

THE LHC

LHC SM Higgs Production

• MSSM Higgs Search Channels
• h,H
$$\rightarrow$$
 bb, $\gamma\gamma$, and in association with W/Z
• tth $\rightarrow l^{\pm}\gamma\gamma$
• hH $\rightarrow ZZ^*$ or $ZZ \rightarrow 4l^{\pm}$
• h,H,A $\rightarrow \tau\tau \rightarrow l^{\pm} + \pi^{\pm} + \not{E}_{T}$
 $\rightarrow e + \mu + \not{E}_{T}$
 $\rightarrow \pi^+ + \pi^- + \not{E}_{T}$
• h,H,A $\rightarrow \mu\mu$
• H[±] $\rightarrow \tau\nu$ from tt
 \Rightarrow regions of sensitivity in (m_A, tan β)

CMS

CMS Inner Detector

- Inside of the 4T Solenoid Field
 - Pixels: 2 Layers everywhere
 - Inner Si Strips: 5 Layers and 10 disks/end
 - MSGCs: 6 Layers and 11 disks/end
 - Outer Si Strips: 5 Layers and 9 disks/end
 - EM Calorimeter: PbWO₄ crystals w/Si APD's
 - Had Calorimeter: Cu+Scintillator Tiles

CMS Tracking

System	Description	Area [m²]	Resolution (um)		Channels	η coverage
			σ(r φ)	O(172)	(10°)	(approximate)
Si Pixels n-in-n analog	2 Barrel layers 4,7→7,11 cm	0.15,0.25, and 0.38	10-15	10-15	36	±1.5
	2 disks/end	0.07/disk	15-20	15-20	12	1.5-2.5
Si Strips Inner	5 barrel layers L1,L2,L5 DS	~38	12-20	20-60	2.7	±1.4
	3 mini-disks/end	~2	12-15	20-30	1.2	1.4-1.8
	10 disks/end EC1,EC10 DS	~38	12-20	20-60	2.7	1.4-2.5
Si Strips Outer	5 Barrel layers L6 DS	~97.3	40	60	3.4	±1.0
	9 disks/end L1,L9 DS	~67	40	60	2.3	1.0-2.1

Silicon Tracker*

*Pixels not shown

Material

CMS p_T Resolution

CMS EM Calorimeter

Parameter	Barrel	Endcaps	
Pseudorapidity coverage ECAL envelope: r _{inner} , r _{outer} [mm] ECAL envelope: z _{inner} z _{outer} [mm]	$\frac{ \eta < 1.48}{1238, 1750} \\ 0, \pm 3045$	$\begin{array}{c} \underline{1.48 < \eta < 3.0} \\ 316, 1711 \\ \pm 3170, \pm 3900 \end{array}$	
Granularity: $\Delta \eta \times \Delta \phi$ Crystal dimension [mm ³] Depth in X ₀	$\begin{array}{c} 0.0175 \times 0.0175 \\ \text{typical: } 21.8 \times 21.8 \times 230 \\ 25.8 \end{array}$	$\frac{0.0175 \times 0.0175 \text{ to } 0.05 \times 0.05}{24.7 \times 24.7 \times 220}$ 24.7	
No. of crystals Total crystal volume [m ³] Total crystal weight [t]	<u>61 200</u> 8.14 67.4	<u>21 528</u> 3.04 25.2	
Modularity 1 supermodule/Dee 1 supercrystal unit	36 supermodules 1700 crystals (20 in φ, 85 in η) –	4 Dees 5382 crystals 36 crystals	

 $H \rightarrow \gamma \gamma$

CMS em calorimeter resolution

Contribution	Barrel (η = 0)	Endcap $(\eta = 2)$
Total stochastic term	2.7%/√E	5.7%/√E
Total constant term	0.55%	0.55%
Total noise (low luminosity) in E _T	155 MeV	205 MeV
Total noise (high luminosity) in E _T	210 MeV	245 MeV

 $\begin{array}{lll} \bullet & 130 \; \text{GeV H} \to \gamma\gamma \; 100 \; \text{fb}^{\text{-1}} \\ & - \; \text{CMS} \; \sigma \, < \, 1 \; \text{GeV} \; \text{if can id Higgs vertex} \\ & - \; \text{ATLAS on the order of 1-2 GeV resolution} \end{array}$

 $H \rightarrow ZZ^* \rightarrow 4e$

CMS full GEANT simulation of H(150 GeV) --> ZZ*--> 4e

Muon System

CMS

Compact Muon Solenoid

Ame 1254

N. Noncellator & N. Smarks

- 40 MHz crossing rate \Rightarrow 1 GHz interactions
- < 100 kHz L1 rate</p>
- < 10 kHz "L2" rate</p>
- < 100 Hz L3 rate to storage medium</p>

CMS data acquisition main parameters				
Average event size	= 1 NiByte			
Level-1 Maximum trigger rate	100 kHz			
No. of Readout units (200-5000 Byte/event)	1000			
Event builder (1000-1000 switch) bandwidth	= 500 Gbit/s			
Event filter computing power	= 5-10" MIPS			
Data production	= TByte/day			
No. of readout crates	= 300			
No. of electronics boards	= 10000			

CMS SM Higgs

ATLAS

PUBLIC

ATLAS Inner Detector

System	Description	Area [m ²]	Resolution		Channels	η coverage
			σ(r φ)	σ(rz)	(10-)	
Pixels	1 Replaceable Barrel layer	0.2	12 µm	66 µm	16	±2.5
	2 Barrel layers	1.4	12	66	81	±1.7
	5 end-cap disks per side	0.7	12	77	43	1.7-2.5
Si Strips	4 barrel layers	34.4	16	580	3.2	±1.4
	9 end-cap wheels per side	26.7	16	580	3.0	1.4-2.5
TRT (36 straws per track)	Axial barrel straws			170	0.1	±0.7
	Radial end-cap straws			170	0.32	0.7-2.5

ATLAS Calorimeters

ATLAS Muon System

- Monitored Drift Tubes (most of the η range)
 - ~80 μ m resolution/wire in bending direction
- Cathode Strip Chambers (2 < $|\eta|$ < 2.7)
 - high granularity for innermost, high-rate planes
- Resistive Plate or Thin Gap Chambers ($|\eta| \le 2.4$)
 - identify bunch crossing
 - trigger w/ well-defined pt cutoffs
 - orthogonal track coordinate to 5-10 mm resolution

ATLAS Trigger & DAQ

ATLAS SM Higgs

ATLAS MSSM Higgs

- Hadron Collider Experiments are capable of both discovery and precision measurement
- The current planned Tevatron and LHC experiments are designed to handle huge data rates and track densities.
- These experiments are poised to make a wide range of significant discoveries and measurements
- These are exciting times