# Jet Tomography



## Ivan Vitev Iowa State University

# Outline of the Talk Principles of Jet Tomography

Medium-induced gluon bremsstrahlung in QCD
 Implementations of jet energy loss

#### Applications of Jet Tomography

 Suppression of hadrons in semi-inclusive DIS
 Jet quenching in hot nuclear matter, transverse momentum, centrality and rapidity dependence
 Correlations and di-hadron tomography

#### Future Experimental Directions

② Entropy growth, reappearance of the lost energy
 ③ Jet cone and intra-jet correlation studies

#### Conclusions:

Properties of cold and hot nuclear matter
Evidence for the creation of the QGP at RHIC

## Principles of Jet Tomography The QCD analogue of positron emission tomography



#### **Prerequisites:**

• Calibrated source

 Calculable absorption cross sections

 Interpretation of the results

**Radionuclides:** <sup>11</sup>C. <sup>13</sup>N. <sup>15</sup>O. <sup>18</sup>F

Ivan Vitev, ISU

# Calibrated Probes Inclusive hadron distributions – calculable in perturbative QCD

Leading order pQCD phenomenology



I.V., hep-ph/0212109 [in CERN Yellow report]

Next-to-Leading order pQCD



PHENIX Collab., Phys.Rev.Lett. 91 (2003)



**Parton distribution functions** 

Perturbative cross sections

Fragmentation functions Ivan Vitev, ISU

# Radiative QCD Energy Loss



#### Effective 2D Schroedinger equation

Path integral formulation

Exact algebraic recursion (Reaction operator approach)

R.Baier et al., Nucl.Phys.B 483 (1997); *ibid.* 484 (1997) B.Zakharov, JETP Lett. 63 (1996) U.Wiedemann, Nucl.Phys.B588 (2000)

M.G<mark>y</mark>ulassy *et al.,* Nucl.Phys.B594 (2001); Phys.Rev.Lett.85 (2000)



Radiative energy loss

# $\Delta E^{elastic} \approx 6\alpha_s^2 T^2 e^{-\mu/T} \left(1 + \frac{\mu}{T}\right) L \ln \frac{4E_{jet}T}{\mu^2}$

J.D.Bjorken, SLAC preprint (1982) unpublished

Elastic energy loss

# **Gluon Absorption and Mass Effects**

Detailed balance significantly reduces energy loss for  $E_{jet} \le 2-3$  GeV at RHIC

 $\frac{\Delta E_{rad}^{(1)}}{E} = -\frac{\alpha_s C_F \mu^2 L^2}{4\lambda_g E} \left[ \ln \frac{2E}{\mu^2 L} - 0.048 \right]$  $\frac{\Delta E_{abs}^{(1)}}{E} = \frac{\pi \alpha_s C_F L T^2}{3\lambda_g E^2} \left[ \ln \frac{\mu^2 L}{T} - 1 + \gamma_E - \frac{6\varsigma'(2)}{\pi^2} \right]$ 

$$\mu \sim gT \sim 0.5 GeV$$



E.Wang, X.-N.Wang, Phys.Rev.Lett. 87 (2001)

Mass corrections and Ter-Mikayelian plasmon effect in QCD





M.Djordjevic, M.Gyulassy, nucl-th/0310076 Ivan Vitev, ISU

# **Modified Jet Cross Sections**



Effective Suppression of Fragmentation Functions

 Independent Poisson approximation for multiple gluon emission

Kniehl, Kramer, Potter fragmentation functions

Probability for fractional energy loss  $\mathcal{E} = \Delta E / E_{jet}$ 

$$P(\varepsilon) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[ \prod_{i=1}^{n} \int d\omega_i \frac{dN(\omega_i)}{d\omega} \right]$$
$$\times e^{-\int d\omega \frac{dN}{d\omega}} \delta \left( \varepsilon - \sum_{i=1}^{n} \frac{\omega_i}{E_{jet}} \right)$$

Normalized for suppressed leading hadrons (no feedback)

$$D^{med}_{h/q}(z,Q^2) = \int_0^1 d\varepsilon P(\varepsilon) \frac{1}{1-\varepsilon} D^{vac}_{h/q}\left(\frac{z}{1-\varepsilon},Q^2\right)$$



C.Salgado, U.Wiedemann, Phys.Rev.Lett. 89 (2002) Ivan Vitev, ISU



E.Wang, X.-N.Wang, Phys.Rev.Lett. 89 (2002)

DIS Tomography  

$$v = E - E'$$
 - energy transfer  
 $\langle \Delta z \rangle$  - radiative energy loss fraction

$$\Delta E = \nu \left\langle \Delta z \right\rangle = (E - E') \left\langle \Delta z \right\rangle$$



F.Arleo, Eur.Phys.J. C30 (2003) Ivan Vitev, ISU

# QGP Tomography



PHENIX Collab., Phys.Rev.Lett. 91 (2003) STAR Collab., Phys.Rev.Lett. 91 (2003)



### **Centrality Dependence**

$$\frac{R_{AA}(p_T) = (1 + c \cdot \Delta p_T / p_T)^{-n}}{\frac{\Delta p_T}{p_T} \approx \frac{\Delta E}{E} \propto N_{part}^{2/3}}$$
1+1D GLV

# Small number of semihard scatterings

 $n_{scat} = 1.5(peripheral) - 3.5(central)$ 





G.G.Barnafoldi *et al.,* hep-ph/0311343 Ivan Vitev, ISU

X.-N.Wang, nucl-th/0305010

# **Rapidity Dependence**



A.Adil, M.Gyulassy, I.V., in preparation

Energy loss in a 3+1D hydro

$$R_{\eta} = R_{AA}(\eta) / R_{AA}(\eta = 0)$$

#### (a double ratio)



T.Hirano, Y.Nara, Phys.Rev.C68 (2003)

Ivan Vitev, ISU



### Near- and Far-Side Correlations

- Unaltered near-side correlations
- Disappearance of the away-side correlations

$$C_2(\Delta \phi) = \frac{1}{N^{trig}} \frac{dN}{d\Delta \phi}$$



T.Hirano, Y.Nara, Phys.Rev.Lett.91 (2003)





# The "Remnants of Lost Jets"

 $+\Delta E(p_{T_{cut}}) =$ 

$$\Delta N^{g}(r,\Delta\tau) \approx \frac{1}{4}\Delta S = \frac{1}{4}\frac{\Delta E(r,\Delta\tau)}{T(r,\tau)}$$

 $\int p_x \rho(p_x) dp_x = -p_T^{trig}$ 

- Entropy growth
- Momentum sum rules



S.Pal, S.Pratt, Phys.Lett.B574 (2003)

#### Reappearance of the lost energy

 $n=1,\infty|\overline{z}(\Delta E/n) \ge p_T$  cut

 $n=1,\infty|(1-\overline{z})(\Delta E/n)\geq p_T$  cut



I.V., GLV e-loss simulation

Ivan Vitev, ISU

 $(\overline{z}\Delta E)P_n(E_{iet})$ 

 $((1-\overline{z})\Delta E)P_n(E_{iet})$ 

# **Broadening of the Jet Cone** • Intra-jet correlations $R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$

 $\rho(R)$  - fraction of the total energy within a jet subcone

$$\rho_{vac}(R) = \frac{1}{N_{jets}} \sum_{jets} \frac{E_t(R)}{E_t(R=1)}$$

$$\rho_{med}(R) = \rho_{vac}(R) - \frac{\Delta E_t(R)}{E_t}$$

$$+ \frac{\Delta E_t}{E_t} \left(1 - \rho_{vac}(R)\right)$$

# Very small effect even at<br/>the LHCR = 0.3 $\begin{cases} E_t = 50 \ GeV, 5\% \ effect \\ E_t = 100 \ GeV, 3\% \ effect \end{cases}$

#### Jet cone opening angle



C.Salgado, U.Wiedemann, hep-ph/0310079 Ivan Vitev, ISU

# Properties of Dense Nuclear Matter

|      | $\left\langle \frac{dE}{dz} \right\rangle^* \left[ \frac{GeV}{fm} \right]$ | $	au_0[fm]$ | T[MeV]  | $\varepsilon[GeV / fm^3]$ | $	au_{tot}[fm]$ | $dN^{g}$ / $dy$ |
|------|----------------------------------------------------------------------------|-------------|---------|---------------------------|-----------------|-----------------|
| SPS  | 2-3.5                                                                      | 0.8         | 210-240 | 1.5-2.5                   | 1.4-2           | 200-350         |
| RHIC | 7-10                                                                       | 0.6         | 380-400 | 14-20                     | 6-7             | 800-1200        |
| LHC  | 17-28                                                                      | 0.2         | 710-850 | 190-400                   | 18-23           | 2000-3500       |



F.Karsch, Nucl.Phys.A698 (2002)

Hot versus cold nuclear matter

|                      | $\left\langle \frac{dE}{dz} \right\rangle \left[ \frac{GeV}{fm} \right]$ | $\left\langle \frac{\mu^2}{\lambda_g} \right\rangle \left[ \frac{G e V^2}{fm} \right]$ |  |  |  |  |
|----------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|
| <b>DIS quenching</b> | 0.5                                                                      | 0.12                                                                                   |  |  |  |  |
| Drell-Yan            | 0.6±0.45                                                                 | 0.14 $\pm$ 0.45                                                                        |  |  |  |  |
| Cronin effect        | 0.4-0.6                                                                  | 0.1-0.14                                                                               |  |  |  |  |
| Th. estimate         | 0.2                                                                      | 0.05                                                                                   |  |  |  |  |
|                      |                                                                          |                                                                                        |  |  |  |  |

F.Arleo, hep-ph/0310274 [CERN Yellow Report]

$$R_{Au} = 6.8 \text{ fm}, T_c = 175 \text{ MeV}, \varepsilon_c = 1 \text{ GeV} / \text{ fm}^3$$

# Conclusions

- Significant theoretical advances in understanding non-Abelian bremsstrahlung:
  - Regimes far from asymptopia (E,L) relevant at RHIC
  - Incorporating mass and gluon absorption corrections
- Jet tomographic analysis:

  - Cold nuclear matter  $\langle -dE^{rad} / dz \rangle \approx 0.5 \ GeV / fm$  Suggests energy density  $\varepsilon \approx 15 20 \ GeV / fm^3$  at RHIC  $\langle -dE^{rad} / dz \rangle \approx 15 \ GeV / fm$  (static)
- Future directions of high-p<sub>T</sub> studies in dense nuclear matter:
  - Correlations and jet structure, redistribution of  $\Delta E^{rad}$
  - Quantitative studies of open charm and direct photons

Results from Jet Tomography correlated with other theoretical approaches are in strong support of the **QGP paradigm at RHIC** 

# Conclusions

- Significant theoretical advances in understanding non-Abelian bremsstrahlung:
  - Regimes far from asymptopia (E,L) relevant at RHIC
  - Incorporating mass and gluon absorption corrections
- □ Jet tomographic analysis:
  - Cold nuclear matter  $\hat{q} = \mu^2 / \lambda_g \approx 0.10 0.15 \ GeV^2 / fm$
  - Suggests energy density  $\varepsilon \approx 15 20 \ GeV / fm^3$  at RHIC more that 100 times cold nuclear matter density
- Future directions of high-p<sub>T</sub> studies in dense nuclear matter:
  - Correlations and jet structure, redistribution of  $\Delta E^{rad}$
  - Quantitative studies of open charm and  $J/\psi$

Results from Jet Tomography correlated with other theoretical approaches are in strong support of the QGP paradigm at RHIC

# Discovery of "Jet Quenching"





# Energy Loss in Dense QCD Matter

#### Elastic energy loss

$$\Delta E^{elastic} \approx 6\alpha_s^2 T^2 e^{-\mu/T} \left(1 + \frac{\mu}{T}\right) L \ln \frac{4E_{jet}T}{\mu^2}$$

J.D.Bjorken, SLAC preprint (1982) unpublished

Ø

Rather small to have significant observable effect May be significant for large cone </ I.Lokhtin , A.Sr

I.Lokhtin , A.Snigirev *in* hep-ph/0310274 [CERN Yellow report]

#### • Radiative energy loss Landau-Pomeranchuk-Migdal effect in QCD

M.Gyulassy, X.-N.Wang, Nucl.Phys.B420, (1994)

QCD  $\neq$  QED in the ability of the gluon to reinteract





# From Drell-Yan to DIS



**Gluon transport coefficient** 





F.Arleo, Eur.Phys.J. C30 (2003) Ivan Vitev, ISU

# Correlations with Respect to the Reaction Plane

