1 ML twin refinement, a slightly different approach

1.1 Notation

- $F_{\mathbf{H}_{a, t}}$: The true, error free structure factor amplitude with index \mathbf{H}_{a}.
- $F_{\mathbf{H}_{b, t}}$: The true, error free structure factor amplitude with index \mathbf{H}_{b}.
- $F_{\mathbf{H}_{a, c}}$: The calculated structure factor amplitude with index \mathbf{H}_{a}.
- $F_{\mathbf{H}_{b, c}}$: The calculated structure factor amplitude with index \mathbf{H}_{b}.
- $F_{\mathbf{H}_{a, o}}$: The observed structure factor amplitude with index \mathbf{H}_{a}.
- $F_{\mathbf{H}_{b, o}}$: The observed structure factor amplitude with index \mathbf{H}_{b}.

Other variables for twinned intensities (J), or 'plain' intenisties (I) follow the same subscripts ($\mathrm{t}, \mathrm{c}, \mathrm{o}$) . The twin fraction is detoted with τ, due to the use of α, β notation in likelihoods.

1.2 Basic likelihood function

The standard likelihood function has the following form:

$$
\begin{equation*}
P\left(F_{\mathbf{H}_{a, t}} \mid F_{\mathbf{H}_{a, c}}\right)=\frac{2 F_{\mathbf{H}_{a, t}}}{\beta} \exp \left[-\frac{F_{\mathbf{H}_{a, t}}^{2}+\alpha F_{\mathbf{H}_{a, c}}^{2}}{\beta}\right] I_{0}\left[\frac{2 \alpha F_{\mathbf{H}_{a, t}} F_{\mathbf{H}_{a, c}}}{\beta}\right] \tag{1}
\end{equation*}
$$

Assuming independence between reflections, one can write

$$
\begin{equation*}
P\left(F_{\mathbf{H}_{a, t}} F_{\mathbf{H}_{a, t}} \mid F_{\mathbf{H}_{a, c}} F_{\mathbf{H}_{b, c}}\right)=P\left(F_{\mathbf{H}_{a, t}} \mid F_{\mathbf{H}_{a, c}}\right) P\left(F_{\mathbf{H}_{b, t}} \mid F_{\mathbf{H}_{b, c}}\right) \tag{2}
\end{equation*}
$$

Previous derivations took this equation and transformed variables $F_{\mathbf{H}_{a, t}}$ and $F_{\mathbf{H}_{b, t}}$ first to intensities and at a later stage to twinned intensities. I think I have an easier way of introducing twinning, which is related to how experimental errors are introduced into a likelihood function. A minor detour is taken that was instructive for myself.

1.3 A minor detour

Try to introduce experimental errors like this (note the use of intensities) :

$$
\begin{equation*}
P\left(I_{\mathbf{H}_{a, o}} \mid I_{\mathbf{H}_{a, t}}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{a}} \exp \left[-\frac{\left(I_{\mathbf{H}_{a, o}}-I_{\mathbf{H}_{a, t}}\right)^{2}}{2 \sigma_{a}^{2}}\right] \tag{3}
\end{equation*}
$$

Since $I_{\mathbf{H}_{a, t}}$ is not a random variable, we can reparametrise at will ($I_{\mathbf{H}_{a, t}}=$ $F_{\mathbf{H}_{a, t}}^{2}$) and do not need to introduce a Jacobian:

$$
\begin{equation*}
P\left(I_{\mathbf{H}_{a, o}} \mid F_{\mathbf{H}_{a, t}}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{a}} \exp \left[-\frac{\left(I_{\mathbf{H}_{a, o}}-F_{\mathbf{H}_{a, t}}^{2}\right)^{2}}{2 \sigma_{a}^{2}}\right] \tag{4}
\end{equation*}
$$

and thus

$$
\begin{align*}
P\left(I_{\mathbf{H}_{a, o}} \mid F_{\mathbf{H}_{a, c}}\right) & =\int_{0}^{\infty} P\left(I_{\mathbf{H}_{a, o}} F_{\mathbf{H}_{a, t}} \mid F_{\mathbf{H}_{a, c}}\right) d F_{\mathbf{H}_{a, t}} \tag{5}\\
& =\int_{0}^{\infty} P\left(I_{\mathbf{H}_{a, o}} \mid F_{\mathbf{H}_{a, t}}\right) P\left(F_{\mathbf{H}_{a, t}} \mid F_{\mathbf{H}_{a, c}}\right) d F_{\mathbf{H}_{a, t}} \tag{6}
\end{align*}
$$

Approximate the integral with a quadrature:

$$
\begin{equation*}
P\left(I_{\mathbf{H}_{a, o}} \mid F_{\mathbf{H}_{a, c}}\right)=\sum_{j=0}^{j<N} w[j] P\left(I_{\mathbf{H}_{a, o}} \mid F_{\mathbf{H}_{a, t}}[j]\right) P\left(F_{\mathbf{H}_{a, t}}[j] \mid F_{\mathbf{H}_{a, c}}\right) \tag{7}
\end{equation*}
$$

Where the weights $w[j]$ and the nodes $F_{\mathbf{H}_{a, t}}[j]$ will have to be determined. Strategic placement of nodes and weights will probably require some care. Of course, a Laplace approximation could be used as well. It is not clear to me how to take care of target function derivatives when using a Laplace approximation.

1.3.1 An example

Set α to 0.90 and β to $0.19, F_{\mathbf{H}_{a, c}}$ to 0.5 and σ_{a} to 0.1 . This gives

The continuous line is the $P\left(z \mid F_{\mathbf{H}_{a, c}}\right)$ without taking into account experimental error. The striped line is when the error are taken into account.

Setting α to 0.95 and β to $0.1, F_{\mathbf{H}_{a, c}}$ to 1.5 and σ_{a} to 0.5 gives:

Striped and continuous lines are as above. In both cases, integrations were carried out with a (brute force) low discrepancy Halton sequence with 400 points. A more carefull integration using an appropriate quadrature can significantly reduce the number of nodes that need to be sampled. If the maximum value of the integrant is found, one can choose the region in which one integrates to be in the area where the integrant has the largest mass. Initial results using a Gauss-Legendre quadrature are encouraging.

1.4 Twinned data

With the insights of the one dimensional case, we can say
$P\left(J_{\mathbf{H}_{a, o}} J_{\mathbf{H}_{b, o}} \mid J_{\mathbf{H}_{a, t}} J_{\mathbf{H}_{b, t}}\right)=\frac{1}{2 \pi \sigma_{a} \sigma_{b}} \exp \left[-\frac{\left(J_{\mathbf{H}_{a, o}}-J_{\mathbf{H}_{a, t}}\right)^{2}}{2 \sigma_{a}^{2}}-\frac{\left(J_{\mathbf{H}_{b, o}}-J_{\mathbf{H}_{b, t}}\right)^{2}}{2 \sigma_{b}^{2}}\right]$

Introduce twinning:

$$
\begin{align*}
J_{\mathbf{H}_{a, t}} & =(1-\tau) F_{\mathbf{H}_{a, t}}^{2}+\tau F_{\mathbf{H}_{b, t}}^{2} \tag{9}\\
J_{\mathbf{H}_{b, t}} & =\tau F_{\mathbf{H}_{a, t}}^{2}+(1-\tau) F_{\mathbf{H}_{b, t}}^{2} \tag{10}
\end{align*}
$$

and obtain $P\left(J_{\mathbf{H}_{a, o}} J_{\mathbf{H}_{b, o}} \mid F_{\mathbf{H}_{a, t}} F_{\mathbf{H}_{b, t}}\right)$, to bring

$$
\begin{align*}
P\left(J_{\mathbf{H}_{a, o}} J_{\mathbf{H}_{b, o}} \mid F_{\mathbf{H}_{a, c}} F_{\mathbf{H}_{b, c}}\right)=\int_{0}^{\infty} \int_{0}^{\infty} & P\left(J_{\mathbf{H}_{a, o}} J_{\mathbf{H}_{b, o}} \mid F_{\mathbf{H}_{a, t}} F_{\mathbf{H}_{b, t}}\right) \times \\
& P\left(F_{\mathbf{H}_{a, t}} F_{\mathbf{H}_{a, t}} \mid F_{\mathbf{H}_{a, c}} F_{\mathbf{H}_{b, c}}\right) d F_{\mathbf{H}_{a, t}} d F_{\mathbf{H}_{b, t}} \tag{11}
\end{align*}
$$

Note the absence of singularities when the twin fraction is a half: no 'detwinning' is involved that would be result of changing variables in $P\left(F_{\mathbf{H}_{a, t}} F_{\mathbf{H}_{a, t}} \mid F_{\mathbf{H}_{a, c}} F_{\mathbf{H}_{b, c}}\right)$ to describe twinning. Approximating $P\left(F_{\mathbf{H}_{a, t}} F_{\mathbf{H}_{a, t}} \mid F_{\mathbf{H}_{a, c}} F_{\mathbf{H}_{b, c}}\right)$ with a Gaussian, the integrant in expression 11 looks like a 2D Gaussian, albeit it bit 'curvy':

In the previous figure, the twin fraction was set to a half. When the twin fraction is less then a half, more Gaussian like integrants appear: in the next figure the twin fraction was set to 0.25 :

Although these figures do not prove anything, they do indicate that approximating the integral 11 with a quadrature, would provide a relatively straightforward approximation:

$$
\begin{align*}
P\left(J_{\mathbf{H}_{a, o}} J_{\mathbf{H}_{b, o}} \mid F_{\mathbf{H}_{a, c}} F_{\mathbf{H}_{b, c}}\right)=\sum_{i} \sum_{j} w[i] w[j] & P\left(J_{\mathbf{H}_{a, o}} J_{\mathbf{H}_{b, o}} \mid F_{\mathbf{H}_{a, t}}[j] F_{\mathbf{H}_{b, t}}[j]\right) \times \\
& P\left(F_{\mathbf{H}_{a, t}}[j] F_{\mathbf{H}_{a, t}}[j] \mid F_{\mathbf{H}_{a, c}} F_{\mathbf{H}_{b, c}}\right) \tag{12}
\end{align*}
$$

