Ekagra

NCI Center for Bioinformatics (NCICB)

caCORE Software Development Kit (SDK) Enhancement

[image: image1.png]

[image: image41.jpg]

[image: image42.png](Ekagra

High impact - High Value - Businss Resuts

caCORE SDK
Generated System Detail Design

Version No:
1.1
Last Modified:
08/17/2006
Author:

Daniel Dumitru
Team:
caCORE SDK
Client:
National Cancer Institute - Center for Bioinformatics,

National Institutes of Health,

US Department of Health and Human Services

This document was prepared NCI Center for Bioinformatics
Pursuant to the caCORE Software Development Kit (SDK)
Project (REF: Solicitation No. S06-234).

Document History

0.1 Document Location
The most current version of this document is located in CVS under cacoresdk/Project/SDK v3.2/Development/Design.

0.2 Revision History
	Version Number
	Revision Date
	Author
	Summary of Changes

	1.0
	07/11/06
	Daniel Dumitru
	Initial draft

	1.1
	07/14/06
	Satish Patel
	Formatting, grammar changes

	1.2
	07/19/06
	Daniel Dumitru
	Added Persistence Detail Design section

	1.3
	07/26/06
	Daniel Dumitru
	Added Query Detail Design section

	1.4
	08/23/06
	Daniel Dumitru
	Updated per Document Review(s)

	
	
	
	

0.3 Review

	Name
	Team/Role
	Version

	Date Reviewed
	Reviewer Comments

	Satish Patel
	
	1.1
	07/14/2006
	Formatting, grammar changes

	Steve Hunter
	QA
	1.2
	08/17/2006
	Formatting, grammar

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

0.4 Related Documents
More information can be found in the following related documents:
	Document Name

	

	

	

	

	

	

	

Table of Contents

2Document History

20.1
Document Location

20.2
Revision History

20.3
Review

20.4
Related Documents

3Table of Contents

5Table of Figures

61.
Introduction

61.1
Purpose

61.2
Intended Audience

61.3
Scope

61.4
Overview

61.5
Definitions, Acronyms, and Abbreviations

72.
Exception Handling Detail Design

72.1
Current Design - Problem Scenario

72.1.1
Analysis of Current caCORE SDK Exception Class Definitions and Usage

82.1.2
Problems with the ApplicationException Class

102.2
Proposed Exception Handling Enhancements

102.2.1
Introduction of More Specific Exception Classes

122.2.2
Code Changes to Classes that Use (Throw) ApplicationException

133.
Query Detail Design

133.1
The Query Interfaces within the caCORE SDK Tiered Architecture

143.2
Supported SDK Query Types

153.2.1
Simple Search Query Type

163.2.2
Nested Search Query Type

163.2.3
Detached Criteria Query Type

163.2.4
HQL Criteria Query Type

173.3
Supported SDK Query Interfaces

173.4
Java API

193.4.1
gov.nih.nci.system.applicationservice.ApplicationServiceProvider

203.4.2
gov.nih.nci.system.comm.client.ApplicationServiceClientImpl

213.4.3
gov.nih.nci.system.comm.server.ApplicationServiceServerImpl

223.4.4
gov.nih.nci.system.applicationservice.impl.ApplicationServiceImpl

233.4.5
gov.nih.nci.system.applicationservice.impl.ApplicationServiceBusinessImpl

243.4.6
gov.nih.nci.common.util.ListProxy

263.5
Web Services API

273.5.1
Web Services Client

283.5.2
Axis Web Services API

283.5.3
gov.nih.nci.system.webservice.WSQuery

293.5.4
gov.nih.nci.system.webservice.WSTransformer

303.6
XML-HTTP API

313.6.1
gov.nih.nci.system.proxy.HTTPQuery

343.6.2
gov.nih.nci.common.util.HTTPUtils

364.
Persistence Tier Detail Design

364.1
The Persistence Tier within the caCORE SDK Tiered Architecture

374.2
Base Delegate Query Interface

384.2.1
gov.nih.nci.system.applicationservice.impl.ApplicationServiceBusinessImpl

394.2.2
gov.nih.nci.common.net.Request

404.2.3
gov.nih.nci.common.net.Response

414.2.4
gov.nih.nci.system.delegator.BaseDelegate

414.2.5
gov.nih.nci.system.servicelocator.ServiceLocator

424.2.6
gov.nih.nci.system.dao.DAOFactory

434.2.7
gov.nih.nci.system.dao.ORMDAOFactory

444.2.8
gov.nih.nci.system.dao.impl.orm.ORMDAOImpl

444.2.9
gov.nih.nci.system.dao.impl.orm.ORMConnection

454.2.10
gov.nih.nci.common.util.NestedCriteria2HQL

464.3
Writable DAO Create, Read, Update, Delete Interface

484.3.1
gov.nih.nci.system.applicationservice.impl.ApplicationServiceImpl

494.3.2
gov.nih.nci.system.dao.WritableDAO

504.3.3
gov.nih.nci.system.servicelocator.ServiceLocator

504.3.4
gov.nih.nci.system.dao.impl.orm.ORMConnection

515.
Configuration/Deployment Considerations

515.1
Property/Configuration Files

515.2
Deployment Considerations

526.
Resources

526.1
Technical Manuals/Articles

526.2
Core J2EE Patterns

526.3
Hibernate Reference Manual

526.4
caCORE SDK Documentation

Table of Figures

7Figure 1: Current Set of caCORE SDK Exception Classes

8Figure 2: An Example: The Use of Class DAOException

9Figure 3: Packages that Use ApplicationException

10Figure 4: Classes that Use (Throw) ApplicationException

11Figure 5: Proposed Exception Class Hierarchy

12Figure 6: Current Exception Handling Practice

12Figure 7: Proposed Exception Handling Practice

13Figure 8: Query Interfaces within the caCORE SDK Tiered Architecture

15Figure 9: SDK Query Types

18Figure 10: Query Sequence - Local Java Client

19Figure 11: Query Sequence - Remote Java Client

20Figure 12: gov.nih.nci.system.applicationservice.ApplicationServiceProvider Outline Diagram

21Figure 13: gov.nih.nci.system.comm.client.ApplicationServiceClientImpl Outline Diagram

22Figure 14: gov.nih.nci.system.comm.server.ApplicationServiceServerImpl Outline Diagram

23Figure 15: gov.nih.nci.system.applicationservice.impl.ApplicationServiceImpl Outline Diagram

24Figure 16: gov.nih.nci.system.applicationservice.impl.ApplicationServiceBusinessImpl Diagram

25Figure 17: gov.nih.nci.common.util.ListProxy Outline Diagram

27Figure 18: Query Sequence - Web Service Client

29Figure 19: gov.nih.nci.system.webservice.WSQuery Outline Diagram

30Figure 20: gov.nih.nci.system.webservice.WSTransformer Outline Diagram

31Figure 21: Query Sequence – XML-HTTP Client

32Figure 22: XML-HTTP Servlet Mappings

33Figure 23: gov.nih.nci.system.proxy.HTTPQuery Outline Diagram

35Figure 24: gov.nih.nci.common.util.HTTPUtils Outline Diagram

36Figure 25: Persistence Tier within the caCORE SDK Tiered Architecture

37Figure 26: Persistence Tier (Base Delegate Query Interface) Sequence Diagram

39Figure 27: gov.nih.nci.system.ApplicationBusinessImpl Outline Diagram

40Figure 28: gov.nih.nci.common.net.Request Outline Diagram

41Figure 29: gov.nih.nci.common.net.Response Outline Diagram

41Figure 30: gov.nih.nci.system.delegator.BaseDelegate Outline Diagram

42Figure 31: gov.nih.nci.system.servicelocator.ServiceLocator Outline Diagram

43Figure 32: gov.nih.nci.common.net.Request Outline Diagram

44Figure 33: gov.nih.nci.system.dao.ORMDAOFactory Outline Diagram

44Figure 34: gov.nih.nci.system.dao.ORMDAOImpl Outline Diagram

45Figure 35: gov.nih.nci.system.dao.ORMConnection Outline Diagram

46Figure 36: gov.nih.nci.system.dao.ORMConnection Outline Diagram

47Figure 37: Persistence Tier (Base Delegate Query Interface) Sequence Diagram

48Figure 38: ApplicationService Interface and Related Classes Diagram

49Figure 39: gov.nih.nci.system.dao.ORMConnection Outline Diagram

50Figure 40: gov.nih.nci.system.dao.WritableDAO Outline Diagram

1. Introduction

1.1 Purpose

The purpose of this document is to describe the current architecture, including Exception handling practices, within the generated system of the caCORE SDK, and to document opportunities for enhancements.
The information presented in this document is meant to supplement (not replace) information already available in the caCORE Software Development Kit 1.1 Programmer’s and Technical Guide.

1.2 Intended Audience

The intended audience for this document includes caCORE SDK Developers, Project Administrators, and End Users interested in the obtaining an overview of the current Query and Persistence Design, as well as insight into proposed enhancements to the caCORE SDK generated system.
1.3 Scope

The scope of this document is limited to a discussion of current caCORE SDK generated system design, along with proposed changes for improved stability and usability.
A discussion of the exception handling practices within the Code Generation portion of the caCORE SDK is beyond the scope of this document.

Additionally, an analysis of exception handling practices within the Web services portion of the generated system has been postponed due to time constraints, and will be addressed during a later iteration.

1.4 Overview

The following sections provide:

1) A brief overview of the current exception handling practices with the caCORE SDK generated system
2) Recommended changes to enhance the usability and improve the communication of exceptional conditions to the system, developers, and end users.
3) A description of the current Query and Persistence design and opportunities for improving it.
4) Considerations on configuration and deployment.
1.5 Definitions, Acronyms, and Abbreviations
All definitions, acronyms, and abbreviations are provided in the centralized definition document found at cacoresdk/Project/SDK v3.2/Miscellaneous/Acronyms.doc.
2. Exception Handling Detail Design

This section discusses exception handling practices within the generated portion of the caCORE SDK.
2.1 Current Design - Problem Scenario
This section describes the current Exception handling practices within the generated system of the caCORE SDK along with details as to why enhancements are desired.
2.1.1 Analysis of Current caCORE SDK Exception Class Definitions and Usage
A high-level analysis of the current caCORE SDK example code base
 shows that there is a relatively well-defined, specific set of Exception type classes, as shown below:

[image: image2.png]& Java - build.xml - Eclipse Platform
Fie Edt Nevigate Search Project Rn Window Hep

(=2 @ [%-0-8-Q- | BH#E- |®F [0 5§
Co X%k EE[8F-v ="

~Ti matches n Selection
5 cabio-example-output
=& example
=@ framework
56 gov
B & nh
E@&ne
=@ common
@ net
o]
= except
) Uit Exceptionova
=& codegen
=@ framework
[3) FiteingExceptionova
[3) ModelAccessExcepton.java
[3) TransformationExcepton Java
=@ core
[3) GenerationExcepton java
1) ConfigurationException.java
=@ system
=@ dao
[5) DACException jova
=& delegator
[3) DelegateException.java
= & applcatonservice
) ArpicationExcepton ava
=& servicelocator
) ServielocatorExcepton java

Figure 1: Current Set of caCORE SDK Exception Classes
A closer inspection of the exception handling practices within the example generated system shows that, for the most part, exceptions are defined and used in a manner consistent with exception handling Best Practices:
 the exception name (type) communicates the kind of exception, the stack trace communicates the location to the SDK developer or programmer, and the exception message communicates additional information to the end user that might be helpful in determining and correcting the error.

As an example, let’s examine the usage of the DAOException class, shown below:

[image: image3.png]A Uses of Class gov.nih.nci.system.dao.DAOException - Microsoft Internet Explorer
Fle Edt Vew Favortes Tods tep

O © M@ G Pwo Frrws @ 3- 5 @-JE B
&) Co\dan\dev\caCore \cabio-example-outputjavadocgovinhind system|dao\dlass-use DAOException.himl
Uses of Class
gov.nih.nci.system.dao.DAOException

Packages that use DAOException

gov.nih.nci.system.dao

‘gov.nih.nci.system.dao.impl.externalsystem

‘gov.nih.nci.system.dao.impl.orm

Uses of DAOException in gov.nih.nci.system.dao

Methods in gov.nih.nci.system.dao that throw DAOException

=evic DAOfacsem: paOFactory. getFactory (int whichFactory)

Return a specific DAOFactory object based on the datasource

ORMDAOFactory. query (Request request)
Return the resultset of the query embedded in an object of gov.ih nci.common net Response

gesmens: | pxternalDAOFactory. query (Request request)

Return the resultset of the query embedded in an object of gov.ih nci.common net Response

EVSDAOFactory. query (Request x)
Returns the resulfset of the query embedded in an object of gov.nih.nci common.net Response

DAOFactory. query (Reguest request)
Abstract method for querying

Uses of DAOException in gov.nih.nci.system.dao.impl.externalsystem

Methods in gov.nih.nci.system.dao.impl.externalsystem that throw DAOException

Sssmense | pxternalDAOTmpl.guery (Request request)

Return the resultset of the query embedded in an object of gov.ih nci.common net Response

&

Figure 2: An Example: The Use of Class DAOException
The DAOException class is both defined and applied within the dao packages and their classes. The use of the DAOException is also consistent with its type and definition; i.e., the methods that throw DAOException, such as get[DAO]Factory and query, are related to data access functions. The developer, calling system, or end user that receives a DAOException thus has a good indication of the nature of the exception, its location, and the root cause of the problem.
However, as we will examine in the next section, this is not the case with the exception class, ApplicationException.
2.1.2 Problems with the ApplicationException Class

The ApplicationException seems to be defined and used in an effective manner. Its name also seems to accurately convey the exception type, and is also consistent with its placement within the applicationservice package, and association with the ApplicationService interface.

However, the ApplicationException class, when applied with the generated system, is used for handling a wide variety of exceptional conditions. Some of these conditions include: query/search, persistence, and security functions (see diagrams below).
[image: image4.png]A Uses of Class gov.nih.nci.system.applicationservice. ApplicationException - Microsoft Internet Explorer

Uses of Class
gov.nih.nci.system.applicationservice.ApplicationException

Packages that use ApplicationException

gov.nih.nci.system.applicationservice

‘gov.nih.nci.system.applicationservice.impl

‘gov.nih.nci.system.comm.client

‘gov.nih.nci.system.comm.common

‘gov.nih.nci.system.comm.server

gov.nih.nci.system.dao

gov.nih.nci.system.server.mgmt

Uses of ApplicationException in
gov.nih.nci.system.applicationservice

Methods in gov.nih.nci.system.applicationservice that throw ApplicationException

een T ADDLicationService evsSearch (EVSQuery evsCriterion)

sbssmacs sns | ApplicationService.getQueryRowCount (Java.lang.Object criteria,
java.lang.String targetClassName)

ApplicationService.guery
(ozg.nibernate.criterion.DetachedCriteria detachedCriteria,
java.lang.String targetClassName)

ApplicationService.query (EQLCriteria hqlCriteria,
java.lang.String targetClassName)

ApplicationService.guery (java.lang.Object criteria, int firstRow,
int resultsPerQuery, java.lang.String targecClassName)

ApplicationService.search(java.lang.Class targetClass,
sava.ucil.List objlList)

Figure 3: Packages that Use ApplicationException
The listing and diagram below detail the variety of disparate classes, contained within the above package listing, that are associated with (i.e. that throw) ApplicationException:

· SecurityEnabler

· WriteableDAO

· Client Session
· ApplicationService

· ApplicationServiceClientImpl

· ApplicationServiceServerImpl

[image: image5.emf]�

cd Exception Handling Model

Exception

ApplicationException

+ ApplicationException()

+ ApplicationException(String)

+ ApplicationException(String, Throwable)

+ ApplicationException(Throwable)

ApplicationServiceProxy

ApplicationServiceServerImpl

- applicationService: ApplicationService

- securityEnabler: SecurityEnabler

+ ApplicationServiceServerImpl()

+ authenticate(String, String) : String

+ createObject(ClientInfo, Object) : Object

+ getObjects(ClientInfo, Object) : List

+ getQueryRowCount(ClientInfo, Object, String) : int

+ logOut(String) : void

+ query(ClientInfo, Object, int, int, String) : List

+ query(ClientInfo, DetachedCriteria, String) : List

+ query(ClientInfo, HQLCriteria, String) : List

+ removeObject(ClientInfo, Object) : void

+ search(ClientInfo, String, List) : List

+ search(ClientInfo, String, Object) : List

+ search(ClientInfo, Class, List) : List

+ search(ClientInfo, Class, Object) : List

+ setRecordsCount(ClientInfo) : void

+ setSearchCaseSensitivity(ClientInfo) : void

+ updateObject(ClientInfo, Object) : Object

ClientSession

- applicationServiceProxy: ApplicationServiceProxy

- instance: ClientSession

- sessionInitializedFrom: String

- sessionKey: String

- ClientSession()

- ClientSession(ApplicationServiceProxy)

- getApplicationServiceProxyFromClassPath() : ApplicationServiceProxy

+ getInstance() : ClientSession

+ getInstance(ApplicationServiceProxy) : ClientSession

+ getSessionKey() : String

+ startSession(String, String) : boolean

+ terminateSession() : void

ApplicationService

ApplicationServiceClientImpl

- applicationService: ApplicationService

- applicationServiceProxy: ApplicationServiceProxy

- caseSensitivity: boolean = false

- maxRecordsCount: int = 0

- recordsCount: int = 0

+ ApplicationServiceClientImpl()

+ createObject(Object) : Object

getBeanInstance() : ApplicationService

getBeanInstance(String) : ApplicationService

- getClientInfo() : ClientInfo

+ getObjects(Object) : List

+ getQueryRowCount(Object, String) : int

- getRemoteServiceFromClassPath() : ApplicationServiceProxy

- getRemoteServiceFromPath(String) : ApplicationServiceProxy

+ query(Object, int, int, String) : List

+ query(DetachedCriteria, String) : List

+ query(HQLCriteria, String) : List

+ removeObject(Object) : void

+ search(String, List) : List

+ search(String, Object) : List

+ search(Class, List) : List

+ search(Class, Object) : List

+ setRecordsCount(int) : void

+ setSearchCaseSensitivity(boolean) : void

+ updateObject(Object) : Object

ApplicationService

ApplicationServiceImpl

- applicationServiceBusinessImpl: ApplicationServiceBusinessImpl = null

- writableDAO: WritableDAO = null

+ ApplicationServiceImpl()

+ createObject(Object) : Object

getBeanInstance() : ApplicationService

getBeanInstance(String) : ApplicationService

+ getObjects(Object) : List

+ getQueryRowCount(Object, String) : int

+ query(DetachedCriteria, String) : List

+ query(HQLCriteria, String) : List

+ query(Object, int, int, String) : List

+ removeObject(Object) : void

+ search(Class, Object) : List

+ search(Class, List) : List

+ search(String, Object) : List

+ search(String, List) : List

+ setRecordsCount(int) : void

+ setSearchCaseSensitivity(boolean) : void

+ updateObject(Object) : Object

SecurityEnabler

- applicationContextName: String = null

- authenticationManager: AuthenticationManager = null

- authorizationManager: AuthorizationManager = null

- securityLevel: int = 999

+ authenticate(String, String) : String

- getAuthenticationManager() : AuthenticationManager

- getAuthorizationManager() : AuthorizationManager

+ getSecurityLevel() : int

+ hasAuthorization(String, String, String) : boolean

- isBlank(String) : boolean

+ isUserInSession(String) : boolean

+ logOut(String) : void

+ SecurityEnabler(String)

WritableDAO

~ log: Logger = Logger.getLogge...

+ createObject(Object) : Object

+ getObjects(Object) : List

- getSession(Object) : Session

+ removeObject(Object) : void

+ updateObject(Object) : Object

+securityEnabler

-writableDAO

-instance

Name:

Package:

Version:

Author:

Exception Handling Model

Exception Handling Model

1.0

Dan Dumitru

Figure 4: Classes that Use (Throw) ApplicationException
Within this context, the ApplicationException name (type) becomes too general, and its usage too broad, to effectively communicate the root cause of the exceptional condition. End users are required to spend more time and effort than necessary interpreting and investigating the exception in order to determine the nature of the exception, its location, and the root cause of the problem.
2.2 Proposed Exception Handling Enhancements
This section describes the proposed exception handling enhancements that will clarify the cause of checked exceptions but still remain backwards compatible with the current release.
2.2.1 Introduction of More Specific Exception Classes
In order to enhance the exception handling of the caCORE SDK generated system in a manner that preserves backwards compatibility with the current release, it is proposed that a more specific exception class hierarchy be created, as shown below:
 [image: image6.emf]�

cd Exception Handling Model

Exception

ApplicationException

+ ApplicationException()

+ ApplicationException(String)

+ ApplicationException(String, Throwable)

+ ApplicationException(Throwable)

SecurityException

+ SecurityException()

+ SecurityException(String)

+ SecurityException(String, Throwable)

+ SecurityException(Throwable)

PersistenceException

+ PersistenceException()

+ PersistenceException(String)

+ PersistenceException(String, Throwable)

+ PersistenceException(Throwable)

AuthenticationException

+ AuthenticationException()

+ AuthenticationException(String)

+ AuthenticationException(String, Throwable)

+ AuthenticationException(Throwable)

CreateException

+ CreateException()

+ CreateException(String)

+ CreateException(String, Throwable)

+ CreateException(Throwable)

AuthorizationException

+ AuthorizationException()

+ AuthorizationException(String)

+ AuthorizationException(String, Throwable)

+ AuthorizationException(Throwable)

DeleteException

+ DeleteException()

+ DeleteException(String)

+ DeleteException(String, Throwable)

+ DeleteException(Throwable)

RollbackException

+ RollbackException()

+ RollbackException(String)

+ RollbackException(String, Throwable)

+ RollbackException(Throwable)

SessionException

+ SessionException()

+ SessionException(String)

+ SessionException(String, Throwable)

+ SessionException(Throwable)

UpdateException

+ UpdateException()

+ UpdateException(String)

+ UpdateException(String, Throwable)

+ UpdateException(Throwable)

QueryException

+ QueryException()

+ QueryException(String)

+ QueryException(String, Throwable)

+ QueryException(Throwable)

Name:

Package:

Version:

Author:

Exception Handling Model

Exception Handling Model

1.0

Dan Dumitru

Figure 5: Proposed Exception Class Hierarchy
For improved readability, the same exception class hierarchy is provided below in list format:

Alternate or additional persistence related exception classes under consideration (inspired by the javax.PersistenceException API
) include:

Sub-classing the proposed exceptions from a common parent, ApplicationException, allows exception handling to proceed in a more object-oriented manner. Callers that invoke the ApplicationService interface(s) can choose to treat all Application Exceptions equally as they do now with a single catch block. However, if the callers desire to deal with one of the proposed exception classes in a specific manner, they can catch the more specific exception type first and recover appropriately.

2.2.2 Code Changes to Classes that Use (Throw) ApplicationException

Classes that currently use (throw) ApplicationException will be modified to now throw one of the three (3) more specific exception classes, QueryException, DAOException, or SecurityException, as illustrated below:

Figure 6: Current Exception Handling Practice

 Figure 7: Proposed Exception Handling Practice

With this practice, none of the existing method signatures would change, thus preserving backwards compatibility with the current release.
Additionally, the proposed exception handling practice now also preserves the original exception via the constructor that takes a throwable cause as the second argument, thus providing more detailed information to the caller catching the thrown exception.

3. Query Detail Design

This section details the current SDK Query design, and, where applicable, describes opportunities to improve it. The information described herein is intended to complement the information contained within Chapter 3, Interacting with caCORE of the caCORE 3.1 Technical Guide. It is recommended that Chapter 3 be read before, or in conjunction with, this section in order to obtain the greatest clarity and comprehension.

Areas covered in this section include:

· The caCORE SDK tiered architecture, with the Query interface area highlighted
· Supported query types, including Simple, Nested, Detached Criteria, and HQL Search types
· Supported query interfaces, including the Java, XML-HTTP, and Web Service API’s
· How a Query is parsed and converted into one of the supported query types
3.1 The Query Interfaces within the caCORE SDK Tiered Architecture

Any system generated by the caCORE SDK shares the architecture shown below, which divides the generated application into a series of layers, or tiers
:

[image: image7.emf]
Figure 8: Query Interfaces within the caCORE SDK Tiered Architecture

While various functional areas, or tiers, are shown in the diagram, attention is focused in this section primarily to the query interaction between the Client and Application Service tiers, as highlighted above
.

The following sections discuss the various query types and interfaces, and details query processing sequences that take place within the Application Service layer prior to being handed off to the to the Persistence Tier for final processing.
3.2 Supported SDK Query Types

As described in the Technical Guide, the caCORE architecture includes an Application Service layer, or tier, that provides a single, common access paradigm to clients that rely heavily on strongly typed objects and an object-in/object-out mechanism. The methodology used for obtaining data from caCORE systems is often referred to as Query-by-Example. This methodology means that the inputs to the query methods are themselves domain objects that provide the criteria for the returned data.
The four (4) generalized types of queries, or searches, provided via the Application Service interface include:

· Simple Search: takes one or more domain objects as input, and returns a collection of objects from a persistent data source that meets the criteria specified by the input object.
· Nested Search: also takes one or more domain objects as input, but determines the type of objects in the result set by traversing a known path of associations from the domain model.
· Detached Criteria Search: takes a Hibernate Detached Criteria object as input, which is used to provide a greater level of control over the results of a search due to its ability to more readily specify Boolean operations, and range values.
· HQL Query Search: takes a Hibernate Query Language (HQL) string as input.
A sequence diagram illustrating the various possible query type interactions between a client and the SDK Application Service interface is shown below
:
[image: image8.emf]�

sd Query Type Sequence - Java Client

Client Tier Application Service Tier

«interface»

�

ApplicationService

�

Java Client

[if Simple Search (Single Criteria Object)]: List:= search(Class targetClass, Object obj)

[if Simple Search (Criteria Object Collection)]: List:= search(Class targetClass, List domainObjList)

[if Nested Search (Single Criteria Object)]: List:= search(String traversalPath, Object compoundDomainObj)

[if Nested Search (Criteria Object Collection)]: List:= search(String traversalPath, List domainObjList)

[if Detached Criteria Search]: List:= query(DetachedCriteria detachedCriteria, String targetClassName)

[if a Subsequent or Paging Detached Criteria Search]: List:= query(DetachedCriteria criteria, int firstRow, int resultsPerQuery, String targetClassName)

[if HQL Search]: List:= query(HQLCriteria hqlCriteria, String targetClassName)

 Figure 9: SDK Query Types
As illustrated in the diagram above, support for all four query types is implemented via a total of seven (7) application service methods. Each method is described briefly below.

3.2.1 Simple Search Query Type

The Simple Search query type is implemented via the following two Application Service interface query methods:

· Single Criteria Object [List:= search(Class targetClass, Object domainObj)]: Returns a List collection containing objects of the same type as the targetClass parameter that conform to the criteria defined by the domain object parameter, domainObj. Note that the single criteria object can be a compound (composite) object.

Example: search(Gene.class, gene).

· Criteria Object Collection [List:= search(Class targetClass, Object domainObjList)]: Returns a List collection containing objects of the same type as the targetClass parameter that conform to the criteria defined by a collection of objects in domainObjList. The returned objects must meet ANY criteria in domainObjList (i.e. a logical OR is performed).
Example: search(Gene.class, geneCollection).

3.2.2 Nested Search Query Type

The Nested Search query type is implemented via the following two Application Service interface query methods:

· Single Criteria Object [List:= search(String traversalPath, Object domainObj)]: Returns a List collection containing objects conforming to the criteria defined by domainObj and whose resulting objects are of the type reached by traversing the node graph specified by traversalPath.
Example: search("gov.nih.nci.cabio.domain.Protein, gov.nih.nci. cabio.domain.Gene", nucleicAcidSequence)

· Criteria Object Collection [List:= search(String traversalPath, List domainObjList)]: Returns a List collection containing objects conforming to the criteria defined by the objects in domainObjList and whose resulting objects are of the type reached by traversing the node graph specified by traversalPath.

Example: search("gov.nih.nci.cabio.domain.Protein, gov.nih.nci.cabio.domain.Gene", sequenceList)
3.2.3 Detached Criteria Query Type

The Detached Criteria
 Search query type is implemented via the following two Application Service interface query methods:

· Initial Search [List:= query(DetachedCriteria detachedCriteria, String targetClassName)]: Returns a List collection conforming to the criteria specified by Hibernate detachedCriteria and whose resulting objects are of the type specified by targetClassName.
Example: query(criteria, "gov.nih.nci.cabio.domain.Gene").
· Subsequent or Paging Search [List:= query(Object criteria, int firstRow, int resultsPerQuery, String targetClassName)]: Identical to the previous query method, but allows for greater control over the size of the returned result set by specifying the row number of the first row and the maximum number of objects to be returned.
Example: query(criteria, 101, 100, targetClassName).

3.2.4 HQL Criteria Query Type

The HQL
 Criteria Search query type is implemented via the following Application Service interface query method:

· HQL Search [List:= query(HQLCriteria hqlCriteria, String targetClassName)]: Returns a List collection of objects of the type specified by targetClassName that conform to the query in Hibernate Query Language (HQL) syntax contained in hqlCriteria.
Example: query(hqlCriteria, "gov.nih.nci.cabio.domain.Gene")

In an effort to minimize repetition, please refer to the Service Methods and Examples of Use sections of the caCORE 3.1 Technical Guide, pages 17-26 for a more detailed description of each of the service method signatures, as well as some example code.
3.3 Supported SDK Query Interfaces
As described in the Technical Guide, the caCORE architecture includes a service layer that provides a single, common access paradigm to clients via four (4) interfaces, including:

· Java API

· Web Services API

· XML-HTTP API

Each of the interfaces is discussed below.
3.4 Java API

As described in the caCORE 3.1 Technical Guide, the Java API provides direct access to domain objects and all application service methods for both local and remote Java clients. Because caCORE is natively built in Java, this API provides the fullest set of features and capabilities, and supports all four basic query types discussed in the section, Supported SDK Query Types.
A Sequence diagram illustrating the query interaction between a local Java client and the SDK native Java interface is shown below:

[image: image9.emf]�

sd Query Sequence - Local Java Client

Client Tier Application Service Tier

«Factory»

�

ApplicationServiceProvider

«ApplicationService»

�

ApplicationServiceImpl

«ApplicationService»

�

ApplicationServiceClientImpl

«ApplicationService»

�

ApplicationServiceServerImpl

�

Local Java Client

«InterfaceProxy»

�

BaseDelegate

�

ApplicationService

�

BusinessImpl

«ArrayList»

�

ListProxy

ApplicationService:= getApplicationService()

[if local]: (ApplicationService) ApplicationServiceImpl:= getLocalInstance()

[if Simple Search (Single Criteria Object)]: List:= search(targetClass, domainObj)

List:= search(targetClass, domainObj)

List:= search(path, domainObj)

List:= query(nestedCriteria,targetClassName)

List:= privateQuery(criteria,targetClassName)

Response:= query(request)

boolean:= addAll(results)

setOriginalStart(orginalStart)

setMaxRecordsPerQuery(maxRecordsPerQuery)

setOriginalCriteria(originalCriteria)

setServerAddress(serverAddress)

setTargetClassName(className)

Figure 10: Query Sequence - Local Java Client
A Sequence diagram illustrating the query interaction between a remote Java client and the SDK native Java interface is shown below:

[image: image10.emf]�

sd Query Sequence - Remote Java Client

Client Tier Application Service Tier

«InterfaceProxy»

�

BaseDelegate

«Factory»

�

ApplicationServiceProvider

«ApplicationService»

�

ApplicationServiceImpl

«ApplicationService»

�

ApplicationServiceClientImpl

«ApplicationService»

�

ApplicationServiceServerImpl

�

ApplicationService

�

BusinessImpl

�

Remote Java Client

«ArrayList»

�

ListProxy

ApplicationService:= getApplicationService()

[if remote]: (ApplicationService) ApplicationServiceClientImpl:= getRemoteInstance()

List:= search(targetClass, domainObj)

List:= search(clientInfo,targetClass,obj)

List:= search(targetClass, domainObj)

List:= search(targetClass, domainObj)

List:= search(targetClass,obj)

List:= search(path,obj)

List:= query(nestedCriteria,targetClassName)

List:= privateQuery(criteria,targetClassName)

Response:= query(request)

boolean:= addAll(results)

setOriginalStart(orginalStart)

setMaxRecordsPerQuery(maxRecordsPerQuery)

setOriginalCriteria(originalCriteria)

setServerAddress(serverAddress)

setTargetClassName(className)

Figure 11: Query Sequence - Remote Java Client

The following sections detail the Java API SDK classes participating in the Sequence diagram shown above.
3.4.1 gov.nih.nci.system.applicationservice.ApplicationServiceProvider

The gov.nih.nci.system.applicationservice.ApplicationServiceProvider class implements a variation of the Creational Factory Pattern
, which, given a super class and n sub-classes, and based on data provided, creates and returns the object of one of the sub-classes.

In the case of the SDK, the ApplicationServiceProvider creates an appropriate local or remote instance of the Application Service Interface super class, depending on whether the client that is invoking the ApplicationServiceProvider getRemote() method is local or remote, and returns it to the client.
An outline diagram listing the ApplicationServiceProvider attributes and methods is shown below
:

[image: image11.png]€ MyEclipse J2EE Development - A... [Z)[E)[X]
Fie Edit Source Refactor Navigate Search Project
MyEdipse Run Window Help

O 5| @ myedipse 122

o applcationService : ApplicationService:
©© AppiicationServiceProvider()
8 getappicationservice(
©§ getiocallnstance)
©§ getmemotelnstance(
©§ getRemotelnstance(sting)

Figure 12: gov.nih.nci.system.applicationservice.ApplicationServiceProvider Outline Diagram

3.4.2 gov.nih.nci.system.comm.client.ApplicationServiceClientImpl

The gov.nih.nci.system.comm.client.ApplicationServiceClientImpl class provides the client-side, local implementation of the Application Service interface class, and is returned by the ApplicationServiceProvider Factory class in the case when the Java client is remote to the SDK server.
The ApplicationServiceClientImpl forwards all query/search calls to its server-side counterpart, ApplicationServiceServerImpl, which is discussed in the next section.
An outline diagram listing the ApplicationServiceClientImpl attributes and methods is shown below. Note the implementation of the seven (7) application service methods that support all four query types discussed in the section, Supported SDK Query Types:

[image: image12.png]& MyEclipse J2EE Development - Applicati... (2)[E[X]
Fie Edit Source Refactor Navigate Search Project
MyEdipse Run Window Help

‘e | @ wyedipse 122,

© © appicatonserviceProxy : ApplcatonServicsProxy

@ appicationService : AppicationService

o % recordsCount it

o9 maxRecordsCount : int

% caseSenstivy : boolean

©° ApplicationServiceClentimpl)

© 2 getBeaninstance)

© 2 getBeaninstance(Sting)

& ° geRemoteSeniceFromPath(String)

8° getRemoteServiceFromClassPath)

@ getClentinfo

© .. setRecordsCountnt)

© . setSearchCaseSensitvity Booiean)
search(Sting, List)

.. search(string, Object)

.1 search(Clss, Lst)

.. search(Clss, Object)

. query(Qbject, int, nt, Sting)
auery(etachedCrieria, String)

© .2 query(HQLCriteria, String)

© .- getQueryRonCount(Object, String)

.. getObjects(Object)

.. cresteObject(Object)

. updateObject(Object)

© . removeObject(Object)

Figure 13: gov.nih.nci.system.comm.client.ApplicationServiceClientImpl Outline Diagram

3.4.3 gov.nih.nci.system.comm.server.ApplicationServiceServerImpl
The gov.nih.nci.system.comm.server.ApplicationServiceServerImpl class provides the server-side, remote implementation of the Application Service interface class, and is used in the case when the Java client is remote to the SDK server.
ApplicationServiceServerImpl forwards all query/search calls to ApplicationServiceImpl, which is discussed in the next section.
An outline diagram listing the ApplicationServiceServerImpl public methods is shown below. Note the implementation of the seven (7) application service methods that support all four query types discussed in the section, Supported SDK Query Types:

[image: image13.png]& MyEclipse J2EE Development - Applicati... |
Fle Edt Source Refactor Navigate Search Project
MyEdpse Run Window Help

‘e | @ wyedipse 122,

© . authenticate(String, String)

. logOut(String)

... setSearchCaseSensitvity(Clintinfo)

© . setRecordsCount(Centinfo)

© . search(Cientinfo, String, List)

© . search(Cientinfo, String, Object)

© . search(Cientinfo, Class, List)
Search(Clientinfo, Class, Object)

© . query(Clintinfo, Object,int, int, String)

© . query(Clintinfo, DetachedCritera, String)

© . query(Clintinfo, HQLCritera, String)

© . getQueryRoCount(Clientinfo, Object, String)
‘eateObject(Cientino, Object)

© . updateObject(Clientinfo, Object)

© . removeObject(Clientinfo, Object)

© . getObjects(Cientinfo, Object)

Figure 14: gov.nih.nci.system.comm.server.ApplicationServiceServerImpl Outline Diagram

3.4.4 gov.nih.nci.system.applicationservice.impl.ApplicationServiceImpl

The gov.nih.nci.system.applicationservice.impl.ApplicationServiceImpl class is a business service object that implements the business logic of the ApplicationService interface, which provides a variety of query/search methods for querying the SDK generated HTTP server.

Additionally, the ApplicationServiceImpl class implements the persistence Writeable DAO functionality, which is discussed in the section Writeable DAO: Create, Read, Update, Delete Interface.
The ApplicationServiceImpl forwards all query/search calls to ApplicationServiceBusinessImpl, which is discussed in the next section.

An outline diagram listing the ApplicationServiceBusinessImpl attributes and methods is shown below. Note the implementation of the seven (7) application service methods that support all four query types discussed in the section, Supported SDK Query Types:

[image: image14.png]& MyEclipse J2EE Development - ApplicationServi.... (= (8]
Fle Edt Souce Refctor Nevigate Search Project MyEdipse Bun

cwT==®

>ApplicationServiceImpl 1.2 (ASCIT +kv)

@ applicationServiceBusinessmpl : ApplicationServiceBusinessimpl

o wntableDAO : WintableDAO

©° applcationservicelmpl)

© = getBeaninstance)

© getBeanInstance(String)

© . setRecordsCount(int)

. setSearchCaseSensitity(bodean)

@ . getQueryRowCount(Object, String)
query(DetachedCriteria, String)

© .. queryHQLCrteri, String)

© . query(Object, int, int, String)

© .. search(Class, Object)

@ . search(Class, List)

© - search(String, Object)

© . search(String, List)

. GesteObjectObject)

© .2 UpdateObject(Object)
removeObject(Object)

Figure 15: gov.nih.nci.system.applicationservice.impl.ApplicationServiceImpl Outline Diagram

3.4.5 gov.nih.nci.system.applicationservice.impl.ApplicationServiceBusinessImpl

The gov.nih.nci.system.applicationservice.impl.ApplicationServiceBusinessImpl class is a business service object that implements the business logic of the ApplicationService interface, which provides a variety of query/search methods for querying the SDK generated HTTP server.

An outline diagram listing the ApplicationServiceBusinessImpl attributes and methods is shown below. Note the implementation of the seven (7) application service methods that support all four query types discussed in the section, Supported SDK Query Types:

[image: image15.png]Fle Edt Sorce Refactor Navigate Search Project
MyEdpse Bun Wndow e
‘e | @ wyedipse 122,

& e (0 Resouce

@ getRemotelnstance(String)

© ¢ getlocallnstance)
£ gethppicationservice(

© ¢ getinstance)

© semecordsCounting)

© getQuenRonCount{Obiect, Sring)

® query(DetachedCriteria, String)
auery(HQCrtera, String)

© query(Object, int, nt, String)

@ printResults(List)

@ printTree(List)

© search(Clss, Obyect)

@ search(Class, List)

serch(strng, Object)

 _ search(song, Lst)
getFulQName(stng)

© setsearchCasesensitity(booean)

Figure 16: gov.nih.nci.system.applicationservice.impl.ApplicationServiceBusinessImpl Diagram
3.4.6 gov.nih.nci.common.util.ListProxy

The gov.nih.nci.common.util.ListProxy class implements the List interface, extending the ArrayList class. It is used to hold the results of a given query, along with details of the original request, including the original query criteria object, start index, serverAddress, targetClassName, and the real size of result list, if completely materialized.
An outline diagram listing the ListProxy attributes and methods is shown below.

[image: image16.png]e

Fie Edit Source Refactor Navigate Search Project MyEdipse
Run Window Help
- (B AR m([@weex
LR 8 &0 reamsyncn.
$-0-Q- (s CUS Reposto.
ss® $50aug &)
B Resource

setvarRecordsPerQuery(nt)
setOrgialCiteria(Object)
setOrignaistart(n)
seRealSize(nt)
SetServeraddress(String)
setTargetClasshame(String)
©.size)

Figure 17: gov.nih.nci.common.util.ListProxy Outline Diagram
3.5 Web Services API
As described in the caCORE 3.1 Technical Guide, the caCORE Web services API allows access to caCORE data from development environments where the Java APIs cannot be used, or where use of XML Web services is more desirable. This includes non-Java platforms and languages such as Perl, C/ C++, .NET Framework (C#, VB.Net), Python, etc. The Web services interface can be used in any language-specific application that provides a mechanism for consuming XML Web services based on the Simple Object Access Protocol (SOAP). In these environments, connecting to caCORE can be as simple as providing the endpoint URL. Some platforms and languages require additional client-side code to handle the implementation of the SOAP envelope and the resolution of SOAP types. A list of packages catering to different programming languages is available at http://www.w3.org/TR/SOAP/ and at http://www.soapware.org/.
To maximize standards-based interoperability, the caCORE Web service conforms to the Web Services Interoperability Organization (WS-I) Basic Profile
.
The Web Services API provides a limited subset of the query features and capabilities of the SDK, and only supports one (Simple Search) of the four basic query types discussed in the section, Supported SDK Query Types.
A Sequence diagram illustrating the query interaction between a Web Service client and the SDK Web Service interface is shown below:

[image: image17.emf]�

sd Query Sequence - Web Service Client

Client Tier Web Services API Tier Application Service Tier

«InterfaceProxy»

�

BaseDelegate

«Factory»

�

ApplicationServiceProvider

«ApplicationService»

�

ApplicationServiceImpl

�

ApplicationService

�

BusinessImpl

�

WSQuery

�

WSTransformer

Axis Web

Services API

�

Web Service Client

«ArrayList»

�

ListProxy

[if queryObject operation]: Object[] resultList:= queryObject(targetClassName, domainObj)

List:= queryObject(targetClassName,criteria)

List:= query(targetClassName,criteria,startIndex,recordCounter)

[if query operation]: Object[] resultList:= query(String targetClassName, Object criteria, int startIndex, int recordCounter)

List:= query(targetClassName,criteria,startIndex,recordCounter)

List:= query(targetClassName,criteria,startIndex,recordCounter)

List:= getResultSet(targetClassName,criteria)

String:= getSearchClassName(targetClassName)

Object:= getSearchCriteria(criteria)

Object:= buildSearchCriteria(obj)

ApplicationService:= getLocalInstance()

List:= search(path, domainObj)

List:= search(targetClass, domainObj)

List:= search(targetClass,obj)

List:= search(path,obj)

List:= query(nestedCriteria,targetClassName)

List:= privateQuery(criteria,targetClassName)

Response:= query(request)

boolean:= addAll(Collection results)

setOriginalStart(orginalStart)

setMaxRecordsPerQuery(maxRecordsPerQuery)

setOriginalCriteria(originalCriteria)

setServerAddress(serverAddress)

setTargetClassName(className)

List:= generateWSResults(results)

generateWSResults(result,newResult,resultClass,newResultClass)

c
Figure 18: Query Sequence - Web Service Client
The following sections detail the Web Services API SDK classes participating in the Sequence diagram shown above.
3.5.1 Web Services Client

The Web Services Client actor represents a client written in any of the languages, such as Perl, C/ C++, .NET Framework (C#, VB.Net), or Python, that support XML Web Services based on the Simple Object Access Protocol (SOAP).
3.5.2 Axis Web Services API

On the SDK server side of the Web Services API, Apache Axis is used to provide SOAP-based inter-application communication. Axis provides the appropriate serialization and de-serialization methods for the Java beans to achieve an application-independent interface
.

3.5.3 gov.nih.nci.system.webservice.WSQuery

The gov.nih.nci.system.webservice.WSQuery is the backend implementation class for the Axis Web Services API, and implements the queryObject and query operations.
The queryObject operation performs a search for objects conforming to the criteria defined by the criteria domain object input parameter. The resulting objects can be reached by traversing the node graph specified by the parameter that indicates the target class name path. The result is a set of serialized objects.
The query operation is almost identical to the queryObject operation. The query operation allows for control over the result by specifying the row number of the first row via the startIndex parameter, and setting the maximum number of objects to return via the recordCounter parameter.

As mentioned before, the Web Services API provides a limited subset of the query features and capabilities of the SDK, and only supports one (Single Criteria Object, Simple Search) of the four basic query types discussed in the section, Supported SDK Query Types. More specifically, the queryObject and query operations provide a Web Service interface to the Single Criteria Object Simple Search query type discussed in the section, Simple Search Query Type.
An example of an Axis client Web Service invocation is shown below:
Object[] resultList = (Object[])call.invoke(

new Object[]{"gov.nih.nci.cabio.domain.ws.Gene", gene });

An outline diagram listing the WSQuery attributes and methods is shown below:
[image: image18.png]& MyEclipse J2EE Development - WSQue.... [= |[E)X]
Fie Edt Souce Refactor Navigate Search Project

oune x NP R Sl

o WSQuery 1.2 (ASCI)

& log Logger

& bearFieName : String
fName : Sring
maximunRecordsPerQuery :nt
processOntology boolean
recordsperQuery : int
ransformer : WSTransformer
version : String
wepackage : boolean
wsqueny0
getiaximumRecordsPerQuery(
getProcessOntaoay(
getRecordsPerQueny)
‘getResuset(Strng, Object)
getTotaumberOfRecords(String, Object)
getiersin)
loadProperties)
loagWSTransformer
Query(String, Obect nt, nt)
QueryObjectiString, Object)

Figure 19: gov.nih.nci.system.webservice.WSQuery Outline Diagram

Please refer to the Operations, Web Services API section of the caCORE 3.1 Technical Guide documentation for more information and examples.
3.5.4 gov.nih.nci.system.webservice.WSTransformer

The gov.nih.nci.system.webservice.WSTransformer is a Helper class used by the WSQuery class to transform (deserialize) a query request (via the buildSearchCriteria(), getSearchClassName(), and getSearchCriteria() methods) into a format understood by the Application Service interface.
The WSTransformer class also provides a method, generateWSResults(), which serializes query results into a format suitable for transport and return to the Web Service Client.
An outline diagram listing the WSTransformer attributes and methods is shown below:
[image: image19.png]& MyEclipse J2EE Development. (=]
FEle Edit Source Refactor Navigate Search
Project MyEdipse Run Window b

(w2 | @ wyedipse 122,

@ &oava [Resource

&2

&4-46

&8

$-0-

EHE

=-§D, WSTransformer 1.1 (ASCI 4kv)
@ WsTransformer(String)
buidSearchCriteria(Object)
generateliSResultsis)
getProcessOntaoay(
getSearchClasshame(String)
getSearchCrteria(Object)

Figure 20: gov.nih.nci.system.webservice.WSTransformer Outline Diagram
3.6 XML-HTTP API
As described in the caCORE 3.1 Technical Guide, the caCORE XML-HTTP API, based on the Representational State Transfer (REST)
 architectural style, provides a simple interface using the HTTP protocol. In addition to its ability to be invoked from most internet browsers, developers can use this interface to build applications that do not require any programming overhead other than an HTTP client. This is particularly useful for developing web applications using AJAX (asynchronous JavaScript and XML).
A Sequence diagram illustrating the query interaction between an XML or HTTP client and the SDK XML-HTTP API is shown below:
[image: image20.emf]�

sd Query Sequence - XML-HTTP Client

Client Tier XML-HTTP API Tier Application Service Tier

«InterfaceProxy»

�

BaseDelegate

«Factory»

�

ApplicationServiceProvider

«ApplicationService»

�

ApplicationServiceImpl

�

ApplicationService

�

BusinessImpl

�

XML/HTTP Client

«HTTPServlet»

�

HTTPQuery

�

HTTPUtils

doPost(request,response)

doGet(request,response)

String queryType:= getQueryType(url)

boolean:= validateQuery(query)

setQueryArguments(queryText)

Object[] resultSet:= getResultSet()

String searchPath:= getSearchClassNames(searchClasses,packageName)

List criteriaList:= getSearchCriteriaList(criteria)

Object criteria:= buildSearchCriteria(packageName,criteriaList)

ApplicationService appService:= getApplicationService()

ApplicationService:= getLocalInstance()

List results:= search(targetClass,obj)

List:= search(targetClass, domainObj)

List:= search(targetClass,obj)

List:= search(path,obj)

List:= query(nestedCriteria,targetClassName)

List:= privateQuery(criteria,targetClassName)

Response:= query(request)

for(int i = index, s=0; i< counter; i++,s++) {resultSet[s]= results.get(i);}

Figure 21: Query Sequence – XML-HTTP Client
The following sections detail the XML-HTTP API SDK classes participating in the Sequence diagram shown above.
3.6.1 gov.nih.nci.system.proxy.HTTPQuery

The gov.nih.nci.system.proxy.HTTPQuery extends the standard javax.servlet.http.HttpServlet class. One of its primary functions is to interpret the query request embedded within a standard HttpRequest object, and to make the appropriate calls to the caCORE Server. The results are sent back to the user as an XML or HTML document depending upon whether the GetXML or GetHTML Servlet request was made.
XQuery-like syntax is used to generate the query. The syntax of the query is shown below:
http://{server}/{servlet}?query={returnClass}&{criteria}&

resultCounter={counter}&startIndex={index}&

pageSize={pageSize}&pageNumber={pageNumber}
An example of the query is shown below:

http://server/servlet/GetXML?query=Gene&Gene[@symbol=brca*]

The value of {servlet} must be either GetXML, or GetHTML, as specified below in the highlighted portion of the web.xml file. Note that both the GetXML and GetHTML queries map to the same SDK HTTPQuery Servlet:

[image: image21.png]& MyEclipse J2EE Development - web.xmi - Eclipse SDK
Fie Edt Souce lavgote Search Projct MyEdpse Run XML Vindow e
-Ee 43850

B ks | s | B ks | B rrme_ (RSED

& e

Resource

=%

Tservie
<servlet-name>HTTPServer</serviec-name>
<servlet-class>gov.nih.nci.system.proxy.HITPServer</servie
<load-on-startup>1</load-on-startup>

</servi

<serviec:
<servlet-name>AxisServiet</serviet-name>
<display-name>Apache-Axis Servliet</display-name>
<serviet-class>org.apache.axis.tran: . AxisServies</servie
</serviecs
<serviec>
<servlet-name>GetXML</serviet-name>
<servlect-class>gov.nih.nci. system.proxy.HITEQ
rvlec>
viet>
<servlec-name>GetHIML</servlet-name>
<serviet-class>gov.nih.nci.system.proxy.HITEQuery</serviet—clas
</serviecs)
<serviec:

<3sp-file>Happy.jsp</3esp-file>
</servi

Design |source

Writable Smartinsert | 5811

Figure 22: XML-HTTP Servlet Mappings
An outline diagram listing the HttpQuery attributes and methods is shown below:
[image: image22.png]& MyEclipse J2EE Development - HTTPQu

Fie Edit Source Refactor Navigate Search Project
MyEdpse Run Wndow e
O 8 5| @ myedipse 122
&8 &' amva [0 Resource
IR

é

P ——
mport decaratons
=-§9, >HTTPQuery 1.3 (ASCIT 4kv)

= % lag Logger

o % propertes: ropertes

° cacorestylesheet Srng

o pagesie:int

.0 destroy)

= doGet(HtpservietRequest, HtpServieResponse)
doPost{tpServieRequest, HitpServietResponse)
cetfielist(Sring)

© getTM.DocumentDocument, Sring)

B getquensyntax)

.« itServietConto)

B loscPropertes(sting)
valdateQuery(string)

© XSLTTransformer (Document, Inputsiream)

Figure 23: gov.nih.nci.system.proxy.HTTPQuery Outline Diagram

Please refer to the Service Location and Syntax, XML-HTTP API section of the caCORE 3.1 Technical Guide documentation for more information on the XML-HTTP query syntax, as well as usage examples.
3.6.2 gov.nih.nci.common.util.HTTPUtils

As its name implies, the HTTPUtils is a utility, or helper class used by the HTTPQuery class discussed in the previous section. The HTTPUtils class provides various methods to generate search criteria from XQuery like syntax, and also class also provides functionality to generate XML results.

An outline diagram listing the HttpQuery public methods is shown below:
[image: image23.png]°
°
»

cococovVooe

etTargetpackageliame(
‘getMLDocument(Object(, nt)
PackageNameAmbiguous(String)
locateClass(sting)
printResuts{HtpServietResponse)
setpagesize(int)
‘setproperties(Propertes)
setQueryArguments(String)
seResuts(ist)
setServethame(string)
setStartindex(string)

Figure 24: gov.nih.nci.common.util.HTTPUtils Outline Diagram
4. Persistence Tier Detail Design

This section details the current SDK persistence design, and describes opportunities to improve it. Areas covered in this section include:

· The Persistence Tier within the caCORE SDK Tiered Architecture

· The Base Delegate Query Interface

· The Writable DAO Create, Read, Update, Delete (CRUD) Interface

4.1 The Persistence Tier within the caCORE SDK Tiered Architecture
Any system generated by the caCORE SDK is divided into a series of layers, or tiers
 (see Figure 25 below).
[image: image24.emf]
Figure 25: Persistence Tier within the caCORE SDK Tiered Architecture
While various functional areas are shown in the diagram, the focus of this section is to what has been termed the “Persistence Tier.” The “Persistence Tier” includes: the Data Source delegation, Object-Relational Mapping (ORM), and the non-ORM mapping functional areas highlighted above.

Interaction between the Application Service and the Persistence Tiers currently occurs via one of the two following “interfaces”:
· Base Delegate Query Interface

· Writable DAO Create, Read, Update, Delete (CRUD) Interface

Each interface is discussed below.

4.2 Base Delegate Query Interface
The following sequence diagram illustrates the interaction between the Application Service and Object-Relational Mapping (ORM) Persistence tier classes (including several Hibernate ORM classes), as implemented via the Base Delegate Query interface:

[image: image25.emf]�

sd Persistence Sequence Diagram - BaseDelegate Query Interface

Application Service Tier Persistence Tier: Data Source Delegation Persistence Tier: Hibernate Object-Relational Mapping

�

BaseDelegate

�

DAOFactory

�

ServiceLocator

�

ORMDAOFactory

�

ORMDAOImpl

�

ORMConnection «Criteria»

�

CriteriaImpl

�

DetachedCriteria

�

NestedCriteria2HQL «Query»

�

QueryImpl

«Session»

�

SessionImpl

�

ApplicationService

�

BusinessImpl

Response:= query(request)

Hashtable:= getDataSourceCollection(objectName)

String datasource:= getDataSourceCollectionValue(dataSource,key)

[if ORM datasource]: ORMDAOFactory:= getFactory(gov.nih.nci.common.util.Constant.ORM_DAO)

gov.nih.nci.common.net.Response:= query(gov.nih.nci.common.net.Request)

Response:= query(request)

int counter:= getORMCounter(domainObjectName)

ORMConnection:= getInstance()

org.hibernate.Session session:= openSession(counter)

[if criteria instanceOf DetachedCriteria]: Criteria:= getExecutableCriteria(session)

[if criteria instanceOf DetachedCriteria]: List:= list()

[if criteria instanceOf NestedCriteria]: NestedCriteria2HQL converter:= NestedCriteria2HQL(criteria,cfg,session)

[if criteria instanceOf NestedCriteria]: Query query:= converter.translate()

[if criteria instanceOf NestedCriteria]: List:= query.list()

[if criteria instanceOf HQLCriteria]: Query query:= createQuery(criteria.getHqlString())

[if criteria instanceOf HQLCriteria]: List:= query.list()

Figure 26: Persistence Tier (Base Delegate Query Interface) Sequence Diagram
The Sequence diagram above provides a structured representation of the SDK persistence behavior as a series of sequential steps over time as implemented via the Base Delegate Query interface. The diagram also illustrates the message passing between various participating SDK classes, and how these classes cooperate over time to process a gov.nih.nci.common.net.Request object to produce a query result returned in the form of a gov.nih.nci.common.net.Response object.
Presentation Tier clients, as well as RDBMS data sources, are omitted from the diagram in order to preserve focus, and also due to space limitations.
The following sections detail the SDK classes participating in the Sequence diagram shown above.
4.2.1 gov.nih.nci.system.applicationservice.impl.ApplicationServiceBusinessImpl

The gov.nih.nci.system.applicationservice.impl.ApplicationServiceBusinessImpl class is a business service object that implements the ApplicationService interface, which provides a variety of methods for querying the HTTP server.

An outline diagram listing the ApplicationServiceBusinessImpl attributes and methods is shown below
:

[image: image26.png]‘copyValue(Object, Object, Class)
‘copyValueTolmpl(Object, Object, Class)
eateNestedCiiteriallst List)
reateNestedCriterallst, Object)
‘getAssociation(Object, String)
‘getQueryRowCount(Object, String)
nolnheritent(String, String)
prinResuits(ist)

printTree(Uist)
privateQuery(Object, String)
query(DetachedCritera, String)
query(HQLCiiteria, Sting)
query(NestedCriteria, Sting)
query(Object, int, in, String)
search(Class, List)

search(Class, Object)
‘search(String, List)

‘search(String, Object)
setRecordsCount(nt)

Figure 27: gov.nih.nci.system.ApplicationBusinessImpl Outline Diagram
4.2.2 gov.nih.nci.common.net.Request

The gov.nih.nci.common.net.Request class (not shown in the sequence diagram due to space limitations) implements a variation of the Data Transfer Object pattern
, which is used to encapsulate and transfer business data across application tiers.
The Request class encapsulates a client’s query request details, including configuration data to connect to a specified data source, the name (type) of the domain object being queried, and the selection criteria.
An outline diagram listing the Request attributes and methods is shown below:

[image: image27.png]

Figure 28: gov.nih.nci.common.net.Request Outline Diagram
4.2.3 gov.nih.nci.common.net.Response

The gov.nih.nci.common.net.Response class (not shown in the sequence diagram due to space limitations) implements a variation of the Data Transfer Object pattern
, which is used to encapsulate and transfer business data across application tiers.

The Response object encapsulates the result of a client’s query request, including a List of objects (stored in the response attribute) that met the query criteria. The type and number of objects returned in the list is determined, in part, by the name of the domain object stored in the Request domainObjectName attribute and the filtering criteria stored in the Request request attribute.
An outline diagram listing the Response attributes and methods is shown below:
[image: image28.png]

Figure 29: gov.nih.nci.common.net.Response Outline Diagram
4.2.4 gov.nih.nci.system.delegator.BaseDelegate
The gov.nih.nci.system.delegator.BaseDelegate class implements a variation of the Business Delegate pattern
. This pattern strives to reduce coupling between presentation-tier clients and business services.
In the case of the caCORE SDK, the BaseDelegate class hides the underlying implementation details of the query business service (such as the lookup and access details of the data access object architecture implemented within the persistence tier) from its internal client, the ApplicationService (ApplicationServiceBusinessImpl) class.
An outline diagram listing the BaseDelegate attributes and methods is shown below:

[image: image29.png]BV e W~

Figure 30: gov.nih.nci.system.delegator.BaseDelegate Outline Diagram
4.2.5 gov.nih.nci.system.servicelocator.ServiceLocator

The gov.nih.nci.system.servicelocator.ServiceLocator class implements a variation of the Service Locator pattern
. This pattern reduces coupling between presentation-tier clients and business services.
In the case of the caCORE SDK, the ServiceLocator class hides the implementation details of the Data Access Object (DAO) lookup and access within the SDK persistence tier.

An outline diagram listing the ServiceLocator attributes and methods is shown below:
[image: image30.png]- ServiceLocator. java - Eclipse.

getDocument)
‘getDataSourceCollectionValue(Hashtable, Sting)
getDataSourceCollecton(String)
updateDataSourceColicton(String, Stringl)
GetORMCount)

GetORMCounter(String)

Figure 31: gov.nih.nci.system.servicelocator.ServiceLocator Outline Diagram
4.2.6 gov.nih.nci.system.dao.DAOFactory

The gov.nih.nci.system.dao.DAOFactory class implements the Factory for Data Access Objects strategy (see also the Factory Method [GoF] pattern)
, which deals with the problem of creating objects (products) without specifying the exact class of object that will be created. Factory Method, one of the patterns from the Design Patterns book, handles this problem by defining a separate method for creating the objects, which subclasses can then override to specify the derived type of product that will be created.
In the case of the caCORE SDK, the DAOFactory abstract class specifies the signature of the getFactory(int whichFactory) method common to all caCORE concrete DAO Factory subclasses, including the Object Relational Mapping Data Access Object Factory (ORMDAOFactory) class discussed in the following section.

An outline diagram listing the DAOFactory attributes and methods is shown below:
[image: image31.png]& ©f DAoactary 1.1 (3SCl)
0" queryRequest)
© © getFactory(int)

Figure 32: gov.nih.nci.common.net.Request Outline Diagram
4.2.7 gov.nih.nci.system.dao.ORMDAOFactory

The gov.nih.nci.system.dao.ORMDAOFactory object is a concrete subclass of the abstract DAOFactory class discussed in the previous section. It is responsible for creating Object Relational Mapping (ORM) DAO instances. It also implements the query(Request) method specified in the parent DAOFactory class.

An outline diagram listing the ORMDAOFactory attributes and methods is shown below:

[image: image32.png]

Figure 33: gov.nih.nci.system.dao.ORMDAOFactory Outline Diagram
4.2.8 gov.nih.nci.system.dao.impl.orm.ORMDAOImpl

The gov.nih.nci.system.dao.impl.orm.ORMDAOImpl class implements the Data Access Object (DAO) pattern
. This pattern abstracts and encapsulates all access to a given data source. The DAO also manages the connection with the data source to obtain and store data.

ORMDAOImpl also implements the query(Request) method. This method converts a caCORE gov.nih.nci.common.net.Request into a corresponding Hibernate query that returns results from a specified ORM data source.
An outline diagram listing the ORMDAOImpl attributes and methods is shown below:

[image: image33.png]& Java - ORMDAOImpl.java -

o sf: SessonFactory
4 recordsperQuery :nt
a mmmdsmy it

Figure 34: gov.nih.nci.system.dao.ORMDAOImpl Outline Diagram
4.2.9 gov.nih.nci.system.dao.impl.orm.ORMConnection

The gov.nih.nci.system.dao.impl.orm.ORMConnection is a Singleton object that creates and manages up to two instances of the Hibernate SessionFactory object. This Hibernate object is responsible for creating Hibernate Sessions. Threads servicing client requests obtain Sessions from the factory.

An outline diagram listing the gov.nih.nci.system.dao.impl.orm.ORMConnection attributes and methods is shown below:

[image: image34.png]& Java - ORMConnection.java ... [|[E]
e Edt Souce Refactor Navgate Search

o configurations : Configuration]

@ ORMConnection)

©§ getinstance()

®° gethlewlnstance)
‘opensession(int)
‘getConfiguration(int)

Figure 35: gov.nih.nci.system.dao.ORMConnection Outline Diagram
4.2.10 gov.nih.nci.common.util.NestedCriteria2HQL

The gov.nih.nci.common.util.NestedCriteria2HQL class primarily converts, or translates, a gov.nih.nci.common.util.NestedCriteria into a Hibernate HQL org.hibernate.Query, which is an object-oriented representation of a Hibernate query obtained by calling Session.createQuery().

An outline diagram listing the NestedCriteria2HQL attributes and methods is shown below:

[image: image35.png]NestedCriteria2+QL (NesteCriteria, Configuration, Sess.
perantist : List
fransitel
getCountQuery(
setattCiterion(Object, PersistentClass, HashMap)
‘getObjatuCrieron(Object, Configuration)
sethssoCriterion(Object, PersistentClas, Hashap)
‘getObjassocCrterion(Object, Configuraton)
setaias(strng)
‘getObjectCriteron(String, Object, Configuratior)
getOperator(Object) r

>

Figure 36: gov.nih.nci.system.dao.ORMConnection Outline Diagram
4.3 Writable DAO Create, Read, Update, Delete Interface
The following sequence diagram illustrates the interaction between the Application Service and Object-Relational Mapping (ORM) Persistence tier classes (including several Hibernate ORM classes), as implemented via the Writable DAO interface.
[image: image36.emf]�

sd Persistence Sequence Diagram - WritableDAO CRUD Interface

Application Service Tier Persistence Tier: Data Source Delegation Persistence Tier: Hibernate Object-Relational Mapping

�

ServiceLocator

�

ORMConnection «Session»

�

SessionImpl

�

WritableDAO

�

ApplicationServiceImpl «Transaction»

�

JTATransaction

«Criteria»

�

CriteriaImpl

Object:= createObject(object)

Object:= updateObject(object)

removeObject(obj)

Session:= getSession(object)

int:= getORMCounter(domainObjectName)

ORMConnection:= getInstance()

Session:= openSession(counter)

Transaction:= beginTransaction()

[if createObject()]: Serializable:= save(obj)

[if updateObject()]: update(obj)

[if removeObject()]: delete(object)

commit()

Connection:= close()

List:= getObjects(object)

Session:= getSession(object)

int:= getORMCounter(domainObjectName)

ORMConnection:= getInstance()

Session:= openSession(counter)

Criteria:= createCriteria(object.getClass())

Criteria:= add(Example.create(object))

Connection:= close()

List:= list()

Figure 37: Persistence Tier (Base Delegate Query Interface) Sequence Diagram

The Sequence diagram above provides a structured representation of the SDK persistence behavior. It is displayed as a series of sequential steps over time, as implemented via the Writable DAO CRUD interface. The createObject(), updateObject(), and removeObject() all share the same basic set of sequential steps, with the exception of the Hibernate Session save(), update(), and delete() method invocations. The WritableDAO getObjects() method has a slightly different sequence of steps, and is shown separately at the bottom of the diagram.

The diagram also illustrates the message passing between various participating SDK classes, and how these classes cooperate over time to process a gov.nih.nci.common.net.Request object to produce a query result returned in the form of a gov.nih.nci.common.net.Response object.
Presentation Tier clients, as well as RDBMS data sources, are omitted from the diagram in order to preserve focus.
The following sections detail the SDK classes participating in the Sequence diagram shown above.
4.3.1 gov.nih.nci.system.applicationservice.impl.ApplicationServiceImpl

The gov.nih.nci.system.applicationservice.impl.ApplicationServiceImpl class implements the local (server side) instance of the ApplicationService
 interface (in contrast to the gov.nih.nci.system.comm.client.ApplicationServiceClientImpl class, which implements the remote (client side) instance).
The ApplicationServiceImpl class also acts as a wrapper class, forwarding the responsibility for handling requests to the ApplicationServiceBusinessImpl class; i.e., it just calls methods from the ApplicationServiceBusinessImpl class without doing any work itself.

A class diagram illustrating the relationships between the various ApplicationService interface related classes is shown below
[image: image37.emf]�

cd Business Object

applicationservice::ApplicationService

+ createObject(object) : Object

getBeanInstance() : ApplicationService

getBeanInstance(URL) : ApplicationService

+ getInstance() : ApplicationService

+ getLocalInstance() : ApplicationService

+ getObjects(object) : List

+ getQueryRowCount(criteria, targetClassName) : int

+ getRemoteInstance() : ApplicationService

+ getRemoteInstance(URL) : ApplicationService

+ query(detachedCriteria, targetClassName) : List

+ query(hqlCriteria, targetClassName) : List

+ query(criteria, firstRow, resultsPerQuery, targetClassName) : List

+ removeObject(object) : void

+ search(targetClass, obj) : List

+ search(targetClass, objList) : List

+ search(path, obj) : List

+ search(path, objList) : List

+ setRecordsCount(recordsCount) : void

+ setSearchCaseSensitivity(caseSensitivity) : void

+ updateObject(object) : Object

impl::ApplicationServiceImpl

+ ApplicationServiceImpl()

+ createObject(obj) : Object

getBeanInstance() : ApplicationService

getBeanInstance(URL) : ApplicationService

+ getObjects(obj) : List

+ getQueryRowCount(criteria, targetClassName) : int

+ query(detachedcriteria, targetClassName) : List

+ query(hqlcriteria, targetClassName) : List

+ query(criteria, firstRow, resultsPerQuery, targetClassName) : List

+ removeObject(obj) : void

+ search(targetClass, obj) : List

+ search(targetClass, objList) : List

+ search(path, obj) : List

+ search(path, objList) : List

+ setRecordsCount(recordsCount) : void

+ setSearchCaseSensitivity(caseSensitivity) : void

+ updateObject(obj) : Object

impl::ApplicationService BusinessImpl

+ getApplicationService() : ApplicationService BusinessImpl

+ getFullQName(name) : String

+ getInstance() : ApplicationService BusinessImpl

+ getLocalInstance() : ApplicationService BusinessImpl

+ getQueryRowCount(criteria, targetClassName) : int

+ getRemoteInstance(httpURL) : ApplicationService BusinessImpl

+ printResults(resultList) : void

+ printTree(resultList) : void

+ query(detachedCriteria, targetClassName) : List

+ query(hqlCriteria, targetClassName) : List

+ query(criteria, firstRow, resultsPerQuery, targetClassName) : List

+ search(targetClass, obj) : List

+ search(targetClass, objList) : List

+ search(path, obj) : List

+ search(path, objList) : List

+ setRecordsCount(i) : void

+ setSearchCaseSensitivity(caseSensitivity) : void

server::ApplicationServiceServerImpl

+ ApplicationServiceServerImpl()

+ authenticate(userId, password) : String

+ createObject(clientInfo, domainobject) : Object

+ getObjects(clientInfo, domainobject) : List

+ getQueryRowCount(clientInfo, criteria, targetClassName) : int

+ logOut(sessionKey) : void

+ query(clientInfo, criteria, firstRow, resultsPerQuery, targetClassName) : List

+ query(clientInfo, detachedCriteria, targetClassName) : List

+ query(clientInfo, hqlCriteria, targetClassName) : List

+ removeObject(clientInfo, domainobject) : void

+ search(clientInfo, path, objList) : List

+ search(clientInfo, path, obj) : List

+ search(clientInfo, targetClass, objList) : List

+ search(clientInfo, targetClass, obj) : List

+ setRecordsCount(clientInfo) : void

+ setSearchCaseSensitivity(clientInfo) : void

+ updateObject(clientInfo, domainobject) : Object

client::ApplicationServiceClientImpl

+ ApplicationServiceClientImpl()

+ createObject(object) : Object

getBeanInstance() : ApplicationService

getBeanInstance(URL) : ApplicationService

+ getObjects(object) : List

+ getQueryRowCount(criteria, targetClassName) : int

+ query(criteria, firstRow, resultsPerQuery, targetClassName) : List

+ query(detachedCriteria, targetClassName) : List

+ query(hqlCriteria, targetClassName) : List

+ removeObject(object) : void

+ search(path, objList) : List

+ search(path, obj) : List

+ search(targetClass, objList) : List

+ search(targetClass, obj) : List

+ setRecordsCount(recordsCount) : void

+ setSearchCaseSensitivity(caseSensitivity) : void

+ updateObject(object) : Object

-applicationService

-applicationServiceBusinessImpl

-applicationService

-applicationService

Figure 38: ApplicationService Interface and Related Classes Diagram

An outline diagram listing the ApplicationServiceImpl attributes and methods is shown below:

[image: image38.png]‘gov.ih.ncicommon.utlHQLCriteria
‘govih.nc system. applicationservice. AppicationException
‘gov.nh.nc system.applcationservice. ApplicationService
‘govih.nd.system. dao. WritableDAO

Java.utiist

org hibernate.rterion DetachedCrteria

... setRecordsCount(nt)
SefSearchCaseSensitity(boolear)
‘getQueryRowCount(Object, String)

... query(DetachedCiiteria, String)

. query(HQLCriteia, String)

©. query(Object,int,int, String)

... search(Clss, Object)

© . search(Clss, Lis)

‘search(String, Object)
‘search(String, List)

© . reateObject(Object)

© . updateObject(Object)

... removeObject{0bject)

© . getObjects(Object)

Figure 39: gov.nih.nci.system.dao.ORMConnection Outline Diagram
4.3.2 gov.nih.nci.system.dao.WritableDAO

The gov.nih.nci.system.dao.WritableDAO class implements the Data Access Object (DAO) pattern
, which abstracts and encapsulates all access to a given data source. The DAO also manages the connection with the data source to obtain and store data.

The WritableDAO implements Create, Read, Update, and Delete (CRUD) functionality for those domain objects managed via the Hibernate object/relational persistence and query service.

An outline diagram listing the WritableDAO attributes and methods is shown below:

[image: image39.png]& Java - WritableDAO. (=]
e Edt Souce Refactor Navigate

Figure 40: gov.nih.nci.system.dao.WritableDAO Outline Diagram

4.3.3 gov.nih.nci.system.servicelocator.ServiceLocator

Briefly, the gov.nih.nci.system.servicelocator.ServiceLocator class implements a variation of the Service Locator pattern
, which reduces coupling between presentation-tier clients and business services.

The ServiceLocator class was already discussed in the earlier ServiceLocation section; please refer to this section for more information.

4.3.4 gov.nih.nci.system.dao.impl.orm.ORMConnection

The gov.nih.nci.system.dao.impl.orm.ORMConnection is a Singleton object that creates and manages up to two instances of the Hibernate SessionFactory object, which, in turn, is responsible for creating Hibernate Sessions. Threads servicing client requests obtain Sessions from the factory.

The ORMConnection class was already discussed in the earlier ORMConnection section; please refer to this section for more information.

5. Configuration/Deployment Considerations

5.1 Property/Configuration Files

	New (*) or Modified (#)
	File Location
	File Name
	Description of Change

	#
	gov.nih.nci.system.dao
	WriteableDAO.java
	Modify class to throw PesistenceException cast as an ApplicationException.

	#
	gov.nih.nci.system.comm.server
	ApplicationServiceServerImpl
	Modify class to throw sub classed exceptions of ApplicationException.

	#
	gov.nih.nci.system.comm.client
	ApplicationServiceClientImpl
	Modify class to throw sub classed exceptions of ApplicationException.

	#
	gov.nih.nci.system.comm.client
	ClientSession
	Modify class to throw sub classed exceptions of ApplicationException.

	#
	gov.nih.nci.system.applicationservice.impl
	ApplicationServiceImpl
	Modify class to throw sub classed exceptions of ApplicationException.

	#
	gov.nih.nci.system.server.mgmt
	SecurityEnabler
	Modify class to throw sub classed exceptions of ApplicationException.

	*
	gov.nih.nci.system.applicationservice
	SecurityException
	New Subclass of ApplicationException

	*
	gov.nih.nci.system.applicationservice
	AuthenticationException
	New Subclass of SecurityException

	*
	gov.nih.nci.system.applicationservice
	AuthorizationException
	New Subclass of SecurityException

	*
	gov.nih.nci.system.applicationservice
	DAOException
	Modified Subclass of ApplicationException

	*
	gov.nih.nci.system.applicationservice
	CreateException
	New Subclass of DAOException

	*
	gov.nih.nci.system.applicationservice
	QueryException
	New Subclass of DAOException

	*
	gov.nih.nci.system.applicationservice
	UpdateException
	New Subclass of DAOException

	*
	gov.nih.nci.system.applicationservice
	DeleteException
	New Subclass of DAOException

	*
	gov.nih.nci.system.applicationservice
	SessionException
	New Subclass of DAOException

	*
	gov.nih.nci.system.applicationservice
	RollbackException
	New Subclass of DAOException

	
	
	
	

5.2 Deployment Considerations

N/A.
6. Resources

This section contains a list of recommended reading materials, resources, and references that can be useful for becoming familiar with the concepts contained within this guide.

6.1 Technical Manuals/Articles

· Exceptional Practices: http://java.sun.com/developer/technicalArticles/Programming/exceptions/.

· Exceptional Practices, Part 2: http://java.sun.com/developer/technicalArticles/Programming/exceptions2/.

· javax.persistence class hierarchy: http://java.sun.com/javaee/5/docs/api/javax/persistence/package-tree.html.

· See also the java.lang.Throwable API regarding the Exception Chaining facility.
6.2 Core J2EE Patterns

· Core J2EE Patterns: Best Practices and Design Strategies, Deepak Alur, John Crupi and Dan Malks. Publisher: Prentice Hall / Sun Microsystems Press. ISBN:0130648841; 1st edition (June 26, 2001).

6.3 Hibernate Reference Manual
· Hibernate Reference Manual: http://www.hibernate.org/hib_docs/v3/reference/en/html/.

6.4 caCORE SDK Documentation
· Chapter 3, Interacting with caCORE, of the caCORE 3.1 Technical Guide.

gov.nih.nci.system.applicationservice.ApplicationException

gov.nih.nci.system.applicationservice.SecurityException

gov.nih.nci.system.applicationservice.AuthenticationException

gov.nih.nci.system.applicationservice.AuthorizationException

gov.nih.nci.system.dao.DAOException

gov.nih.nci.system.dao.CreateException

gov.nih.nci.system.dao.QueryException

gov.nih.nci.system.dao.DeleteException

gov.nih.nci.system.dao.UpdateException

gov.nih.nci.system.dao.RollbackException

gov.nih.nci.system.dao.SessionException

�

NCICB

Relatively Well-Defined Set of Custom Exceptions Classes.

Scope of Exception Handling Focus within this Document

Analysis of Exception Handling Practices within the CABIO Sample System

The DAOException is both Defined and Used within the dao Packages and their Classes

The Methods that Throw DAOException are related to Data Access Functions.

The ApplicationException is used generically within a Disparate Set of Packages and Classes that Implement Varying Query/Search, Persistence, and Security Functions.

The ApplicationException is associated with (thrown from) a variety of classes, including:

SecurityEnabler

WriteableDAO

ClientSession

ApplicationService

ApplicationServiceClientImpl

ApplicationServiceServerImpl

catch (Exception ex)

{

throw new ApplicationException("Could not obtain session for this entity! Could not create object");

}

catch (Exception ex)

{

throw (ApplicationException)(new SessionException("Could not obtain session for this entity! Could not create object", ex));

}

gov.nih.nci.system.applicationservice.EntityExistsException

gov.nih.nci.system.applicationservice.EntityNotFoundException

gov.nih.nci.system.applicationservice.NonUniqueResultException

gov.nih.nci.system.applicationservice.NoResultException

gov.nih.nci.system.applicationservice.OptimisticLockException

gov.nih.nci.system.applicationservice.TransactionRequiredException

Persistence Tier within the caCORE SDK Architecture

NOTE: As mentioned in the Hibernate SessionFactory API, an application usually has a single SessionFactory object. The caCORE SDK application, however, makes provisions for up to two SessionFactories, corresponding to the support for two simultaneous RDBMS data sources shown earlier in � HYPERLINK \l "_Current_Persistence_Tier" ��Figure caCORE SDK Tiered Architecture�. The SessionFactory instances are stored in the sessionFactories attribute shown in the outline diagram below.

NOTE: Again, as mentioned in the previous section, the query(Request) method is a function that should be fulfilled by (is the responsibility of) an actual DAO implementation, and not the factory itself. As such, the query(Request) method would be better situated within the DAO class, such as ORMDAOImpl. It should not be defined within the abstract DAO Factory as shown.

NOTE:	The abstract query(Request) method is a function that should be implemented by (is the responsibility of) an actual DAO implementation, and not the factory itself. As such, the query(Request) method would be better situated within a DAO class, such as ORMDAOImpl, and not defined within the abstract DAO Factory as shown below.

NOTE: 	The SDK makes provisions for up to two (2) RDBMS data sources. The public ServiceLocator getORMCounter(String domainObjectName) method determines which of the two RDBMS data sources a particular domain object is mapped to. The value returned by this method is typically passed to the ORMConnection openSession(counter) method, which uses the value to obtain a Hibernate Session to the appropriate data source. The two-step process, repeated in the ORMDAOImpl and WritableDAO classes, is shown in the code fragment below:

int oRMCounter = serviceLocator.getORMCounter(domainObjectName);

Session session = oRMConnection.openSession(oRMCounter);

This practice unnecessarily exposes clients to data source connection implementation details that are better encapsulated within the ORMConnection class. The suggested solution is to modify the ORMConnection openSession() method as follows:

Session session = oRMConnection.openSession(domainObjectName);

The ORMConnection class can use the domainObjectName value to determine the correct Session instance to return. In this manner, the client is spared from having to know how many data sources have been implemented.

The SDK makes provision for up to two (2) RDBMS data sources.

The public getORMCounter(String domainObjectName) method determines which of the two RDBMS data sources a particular domain object is mapped to.

See the ServiceLocator section for more details.

NOTE: 	Consideration is being given to combining both persistence tier interfaces, as there is currently an overlap in functionality; i.e., both interfaces provide read, or query, capabilities. Logically, it makes sense to have a single persistence tier Create, Read, Update, Delete (CRUD) interface, perhaps implemented via a variation of the Session Façade and/or Business Delegate pattern(s).

NOTE: As illustrated in the above diagram, this is one area of the SDK that is a prime candidate for being refactored and/or redesigned, as there seems to be a duplication of functionality and unnecessarily complex relationships.

NOTE: 	As mentioned previously, consideration is being given to combining both the BaseDelegate and WritableDAO persistence tier interfaces, as there is currently an overlap in functionality; i.e., both interfaces provide read, or query, capabilities. Logically, it makes sense to have a single persistence tier Create, Read, Update, Delete (CRUD) interface, perhaps implemented via a variation of the Session Façade and/or Business Delegate pattern(s).

Query Interfaces within the caCORE SDK Architecture

NOTE: The ApplicationServiceImpl and ApplicationServiceBusinessImpl provide redundant functionality, and should be combined into a single class.

NOTE: The ApplicationServiceImpl and ApplicationServiceBusinessImpl provide redundant functionality, and should be combined into a single class.

NOTE: The HTTPUtils class also provides methods to cache and return cached query result sets, presumably for performance reasons. This has the undesired side-effect of always returning the same result for subsequent queries even if the persistent data source has been modified (data has been added, updated, or deleted) via the Writable SDK interface, or externally, via some other means (such as Toad, a database management tool for Oracle).

It is recommended that these caching methods be removed, as their use can and has caused confusion with users of the XML/HTTP interface. The methods in question include:

getCachedResultSet();

getMatch(HTTPUtils);

setResults();

NOTE: The HTTPQuery class invokes methods on the SDK HTTPUtils class that caches and returns cached query result sets,for improved performance. This has the undesired side-effect of always returning the same result for subsequent queries even if the persistent data source has been modified (data has been added, updated, or deleted) via the Writable SDK interface, or externally, via some other means (such as Toad, a database management tool for Oracle). The code in question can be found in the HTTPQuery’s doGet() method, and should be removed to prevent user confusion and frustration:

 if(!session.isNew() && prop != null){

 match = httpUtils.getMatch(prop);

 }

 try{

 if(match){

 List results = (List)prop.getResults();

 httpUtils.setResults(results);

 resultSet = httpUtils.getCachedResultSet();

 }

 else{

 resultSet = httpUtils.getResultSet();

 }

		} catch(){}

� The cabio example system provided with the caCORE SDK is used in our discussion for the sake of simplicity. However, the ideas discussed in this document apply to any caCORE-like system generated via the SDK.

� See the Resource section at the end of this document for a list of references to Exception Handling related articles.

� See http://java.sun.com/javaee/5/docs/api/javax/persistence/package-tree.html.

� As noted in the java.lang.Throwable API, this feature is also known as the chained exception facility, as the cause can, itself, have a cause, and so on. This leads to a "chain" of exceptions, each caused by another.

One reason that a throwable may have a cause is that the class that throws it is built atop a lower layered abstraction, and an operation on the upper layer fails due to a failure in the lower layer. It would be bad design to let the throwable thrown by the lower layer propagate outward, as it is generally unrelated to the abstraction provided by the upper layer. Further, doing so would tie the API of the upper layer to the details of its implementation, assuming the lower layer's exception was a checked exception. Throwing a "wrapped exception" (i.e., an exception containing a cause) allows the upper layer to communicate the details of the failure to its caller without incurring either of these shortcomings. It preserves the flexibility to change the implementation of the upper layer without changing its API (in particular, the set of exceptions thrown by its methods).

A second reason that a throwable may have a cause is that the method that throws it must conform to a general-purpose interface that does not permit the method to throw the cause directly. For example, suppose a persistent collection conforms to the Collection interface, and that its persistence is implemented atop java.io. Suppose the internals of the put method can throw an IOException. The implementation can communicate the details of the IOException to its caller while conforming to the Collection interface by wrapping the IOException in an appropriate unchecked exception. (The specification for the persistent collection should indicate that it is capable of throwing such exceptions.)

� This diagram has been borrowed from the caCORE SDK 1.1 Programmer’s Guide, page 8. For a more detailed discussion of the overall caCORE architecture, please refer to the Programmer’s Guide, Chapter 2: NCICB caCORE Infrastructure, page 5.

� For an overview of the query interaction between the Application Service and Persistence Tiers, please refer to the Persistence Detail Design section of this document.

� A Java client is used in the diagram because it provides access to all the query types due to the fact that the SDK itself is also written in Java. Other types of clients, such as XML/HTTP or Web Service clients, can also be used to query domain objects, but they do not provide access to all four (4) query types. More information is provided in the following sections that discuss the four primary query interfaces.

� For more information regarding Hibernate’s Detached Criteria, please refer to chapter � HYPERLINK "http://www.hibernate.org/hib_docs/v3/reference/en/html/queryhql.html" ��14: HQL: The Hibernate Query Language� of the �HYPERLINK "http://www.hibernate.org/hib_docs/v3/reference/en/html/"��Hibernate Reference Documentation�.

� For more information regarding Hibernate’s HQL, please refer to chapter � HYPERLINK "http://www.hibernate.org/hib_docs/v3/reference/en/html/querycriteria.html" ��15: Criteria Queries� of the �HYPERLINK "http://www.hibernate.org/hib_docs/v3/reference/en/html/"��Hibernate Reference Documentation�.

� See the Creational Patterns – Java Factory Pattern page for more information regarding the Java Factory Pattern: �HYPERLINK "http://www.allapplabs.com/java_design_patterns/factory_pattern.htm"��http://www.allapplabs.com/java_design_patterns/factory_pattern.htm�.

� The class outline and diagram essentially provide the same data, i.e., a listing of attributes and methods found within the class.

� The WS-I Basic Profile provides a set of non-proprietary specifications and implementation guidelines enabling interoperability between diverse systems. More information about WS-I compliance is available at � HYPERLINK "http://www.ws-i.org" ��http://www.ws-i.org�.

� For more information about Axis, visit � HYPERLINK "http://ws.apache.org/axis/" ��http://ws.apache.org/axis/�.

� For more information, please refer to the Wikipedia Representational State Transfer (REST) page: � HYPERLINK "http://en.wikipedia.org/wiki/Representational_State_Transfer" ��http://en.wikipedia.org/wiki/Representational_State_Transfer�.

� This diagram has been borrowed from the caCORE SDK 1.1 Programmer’s Guide, page 8. For a more detailed discussion of the overall caCORE architecture, please refer to the Programmer’s Guide, Chapter 2: NCICB caCORE Infrastructure, which starts on page 5.

� The class outline and diagram essentially provide the same data (i.e. a listing of attributes and methods found within the class). While the class diagram more closely conforms to the UML specification, the outline format is used here as it (arguably) offers improved readability with its use of colors, symbols, and icons.

� See the Core J2EE Patterns – Data Transfer Object page for more information on the context, problem, forces, and solution associated with the Data Transfer Object pattern: � HYPERLINK "http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html" ��http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html�.

� See the Core J2EE Patterns – Data Transfer Object page for more information on the context, problem, forces, and solution associated with the Data Transfer Object pattern: � HYPERLINK "http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html" ��http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html�.

� See the Core J2EE Patterns - Business Delegate page for more information on the context, problem, forces, and solution associated with the Business Delegate pattern: � HYPERLINK "http://java.sun.com/blueprints/corej2eepatterns/Patterns/BusinessDelegate.html" ��http://java.sun.com/blueprints/corej2eepatterns/Patterns/BusinessDelegate.html�.

� See the Core J2EE Patterns – Service Locator page for more information on the context, problem, forces, and solution associated with the Service Locator pattern: � HYPERLINK "http://java.sun.com/blueprints/corej2eepatterns/Patterns/ServiceLocator.html" ��http://java.sun.com/blueprints/corej2eepatterns/Patterns/ServiceLocator.html�.

� See the Implementing Factory for Data Access Objects Strategy section of the Core J2EE Patterns – Data Access Object page for more information on the context, problem, forces, and solution associated with the Data Access Object Factory pattern: � HYPERLINK "http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html" ��http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html�. See also the Factory Method Pattern: � HYPERLINK "http://en.wikipedia.org/wiki/Factory_method_pattern" ��http://en.wikipedia.org/wiki/Factory_method_pattern�.

� See the Core J2EE Patterns – Data Access Object page for more information on the context, problem, forces, and solution associated with the Data Access Object pattern: � HYPERLINK "http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html" ��http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html�

� The ApplicationService interface is an abstract class that combines the BaseDelegate Query and the WritableDAO CRUD functionality, again suggesting that the two persistence paths should be refactored and combined.

� See the Core J2EE Patterns – Data Access Object page for more information on the context, problem, forces, and solution associated with the Data Access Object pattern: � HYPERLINK "http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html" ��http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html�

� See the Core J2EE Patterns – Service Locator page for more information on the context, problem, forces, and solution associated with the Service Locator pattern: � HYPERLINK "http://java.sun.com/blueprints/corej2eepatterns/Patterns/ServiceLocator.html" ��http://java.sun.com/blueprints/corej2eepatterns/Patterns/ServiceLocator.html�.

