Status of DiMES Program and Other Reverent DIII-D Experiments

Clement Wong, Dmitry Rudakov, Robert Bastasz, Bill Wampler, Todd Evans, Phil West, and the DiMES team, Porous plug team, C-13 team, ELM-suppression team (Multi-institutional teams)

> PFC Meeting, May 3-5, 2004 U. Of Illinois, Urbana, Illinois

	DiMES Proposed Experiments 2003-2004				
	Title Comments				
1	Multiple materials erosion with upper single null	With new set of plasma parameters than the 2003 exposure	Not-active		
2	Hydrogen sensor	Mostly prepared, waiting for diagnostics	Piggyback		
3	Porous plug with methane injection (McLean & Stangeby)	Supported by Whyte and Dmitry (Scheduled for 7/26/04)	Approved		
4	Heated DiMES sample	To benchmark IR camera measurements, Coordinate with Lasnier, waiting for robust heater	Piggyback		
5	DiMES-gap (Jacob & Stangeby)	To address the issue of impurities deposition Supported by Bastasz, Wampler and Whyte, (7/27) and (9/14)	Approved		
6	Ar induced divertor detachment	To compare with earlier Ne discharges	Not active		
7	DIMES Micro-balance	Between shot measurement of material deposition Supported by Whyte and Bastasz	Not active		
8	Measure ELM erosion and deuterium deposition	In coordination with ELMing/ELM modification experiment Uses implanted DiMES.	Piggyback		
9	Disruptions to simulate ITER ELMs	With more detail planning than last year and needs a few Discharges. Uses implanted DiMES.	Piggyback		
10	Ti and ni distribution	Under planning	Not active		
11	Li-DiMES sample W/o Li	To test heater and tile currents Waiting for diagnostics	Piggyback		
12	Li-DiMES sample with Li	Waiting for results from 11	Not active		
13	W-Rod	Proposed by SNL-A, piggyback opportunity later this year	Piggyback		
14	W-surface	To perform after the successful exposure of the W-rod Experiment. This will also study arcing on W-surface	Not active		
15	MHD effect on thin melted metal layer	Could be AI on graphite, supported by modeling from UCLA, needs AI coated and heated sample	Piggyback		
16	Secondary e emission	Use tile current probes with different materials	Not active		
17	Secondary e emission, from ½ W, ½ some other materials	Perform # 16 first	Not active		
18	Migration of µm size C dust	Proposed by Sergei Krasheninnikov of UCSD (1 st exposure 3/16)	Piggyback		
19	Hall magnetic field sensor	Proposed by J. Boedo, sensor provided, to be fitted into DiMES	Piggyback		

DiMES Heaters and Temperature Control

• Existing and planned DiMES heated samples:

Sample	Heater	Max W
Generic heated sample	HeatWave 101134	300
W-rod sample	HeatWave 101134	300
Li sample	HeatWave 101137	60
Tile gap sample	?	300?
Thin melted layer sample	?	500?

- We have purchased a temperature controller and a power supply suitable for use with the existing HeatWave heaters
- HeatWave heaters have a disadvantage low resistance, so high currents are required
- For example, 101134 has a resistance of 0.13 Ω at room temperature and 0.5 Ω at 500 C
- DiMES drive is not designed for high currents
- We are going to evaluate OMEGA CHS cartridge heaters that can work from 0-120 V AC supply

Temperature controller OMEGA CN77000

Power supply INSTEK SPS-1820 0 - 18 V, 0 - 20 A

OMEGA CHS Cartridge heaters

DiMES Instrumentation and Data Acquisition

• Some of the planned DiMES samples require data acquisition and/or remote control

Sample	Requirement	No. of channels
Tile current array (Li sample)	Data acquisition – 5 channels	5
Porous plug sample (methane	Micro-valve control	2
injection)	Data acquisition (pressure, flow rate)	
Hydrogen sensor	Remote heater control Data acquisition	2-5?
Hall magnetic field sensor	Data acquisition	1?

- DiMES system is referenced to the DIII-D vacuum vessel, so 5 kV isolation is required for all signals
- We purchased 5 channels of isolation amplifiers with frequency response of DC -20 kHz
- The system will be expandable to 12 channels
- Transmitters and receivers are interchangeable
- 8 channels of data acquisition with sampling at 100 kHz for up to 5 s are requested

DIMENSIONS IN INCHES

DiMES Porous Plug Injector Jim Davis, Dmitry Rudakov, Adam McLean, Peter Stangeby, Clement Wong

- The purpose is to admit methane (or other hydrocarbons) through a porous graphite surface, so that the molecular interaction with the plasma may closely approximate a hydrocarbon molecule released from a carbon surface by chemical erosion.
- Injecting methane at a known rate will provide direct calibration of the spectroscopic signals (Multichord Divertor Spectrometer, DiMES TV, lower tangential CID camera).
- The porous surface is designed such that size and spacing of the holes is on the order of the mean-free-path of methane molecules in a target plasma: ~1000 holes, 0.25 mm (0.010") diameter, 0.8 mm (0.032") spacing.
- The holes comprise <10% of the surface area so that the probe closely approximates a solid surface.

Porous Plug Injector Schematic

Throughput: 0.02 torr L/s Standard flow volume: 2.1 sccm

Status:

Electrical

Connector

2.1"

2.8"

Porous plug drilling at 0.010" is complete All components selected, ready for design review Scheduled for $\frac{1}{2}$ run day in July in DIII-D

Planned DiMES Activities

• Dedicated Experiments:

Porous plug with methane injection DiMES gap experiments

• Systems improvements:

Robust heater; and in-situ diagnostics and control

• Piggyback experiments:

W-Rod, tile currents, heated surface, ELM erosion, disruption to simulate ELM, MHD effect on thin melted metal, magnetic field sensor, dust migration and hydrogen sensor.

DIII-D L-mode Plasma C13 Tiles for Analysis Shots 116243 - 64

19

Tile 17

Tile 15

F

Tile 10

Tile 11

13

(at 230 toroidal)

Tile 12

00000000

Tiles transported to Sandia Lab, Albuquerque for Analysis (GA, Univ. Toronto, LLNL, & PPPL tile crew)

29 Tiles from DIII-D

ALL REAL PROPERTY.

MULTI-NATIONAL COLLABORATIONS ARE FORGED TO ADDRESS TRITIUM MIGRATION AND RETENTION

- C13 injection UT, JET, UW, LLNL, PPPL, FZJ-IPP, GA
- Surface analysis SNL-NM, SNL-L UT, UW, GA
- Quartz Micro Balance UW, UT, JET, FZJ-IPP, GA
- O₂ bake UT, PPPL, UW, GA, SNL-NM, LLNL, FZJ, JET
- Heated tile

UT, IPP Garching, UW, GA, SNL-L

Preliminary Result: C13 found in tiles near inner strike point

ELM suppression with a stochastic boundary in DIII-D

- T. E. Evans, R. J. Groebner, R. J. La Haye, T. H. Osborne, M.
- J. Schaffer General Atomics, San Diego, CA, USA
- R. A. Moyer UCSD, La Jolla, CA, USA
- J. G. Watkins Sandia National Laboratory, USA
- T. L. Rhodes, G. Wang, L. Zeng UCLA, Los Angeles, CA, USA
- P. R. Thomas CEA Caderache, France
- M. E. Fenstermacher, M. Groth, C. J. Lasnier LLNL, CA, USA
- K. H. Finken FZ-Jülich, Germany
- N. Ohyabu, S. Masuzaki NIFS, Japan
- J. Harris, D. Pretty Australian National University, Australia
- H. Reimerdes Colombia University, NY, USA

PFC Meeting, Urbana IL. May 3-5, 2004

Pedestal control is a critical issue for nextstep fusion devices

٠

 Core performance is tightly coupled to pedestal height by stiff radial transport

 Pedestal T_e uncertainty affects ITER Q_{fus} more than transport model

- ELMs affect core plasma performance...
 - Directly by reducing pedestal height
 - Indirectly by affecting pedestal stability

- ELMs limit divertor plate lifetime
 - Impulsive heat flux erodes material

An edge stochastic layer may be a good solution for pedestal control

- Dedicated pedestal control experiments, using the error field correction coil (C-coil) and internal MHD control coil (I-coil) were initiated in 2003 on DIII-D
- First results from these
 experiments look very promising
- Additional experiments are planned for 2004
- If these experiments with the existing coils continue to look favorable a new set of coils will be installed in DIII-D that are specifically designed to optimize the edge stochastic layer

The stochastic layer structure is characterized by its width $\Delta\psi_{\text{slw}}$ and poloidal magnetic flux loss $\Delta\psi_{\text{fl}}$

• Rectangular Poincaré plot showing a TRIP3D calculation of the magnetic structure in DIII-D pedestal with measured error fields only (no C- or I-coil).

TRIP3D modeling (no plasma response included)

T. Evans, et al., PRL in press

Large ELMs are suppressed without degrading the core confinement during the n=3 I-coil pulse

 Type I ELMs suppressed in high performance ELMing H-modes (β_n•H = 4.2) with and edge resonant perturbation.

T. Evans, et al., PRL in press

Large 70 Hz type-I ELMs are converted into small 130 Hz oscillations punctuated by isolated events

T. Evans, et al., PRL in press

Summary and Conclusions

- An edge resonant magnetic perturbation from the I-coils has been used to suppress Type I ELMs in high confinement DIII-D H-modes
 - Suppression is not (yet?) complete Type I ELM rate drops from 70 Hz to about 7 Hz, assuming that the surviving large events are Type I ELMs
 - Scaling to next-step devices is unknown! (we don't have an ITER solution yet, just a promising start!); An obvious next step is to use an ITER shape (e.g. low triangularity single null divertor)
 - The nature of the surviving irregular oscillations not yet determined (e.g. are they Type II ELMs?)
 - Edge pedestal remains second stable (doesn't fit Type II ELM model)
 - Pedestal height is not reduced
 - Core confinement remains high despite a large loss of toroidal rotation.