The Meltable Wormlike Chain

David Sivak APS California Section October 27, 2007

Overview

• Measuring DNA Elasticity

Modelling DNA Elasticity

• Theoretical Advances

• Novel Experimental Methods

DNA Elasticity Matters

- DNA is often tightly bent in vivo
 - Eukaryotic packaging in nucleosomes

- Details of DNA flexibility influences many cellular processes
 - Transcriptional regulation

Measuring DNA Elasticity

Single Molecule Force-Extension Works Well For Studying Long DNA

Current Opinion in Structural Biology

Smith, et al, Science 1992

Cyclization probes shorter DNA

WLC may break down for small DNA strands

Cloutier & Widom, Mol Cell 2004

Modelling DNA Elasticity

Meltable Lattice Models of DNA

- No Sequence Dependence
- No Nearest Neighbor Interactions

Meltable Wormlike Chain (MWLC)

hybridized bending energy

melted bending energy

$$\mathcal{H}(n,\theta) = \delta_{n,0} \left[\frac{k_{\rm B} T \ell_{\rm D}}{d} (1 - \cos \theta) \right] + \delta_{n,1} \left[\Delta \mu(T) + \frac{k_{\rm B} T \ell_{\rm M}}{d} (1 - \cos \theta) \right]$$

melt energy

Melts are much more flexible:

Gives Wrong Melt Behaviour

Understanding Why

Integrate Out Bending Fluctuations to get Renormalized Lattice Model from MWLC

Correct Melt Behaviour

Cyclization Results Change

Uncorrected

Corrected

Using Wang-Landau Sampling

Applications - SAXS

Experimental Set-Up

Experimental Results

Computational Modeling

- Start with MWLC
- Add:
 - gold
 - linkers
 - excluded-volume
- Monte Carlo Importance Sampling

Basic Procedure

Experimental and Computational Comparison

~7kT Melts Fit Data Very Well

Further Complications

Electrostatic interactions b/w gold and DNA

- Linker mechanics
 - esp. interactions with passivating PEG

• Gold nanoparticle size polydispersity

Conclusions

 Careful Entropic Accounting Needed to Understand Effects of Melts and Reproduce Cyclization Experiments

 Reasonable Melt Free Energies Produce Good Fits to Robust Gold-SAXS Data

Acknowledgments

- Phillip Geissler
- Alex Mastroianni

• Geissler Lab, esp. Team Semiflex, esp. Steve Whitelam

More Realistic Melts

Drastically Reduce Bubbles

More Realistic Melt Models

Non-extensive Entropy

Adapted from Whitelam, et al, Biophys J 2007

Still Same Correction Term

Uncertainty About Melting Mechanics

• What Size?

Alternative Approaches

De-convolution

• Comparison in q-space