technical reports, and through non-normative annexes. Note that doing all this still allows the use of terminology consistent with non-normative models, in particular, object-oriented terminology. 





ISO/IEC JTC1/SC18/WG8 N1729


Page �page�4�








ISO/IEC JTC1/SC18/WG8 N1729


Page �page�5�


























Convenor: Dr. James D. Mason�Technology Analysis and Systems Development, Information Management Services�Oak Ridge National Laboratory�Bldg. 2506, M.S. 6302, P.O. Box 2008�Oak Ridge, Tennessee 37831-6302 U.S.A.�Telephone, +1 615 574 6973; Fax, +1 615 574 6983; E-mail, masonjd@ornl.gov











