Many Body QCD Effects in Proton-Nucleus Collisions at RHIC

Ivan Vitev

In part in collaboration with T. Goldman, M.B. Johnson and J.W. Qiu

Nuclear Theory Seminar T-16, LANL, Los Alamos, NM

Outline of the Talk

Overview of p+A data:

- Review of key RHIC results in p+A (nuclear modification vs Y)
- Proposed explanations (QCD Monte Carlos, coalescence, CGC)
- Strong interaction dynamics in nuclei:
 - Transverse momentum diffusion (Cronin effect)
 - Coherent final state scattering (high twist shadowing)
 - Initial state energy loss
- Application in the pQCD formalism:
 - Light hadron production and modification
 - Open heavy flavor production and modification

Conclusions:

Basic Definitions: Kinematics

Central Au+Au event in the STAR TPC

 $E = p_T \cosh y$ $p_{\parallel} = p_T \sinh y$

Important at forward rapidity

Take a guess for the hadron rapidity density dN^h / dy p+A

- Optical Glauber model
- That Glauber (2005 Nobel Prize)

 $N_{coll} = \sigma_{in} T_A(b)$

November 8, 2005

Hadron Rapidity Density

Forward Rapidity Suppression

Forward Correlations

November 8, 2005

Alternative Explanations: I

The consequence of reduced parton production. What is the cause?

November 8, 2005

Alternative Explanations: II

Gluon saturation

No phase space for this effect. Inconsistency with low energy data.

HERA Forward Jet Production

BFKL - enhanced cross sections, not suppressed

- $\theta \rightarrow 0$ (or $\eta \rightarrow \infty$ or $x_F \rightarrow -1$): hadron h close to proton remnant \rightsquigarrow fracture functions.
- $x_B \rightarrow 0$: BFKL dynamics. But no convincing case yet, see also forward-jet electroproduction (E. Gallo's talk).

R.Sassot

November 8, 2005

pQCD Jets and Hadrons

 $p + p \rightarrow h(l) + X$ $p + p \rightarrow h_1(l_1) + h_2(l_2) + X \int d \frac{p_d}{z_d}$

x_aP

x_bP³

Instead of making models

Factorization approach

Collins, Soper, Sterman

• To LO (2 to 2 scattering) - single and double inclusive hadron production

Can also incorporate Cronin effect: $\int d^2 k_T f_{med}(k_T)$

$$\begin{aligned} \frac{d\sigma_{_{NN}}^{h_1}}{dy_1 d^2 p_{_{T1}}} &= \sum_{abcd} \int_{x_a \min}^1 dx_a \int_{x_b \min}^1 dx_b \phi(x_a) \phi(x_b) \frac{\alpha_s^2}{(x_a x_b S)^2} \left| \overline{M}^{-2}{}_{ab \to cd} \right| \frac{D_{h_1/c}(z_1)}{z_1} \\ \frac{d\sigma_{_{NN}}^{h_1 h_2}}{dy_1 dy_2 d^2 p_{_{T1}} d^2 p_{_{T2}}} &= \frac{\delta(\Delta \varphi - \pi)}{p_{_{T1}} p_{_{T2}}} \sum_{abcd} \int_{z_1 \min}^1 dz_1 \frac{D_{h_1/c}(z_1)}{z_1} D_{h_2/d}(z_2) \frac{\phi(\overline{x}_a) \phi(\overline{x}_b)}{\overline{x}_a \overline{x}_b} \frac{\alpha_s^2}{S^2} \left| \overline{M}^{-2}{}_{ab \to cd} \right| \end{aligned}$$

November 8, 2005

Examples of PQCD Cross Sections


```
p + p \rightarrow h_1 + h_2 + X
```

ISR dihadrons CCOR

Parton distribution functions

- **X** Perturbative cross sections
- **X** Fragmentation functions

Ivan Vitev

I. Multiple Elastic Scatterings

Reaction Operator = all possible on-shell $t = \infty$ cuts through a new Double Born interaction with the propagating system

The approximate solution is that of a 2D diffusion

(Neglect p_{\parallel} and $O(\langle (\nabla_k \bullet k_{\perp})^3 \rangle))$

2D Diffusion

• Moliere multiple scattering (see Jackson's E&M)

$$dN^{f}(p) = \sum_{n=0}^{\infty} dN^{n}(p) = \sum_{n=0}^{\infty} \frac{\chi^{n}}{n!} \int \prod_{i=1}^{n} d^{2}q_{i} \frac{1}{\sigma_{el}} \frac{d\sigma_{el}}{d^{2}q_{i}} \left(e^{-q_{i\perp} \cdot \nabla_{p\perp}} \otimes e^{-q_{i\parallel} \partial_{p\parallel}} - 1\right) dN^{i}(p)$$

$$dN^{f}(p) = \sum_{n=0}^{\infty} e^{-\chi} \frac{\chi^{n}}{n!} \int \prod_{i=1}^{n} d^{2}q_{i} \frac{1}{\sigma_{el}} \frac{d\sigma_{el}}{d^{2}q_{i}} dN^{i}(p - q_{1} - \dots - q_{n})$$

Approximate solution to 2D diffusion equation **Opacity** $\chi = L/\lambda$

Specific case: broadening of a collinear beam of energetic partons

$$dN^{i}(k_{\perp}) = \delta^{2}(k_{\perp}) \implies \frac{d\sigma_{el}(b)}{d^{2}q} = \frac{\mu b}{4\pi^{2}} K_{1}(\mu b) \approx \frac{1}{4\pi^{2}} \left(1 - \frac{\mu^{2}b^{2}}{2}\xi + O(b^{3})\right) \implies dN^{f}(k_{\perp}) = \frac{1}{2\pi} \frac{e^{-\frac{\pi}{\chi\mu^{2}\xi}}}{\chi\mu^{2}\xi}$$

For
$$\left\langle \Delta k_{\perp}^{2} \right\rangle = 2\chi\mu^{2}\xi, \quad -\Delta k_{\parallel} = 2\chi\mu^{2}\xi\frac{1}{2k_{\parallel}}$$

 $\boldsymbol{\xi} = \log 2 / (1.08 \,\mu \boldsymbol{b})$

M. Gyulassy, P. Levai, I.V., J.W. Qiu, I.V.

November 8, 2005

14

Implementation in pQCD $g(k_{T}) \simeq Exp\left(-k_{T}^{2} / \left\langle k_{T}^{2} \right\rangle\right) / \pi \left\langle k_{T}^{2} \right\rangle$

Ivan Vitev, LANL

 k_{\perp}^2

Success at Mid rapidity

$$\begin{array}{c} \overset{2}{\text{n}} \\ 1.8 \\ 1.6 \\ 1.4 \\ 1.2 \\ 1 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 7 \\ (\text{GeV/c)} \end{array}$$

 $d + Au \rightarrow \pi^0 + X$

- Consistent with small Cronin enhancement
- Very different from Au+Au
- Additional effects may be present (especially baryons)

Failure at Forward Rapidity

Extrapolating to the regions where it was not tested does not work

I.V.

Very nice disagreement between the data and the random walk in p_T space. \longrightarrow New effects.

November 8, 2005

II. Coherent Power Corrections

Comparison to Shadowing

$$F_T^{A}(x,Q^2) \approx A F_T^{(LT)}\left(x + \frac{x\xi^2(A^{1/3} - 1)}{Q^2}, Q^2\right)$$
$$= A F_T^{(LT)}\left(x\left(1 + \frac{m_{dyn}^2}{Q^2}\right), Q^2\right)$$

The scale of higher twist per nucleon is small $\xi^2 \simeq 0.1 - 0.12 GeV^2$

p+A Yields and Correlations

J.W.Qiu, I.V.,

Suppression disappears at high p_T

Suppression increases with rapidity and centrality

Additional effects possible (E-loss)

Per Trigger Yields

Good example that improved communication will be helpful

November 8, 2005

Cold Nuclear Matter Effects

in progress I.V.

2. No detailed study of the implementation of the E-loss (unlike in the final state)

Fluctuations and $\underline{\Lambda E}$ redistribution

Scheme was proposed by Kopeliovich and Johnson

Based on 1. and 2. at this point it is useful to carry out phenomenological investigation. The full theory and implementation can be substantially different

Ivan Vitev, LANL

Approx. Implementation of E-loss

Clearly approximate, but can serve as a guidance on the p_{T} and y dependence of the QCD energy loss Assume $A^{1/3}$, no p_T y dependence Phenomenological but could give guidance to (A, y, p_T) dependence Ivan Vitev, LANL

Low Energy p+A data

Same rapidity asymmetry is seen down to $s^{1/2} = 5 - 20 \text{ GeV}$

No coherence, eliminates gluon saturation explanations (hardly many gluons) and power corrections explanation in this regime

November 8, 2005

Comparison to Theory

Leading twist shadowing parameterizations cannot account for the asymmetry

$$S(x,Q^2) = \phi^A(x,Q^2) / \phi^P(x,Q^2)$$

High twist shadowing calculations (fully implemented) cannot account for the asymmetry

Initial state energy loss can describe the data

$$\Delta y(y, p_T, A) = 0.25$$

No Cronin effect

November 8, 2005

200 GeV d+Au Revisited

Incorporate: power corrections, p_T diffusion, rapidity shift

Forward Rapidities

November 8, 2005

harm Production

Gluon fusion is not the dominant process in inclusive open charm production. what dominates is $c + g \rightarrow c + g$ $c + q(\overline{q}) \rightarrow c + q(\overline{q})$ November 8, 2005 28 Ivan Vitev, LANL

Cold Nuclear Matter Effects

$\Delta y(\min.bias) = 0.25$, No Cronin

E-loss seems to play a similarly important role

Very similar behavior of charm quarks (D-mesons) to light hadrons

1.2 1.2 Minimum bias Minimum bias Minimum bias Minimum bias Light pions (π^0) D mesons $(D^0 + D^+)$ Light pions (π^0) D mesons (D^0+D^+) = 5.6 fm) $R_{pA}^{h_1}(b_{min.bias} = 5.6 \text{ fm})$ 0.8 0.8 ^ⁿ1 (b_{min bias} ⁼ 0.6 0.60.4 0.4 y₁ = 1.25 R PA PHENIX prelim. μ , y = 1.6 PHENIX 20-40%/60-88% $v_{1} = 2.5$ PHENIX 20-40%/60-88% 0.2 y = 1.250.2 at y = 1.8at v = 1.8PHENIX prelim. μ , y = 1.6 v = 2.5ſ 1.2 Centrality dependent Centrality dependent 1.2 Centrality dependent Centrality dependent $y_1 = 2.5$ $y_1 = 2.5$ $y_1 = 2.5$ $y_1 = 2.5$ R_{pA}^{h1} (b) n, (b) 0.8 0.8 ີ <u>4</u> 0.6 ແ 0.6 0.4 = 3 fm $= 6.8 \, \text{fm}$ 0.4 5.6 fm No E-loss 0.2 b = 5.6 = 6.8 fm With E-loss b = 3 fm0.2 0 2 3 Δ 5 2 3 4 2 3 2 3 0 4 5 p_{T1} [GeV] p_{T1} [GeV] p_{⊤1} [GeV] p_{T1} [GeV] **PHENIX** data T. Goldman, M.B. Johnson, J.W. Qiu, I.V.

November 8, 2005

Conclusions

- Rapidity asymmetry forward rapidity attenuation in p+A relative to N_{bin}:
 - Is a universal feature of p+A reactions
 - Is related to the interplay of the power corrections and energy loss. Cronin effect is more effective at mid and backward rapidities
- More work is necessary to understand E-loss in the initial state and its implementation in pQCD
- Charm quarks provide a new probe of the QCD dynamics
 - Should rethink the dominant production pocesses. New charm trigger measurements
 - The modification of open charm production is very similar to light hadrons

Charm Triggered Correlations

Similar difference in the p_T behavior between single inclusive D-mesons and D-meson triggered correlations

November 8, 2005