

Predicting effects of climate change on aquatic biota: developing a decision support system for the Yakima River Basin.

Alec G. Maule, Supervisory Research Physiologist USGS, WFRC, Columbia River Research Laboratory Cook, Washington

1978 - 2008

Some of Our Collaborators & Funding Sources

ESA-listings drive research

Effects of climate change on the hydrology & aquatic ecosystem of the CRB and social & economic coats to mitigate those impacts.

> Maule, Mastin, Bovee, Montag, Koontz, Mesa, Hatten & Counihan

Development & Application of a Decision Support System for Water Management Investigations in the Upper Yakima River DSS

Bovee¹, Waddle¹, Talbert¹, Hatten² & Batt² USGS Open-File Report (in review)

¹ Fort Collins Science Center; ² Columbia River Research Lab

Yakima River DSS

Objectives – to develop: 1) Habitat response models – species- & life-stage-specific Chinook, Coho, STHD & resident RBT, Bull trout

2) DSS re: water management effects

State variables: 1° - habitat characteristics (ESA) (decision points) 2° - effects on water users

Yakima River DSS

Physical models:
1) RiverWare (BOR)
2) SNTEMP (max daily temp)
3) Sediment transport models

Habitat model (Delphi-type—expert opinion) :
1) Redd scour
2) Habitat time series – suitable area x life stage
3) Max. temperature
4) Fish passage - flow

NEW Yakima River DSS

1.Use existing DSS to assess climate change Four scenarios – temp & flow

- 2. Use existing Bioenergetics Models to determine effects of temp & flow on fish
- 3. Determine if restoration, flow management, & mitigation are likely to be cost-effective

NEW Yakima River DSS

Habitat model (Delphi-type—expert opinion) :

- 1) Redd scour
- 2) Habitat time series area x life stage
- 3) Max. temperature
- 4) Passage

Bioenergetics Models to determine effects of temp & flow (input from Physical Models) on: a) growth of salmonids-development & migration

a) growth & consumption of native predator northern pikeminnow

b) growth & consumption of invasive predators smallmouth bass, walleye

Bioenergetics models

- Conservation of energy
- Balanced equation:
- Growth = Consumption Respiration – Egestion – Excretion

•
$$G = C - R - Eg - Ex$$

- Temp, activity, diet & fish size dependent
- Models developed for ~48 species

Bioenergetics models can:

- Predict food (i.e., prey) needed to grow x amount
- Predict growth given food & temperature
- Project from individuals to populations
- Hindcast or forecast growth w/ time series
- Provide "bounds" to answers
 - (e.g., min max growth for temp scenario)

Bioenergetics Models

Input parameters Input data Cmax **Growth increment Period of growth Diet composition Energy density** Temperature Activity (flow)

Respiration Activity SDA (std. dyn. action) **Excretion** Egestion Growth **Reproductive loss**

Blazka-type Respirometer

Oxygen consumption \uparrow w/ swim speed & temp $G = C - \underline{R} - Ex - Eg$

Climate regimes and water temperature changes in the Columbia River: bioenergetic implications for predators of juvenile salmon

- Petersen & Kitchell 2001

Has variation in climate & water temp (1933-1996) influenced predation on juvenile salmon?

PDO, PNI, CBI – 19 gages, independent of dams, irrigation etc

Temporal changes – salmon consumption by native predator (Northern pikeminnow)

Cumulative consumption of salmonids - native & non-native predators

Assessment of Smolt Condition: Biological & Environ. Interaction

Impacts of prey & predators on juvenile salmonids

Sauter, Schrock, Petersen & Maule, 2004

Has variation in water temp & non-native prey fish influenced predation on juvenile salmon?

Do these higher temperatures & the presence of juvenile Am. shad allow native & non-native predators an extended growing season?

Significance: bigger predators eat more & are more fecund

Did these changes alter predator consumption? Bioenergetics modeling compared scenarios: 1.Current temps with American shad 2. Current temps with out shad **3. Historic temps with shad** 4. Historic temps without shad

Models predicted increased growth & predation

PREDATOR	TEMP	TE SI	MOp& T 1 A Drov	emp. vth
Northern pikeminnow	7.0%	10	.82% - 23	3° C
Smallmouth bass	16.1%	43	.4 ³ %-29	9° C
Walleye	4.4%	21	. <mark>42%</mark> -28	8° C

Overall: 27.5 % salmonids consumed were result of increased growth of predators

NOAA-Fisheries (2000) - 10% reduction in 1^{st} yr mortality = 41.5% increase in population growth rate (λ)

NEW Yakima River DSS

1. Use existing DSS to assess climate change Four scenarios – temp & flow

- 2. Use existing Bioenergetics Models to determine effects of temp & flow on fish
- 3. Determine if restoration, flow management, & mitigation are likely to be cost-effective

Predicting effects of climate change on aquatic biota: developing a decision support system for the Yakima River Basin.

Funded: DeWayne Cecil, Chief for Science Applications USGS Global Change Science Program

"Development of a Forecasting Decision Support Tool for Water and Natural Resources Management in the Columbia River" - Ken Bovee, PI (and a cast of thousands)

