

Extending Grystallography Into the Time Domain

Short-lived excited states by time-resolved crystallography

Potential Energy

Classification of fast species and Sprocesses

	reversible	irreversible
	processes	processes
structure	equilibrated	reactive inter-
of transient	excited states	mediates
species		
'molecular	non-	chemical
movie'	equilibrated	reaction
	excited states	paths

Using the synchrotron as a continuous source:

Duty cycle:
$$D = N*w/(\pi*\emptyset) = t_x/T$$

N=number of slots w=slot width $\pi*Ø$ =circumference

t_x=opening time T=time between openings

D depends only on wheel

Choice of wheel depends on lifetime of excited state

Using the synchrotron as a pulsed source: Flight time around ring: 3.68µs

Routine Top-up User Operation

24 singlets (single bunch) with a maximum current of \sim 4.25 *mA* and a spacing of 153 *nanoseconds* between singlets

Special Operating Mode 1 (SOM1) - Hybrid fill (singlet)

A single bunch containing a maximum of 5 *mA* isolated from the remaining bunches by symmetrical 1.59 *microseconds* gaps. Length: 73 psec

The remaining current is distributed in 8 groups of 7 consecutive bunches with a maximum current of 12 *mA* per group and a spacing of 48 *nanoseconds* between groups: length 495 ns

D= (vlaser/ vsynchrotron) * 5/101

or D= (vlaser/ vsynchrotron) * 96/101

Data Collection Strategy

Schematic of the experimental setup at the 15-ID beamline at the Advanced Photon Source

the laser facility at 15-ID at APS

Goals!

- 500 ns X ray pulse (super bunch)
- 100ps single bunch
- Rational duty cycle 6.3%
- Reasonable budget
- Additional options: multi speed!

Global view

Side-view

Classification

	reversible	irreve sible
	processes	pr cesses
structure	equilibrated	reactive inter-
of transient	excited states	mediates
species		
'molecular	non-	chemical
movie'	equilibrated	reaction
	excited states	paths

Lifetimes of a number of Cu(I)bis-dmp salts in the solid state

	Calix[4]	NO ₃	PF ₆	Picrat e	BF ₄	BF ₄ ∙0.5AC	$\frac{\text{PF}_6}{\cdot \text{CH}_2\text{Cl}_2}$	BF ₄ ∙0.5DM P	<i>p</i> -Tos
τ, μs (16K)	0.30	0.11 0.44	0.50	0.60	0.76	0.80	0.95	1.3	2.40
λ _{max} , nm (16K)	750	730	710	760	720	710	720	705	690

Tos = tosylate. Calix[4] = calix[4]arene

Emission decay in solution (600 nm, RT, dichloromethane)

TR diffraction experiment 3 crystals used

T = 17 KCrystal size ~70×40×40 µm

Ground State 11252 reflections with I>2 σ

Excited State 9154 response ratios with η >2 σ

Two examples

Cu(I) dimethylphenanthroline

complexes:

- •Long-lived ³MLCT excited states with lifetimes up to hundreds of µseconds at LT in the solid state.
- Broad absorption spectrum
- •Phosphorescence dependent on the crystalline environment

Gull phenathrolines

 $Cu(I)dmp_2$: lifetime varies by factor 8 depending on the counterion but never exceeds $3\mu s$ at 17K

Cu(dmp)(dppe)PF₆

/lonoclinic ^p2₁/c a = 20.1858(5) b = 13.6614(3) c = 26.5712(6) β = 95.442(1)

two independent molecules in the asymmetric unit

DFT results on the isolated complex predict a flattening of 8 degrees The second molecule flattens considerably less

Refinement of Independent Populations of A and B molecules

	рор А	рор В	pop B/ pop A
Data1	0.058(3)	0.103(4)	1.78
Data2	0.065(6)	0.125(8)	1.92
Data3	0.086(4)	0.128(5)	1.49
Ave			1.73

can be quantitatively explained by the different lifetimes of A and B

$[Rh_2(1,8-diisocyano-p-menthane)_4]^{2+}$

11.7 µs at 23K

emission maximum: 690 nm.

The largest geometry change on excitation found yet

experiment

theory (DFT, ADF, VWNBLYP)

4.647 Å ⇒ 3.107 Å

What we should do

Nuch shorter time-scales

- •Use time-scale of the ring in special operating mode
- Development of 'Poor men's shutter' based on rotating chopper wheel to select pulses or pulse trains
 opening time ~ 2µs
- must be highly accurate

Limitations: Laser pulse width (currently 20-50 ns Synchrotron bunch length: 73 ps

Shorter time-scales means lower X-ray duty cycle

monochromator

Rather than monochromatic radiation use broader bandpass:

- multilayer monochromator △E/E ~ 3*10⁻³"
- or undulator peak width $\Delta E/E \sim 7*10^{-2}$

The goal: to make TR-crystallography a general analytical technique

to follow processes in crystalline solids

APS

Experimental and theoretical analysis of the triplet excited state of the [Pt2(H2P2O5)4]4- ion

Photoinduced intermolecular electron transfer in diplatinumtetrapyruvate/viologen donor-acceptor system

Geometry Changes of a Cu(I) Phenanthroline Complex on Photoexcitation in a Confining Medium by Time-Resolved X-ray Diffraction

Very large contraction from 4.495 Å to 3.60(5)Å of the Rh-Rh distance in [Rh2(1,8-diisocyano-p-menthane)4]2+ upon excitation

Other TR X-ray diffraction studies with atomic resolution at his time:

ESRF (powder diffraction)

Picosecond X-ray Diffraction Probed Transient Structural Changes in Organic Solids Techert, S., Schotte, F. & Wulff, M. (2001). Phys. Rev. Lett. **86**, 2030-

2033.

The Intramolecular Charge Transfer State in Crystalline DIABN. Techert, S. & Zachariasen, K. A. (2004). *J. Am. Chem. Soc.* **126**, 5593-5600.

ESRF and Tsukuba → (next Wednesday at Bialowieza) Probing photoinduced phase transition in a charge-transfer molecular crystal by 100 picosecond X-ray diffraction. Guerin, L., Collet, E., Lemee-Cailleau, M.-H.; Buron-Le Cointe, M., Cailleau, H., Plech, A., Wulff, M., Koshihara, S.-Y. & Luty, T. (2004). Chem. Phys. 299, 163-170.

Spring-8

Photoexcited crystallography of diplatinum complex by multiple-exposure IP method. Ozawa, Y., Terashima, M., Mitsumi, M., Toriumi, K., Yasuda, N., Uekusa, H. & Ohashi, Y. (2003). Chem. Lett. **32**, 62-63.

•Using the synchrotron as a continuous source:

w= slot opening Δ =space between openings

Duty cycle: $D = w/ \Delta$

D depends only on wheel Choice of wheel depends on lifetime of excited state

•Using the synchrotron as a pulsed source:

Special Operating Mode 1 (SOM1) - Hybrid fill (singlet) A single bunch containing a maximum of 5 *mA* isolated from the remaining bunches by symmetrical 1.59 *microseconds* gaps. Length: 73 psec

D= (v_{laser} / $v_{synchrotron}$) * 5/101 ~ 1/200

