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ABSTRACT 

NAL-Pub-74/46-THY 

We investigate the solutions, by a determinental method, for 

a partial wave Bethe-Salpeter equation describing composite particle 

scattering and for its cross channel analog. We compare the behavior 

at s = -m of the leading angular momentum singularity from the Bethe- 

Salpeter equation with that of the leading Regge singularity of the cross 

channel equation. We mention the effect of the general properties of 

the kernel of the Bethe-Salpeter equation on the angular momentum 

structure of the solution. 



I. INTRODUCTION 

In a previous paper [ 11 we derived what we called a “multi- 

peripheral” [ 21 model with continued cross channel unitarity beginning 

with the Bethe-Salpeter equation 

T(p,q,s) = B(P,q,s)+ - dk B(p’k’s) T(k,q,s) 1 3 

(2~)~ 2 Ok go;c 1 ‘(1) 

for composite particle scattering in the s channel. This equation treats 

the case of three spinless, identical particles and describes the elastic 

scattering of one particle from a spinless composite state of the other 

two. This equation is such that the composite particle scattering 

amplitude derived from it obeys exact two and three body unitarity in 

the s ChaMd. 

By using a spectral representation in momentum transfer, t, 

for the amplitude T and going to high t values, we derived a homo- 

geneous equation for the discontinuity of T across the t-cut. This 

equation describes two elementary particles scattering into two com- 

posite particles. We found that the solution to this equation Reggeized, 

i.e., it was of the form 

t “(%p,q,s). 

This led to the following eigenvalue equation for the exponent 4s ) , 
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-ukj2- (p2+k2+m2) 

2pk 1 
xf(p,k, s ), (2) 

where 

f(P, 9, s ) = P ?QP,S,S) (3) 

Thus, it is of interest to study the behavior of the exponent (Y(S) as a 

function of s. 

In this paper we mainly do two things, we study the leading 

Regge singularity emerging from the above eigenvalue equation for 

large negative s (i.e., s * m ). We compare this with the behavior of 

a(s ) coming from a determinental solution of the partial wave projection 

of the composite particle Bethe-Salpeter equation (Eq. 1. 1). We study 

a(s) from the Bethe Salpeter equation for s + -m and its general features 

emerging from properties of the kernel of the equation. 

This paper is organized as follows. In Sec. II we write down 

an N p (s)/ Dp (s ) form for the partial wave amplitude from the composite 

particle Bethe-Salpeter equation. In Sec. III we write down 

determinental power series expansions for Np(s) and C,(s) and 

examine boundedness conditions necessary for the convergence of the 

power series. In Sec. IV we study the analytic properties of D p (s ) 

in the s-plane. Section V contains an examination of the angular 
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momentum structure of the Bethe-Salpeter equation and the leading 

angular momentum singularity at s = - m. Finally, in Sec. VI we 

extract the leading Regge singularity from the “multiperipheral” 

eigenvalue equation for s - -m. Section VII is a discussion of our 

results. 

II. N/D FORM FOR THE PARTIAL WAVE AMPLITUDE 

We begin with the Bethe-Salpeter equation describing composite- 

particle scattering which was written down in I (Fig. 1): 

1 3 
T(p,q,s) = B(p,q,sl +- 

(2=J3 
% B(p’k’s) T(k,g,s) 

k e%%O,) 
(2) 

(4) 

(51 

is the inverse composite particle propagator, both chosen so that T 

obeys exact two and three body unitarity in s. 

We partial wave project this equation (with signatured amplitudes 1 

to obtain 

1 
T;(p,q,s) = B; (p,q,s) + - 

dk B; (p,k,s) T; (k,q,s) 
- 

(2aj2 
20 

k .a%Ok) 

(6) 
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Our definition of T* and T: are such that 

(21 + 1 ,T; (p, q, s )Pa (cos e ) (7) 

Writing 

K; (p,k,s) = 1 
Bp(p.kA 

(2lr)2 2 
(8) 

we have 

T;(p,q,s) = B;(p,q,s) dk K;(p,k,s)T;(k,q.s) (9) 

We now follow a procedure analogous to that of Lee and 

Sawyer [ 31 . If we consider Tm, BeI and Kp as matrix elements of 

integral operators in a one-dimensionsal space with operator products 

defined by 

P 
<pIAp(s)BI(s)Iq> = dk<plA1(s)[k><klB~(s)lq>, 

J 
(10) 

we have for Eq. (2.6) 

<p /+)1q> = <pIB;(s)jq> +<plk;(s)T:(s)lq> 

Or‘ 

<p[T;(s)lq’ = <pIB:(s)+K:(s)T:(s)Iq>. 

We may solve for the T matrix element as 

<pIT;(s)lq> =<Pl 
B ;(s) 

1 -K;(s ) 
I 9’ 

= - <p[ B;(s)@- 
aKI’p 

De(s)] &- 1 4’ 
I 

(11) 

(12) 

(13) 

(14) 
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* N;(s) <p [ N; (s)lq> 
Or‘ Tp(S) = D,(S) 

and <p IT:(s)1 q’ = 
D,(s) 

(15) 

where 

N*(s ) = -B*(s )+- D l(s ) 1 
aK; 

(16) 

and 

Dp(s) = det (1. - K1 ) . (17) 

111. DETERMINENTAL SERIES EXPANSIONS OF N; (s) AND Da 

Following a development due to M. Baker [ 41 we write 

Da (s ) = det (1 - Kp ) 

= 1 - trKp + 2 $- 1 .tidqi K;(;; 1:; ;) 
n=2 0 

where 

K”, 

c ) 

q* *** qn q 

q1 . . . 9, 

<qi 1 Kp ( qi’ . . . <ql 1 Ke 1 q,’ 

<qnlKp141’ *** <qnIKpIqn’ 

($8) 

(19) 

correspondingly we have 
02 

<p)N;(s)\q> = 2s 
n=O 

m 

We have developed <p 1 N:(s) 1 q> and D,Cs ) as power series convergert 

for all strengths of the coupling constant, g‘, for certain boundedness 

conditions. The boundedness conditions which insure the convergence 

of the power series are 
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tr K; <m andtr[K: (s)] [K: (s)l+< m (2!) 

that is m 

d 

dq K;(q, q, s) < m and (22) 

co 

I 
dql dq2 IK; hl> q2>s)j 2 < m . (23) 

0 

Now 
1 

K; (p, q> s) = - 
B;bsq,s) 

(2r) 
2 2wqcJW q) (24) 

where 

= ,-+(I) 
1 (p,q>s) + K;‘2+p,q,sl (25) 

with 

+(I) 
B; (p, q, s) = B p (P, q. s ) + B:‘” )(p, q, s ) (26) 

.+:(I) (p,q,s) = * g 
&-i-i&? -&q&z 

P 
2&T 

(27) 

and 

**C(2) 
P b,q,s) = * 5, 

I 

+Qe 
q 

(28) 

Then 

&/m mm 21+1 

2q I 
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X 
s-49wg2 BLq) * 

This integral is bounded for all 1, provided s # 4wq2 and s is not 

suchthat (5 =m i inp!(cq) (th’ is will be dealt with further in the next 

section). The same holds for 

dq2 1 K;(i) (q,. q2> s 1 1 2 

as can be easily checked. 

We also have 

(q,q,s) = 5, 

+m2 - (2s2 +m2) (2w - 

2q2 
1 Lq 

2 
+G)2-(2q2+m ) 

+Qe 
2q2 

From the behavior 

of Qm (x) at x = *i, 

result holds for 

(30) 

of Q p (x) at x = m and the logarithmic singularities 

the integral converges for P > -312. A similar 

I dql dq2 lK;(‘) (ql.q2,s)12. 

IV. ANALYTIC PROPERTIES OFgl (s 1 IN g 

g1 (s ) is given by trace integrals two of which were given in 

the previous section. Let us consider the integral 

J dq K;(q,q,s) *t(l) dq kp (q,q,s) +K;(2+q,q,s)l . (31) 
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*(I) For Ke we have to examine 

1 

-J [ 

dq +./&CZ- m 1 2p+1 4 

2e+i 
2q2 Boq) s-;w2 ~ q 

Singularities in the variable s can arise in two ways: i) a zero of the 

1 
2 

term may pinch the q integration contour. This leads to a 
s-4wq 
cutinsfroms =4m 

2 
tos =a. ii) A zero of g(cq) may pinch the 

q integration contour. This happens when oq is at a resonance 

threshold, .we have c = s - 2wq h/;51+ m2 
2 

=m This implies that 
9 

R v 

d-z= a,*LG$ This leads to a cut in s from s = (m + mR)2 

tos =a. There is also a pseudo-threshold at s = (mR- m)2. 

For K;“) we have to consider the integral 

+ds)2 - (2q2 +m2) 1 1 2q2 2oq9bq) 

Again the singularities in the variable s can occur in two ways: i) a 

zero of =%(c,) may pinch the q integrate contour, leading to a cut in 

s from (m, + m)2 to m, as before, ii) branch points of Qm may pinch 

the q integration contour. This leads to a cut in s from s = m2 to 

V. THE LEADING ANGULAR MOMENTUM SINGULARITY 
IN THE BETHE SALPETER EQUATION 

The angular momentum poles of the problem are determined 
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from the roots of the equation Df (s) = 0. Now Dp (s ) is given by the 

power series expansion in Eq. (18 ). Since the kernel of our original 

integral equation satisfies the appropriate boundedness conditions 

(Eq. 211, provided we are in the s plane, cut as indicated in Sec. IV, 

we approximate the expansion of D1 (s) with the first two terms. 

Therefore, the determinental condition for the angular 

momentum poles is 

1 - tr Kp = 0 

or 

dq 
(Zw +&)2-(2q2en2) 

s-20 G+m2-m 
4 

R2 + Fbq) 
f z+ il(Qi[ q 2q2 I 

+Qa 

(2wq-G)2 - (2q2 ‘“‘I)+& [~-m]21+‘*2j 

a2 
q\ 

-1 = 0 (32) 

This is a transcendental equation for P which has, in general, an infinite 

number of solutions. 

If we look at the piece of the kernel which gives rise to the second 

term in Eq. (321, we have 

K(2)* p (p,q,s) 

-I 
2p+1 *(cd +wq) 

s-(wp+oq)2 
(331 



-13- NAL-Pub-74/46-THY 

In the vicinity of Q = -1/Z, this is 

$(I) 
Q (p,q.s) 

= 2~cg~gq~ i 

d$i(w +w) 

52% 
s - (-I+ -‘,)2 

(34) 

Therefore, the residue of the pole of the kernel at Q = -‘l/2 is not a 

separable function of the variables p and q, i. e., the residue is not of 

finite rank [ 51 . This leads to an infinite accumulation of Fredholm 

poles in T near Q = -1/Z. 

Nevertheless, we can examine the behavior of the determinental 

equation for s large and negative (or s large positive in the cut plane). 

We do this by separating out the largest singular part of the QQ (x) in 

Eq. (32) to obtain 

dq 1 2 -- 
- 

s-2w hjs + m 
2 2w Q +1 

-m 
q 

; +F(cq) 9 

(35): 

As Is[ -m, the first term inside the brackets in the integral 

dominantes and we find out that the leading singularity is at Q = -1. 

That is, at s = -OD, the Regge pole begins at Q = -1. For s = 4m2 or 

s = (m + mR)2 the integral in Eq. (32) is not bounded. Our approximation 

to the determinental equation fails for s at these values. As s approaches 
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4m2, the second term in Eq. (321 becomes increasingly important 

and we have a transcendental equation with an infinite number of 

solutions. 

VI. THE LEADING REGGE SINGULARITY 
FROM THE “MULTIPERIPHERAL” EQUATION 

In paper I, we derived the eigenvalue equation for ru given 

below for high t values from a “multiperipheral” model with continued 

cross channel unitarity. We found 

m 
2 

f(p,q,s) = * dk j,Qa[ 
4-i? -up-w )2-(p2+k2+m21 

0 
20kg(sk1 2ik ] 

sO 

x f(p,k,s). 

This is an eigenvalue equation of the form f = K$. 

The eigenvalue condition is then det(i-Kal = 0 . 

Again, following Baker [ 41 , we write 

D@ P,det(i - Km) 

=i-trKQ+z2 ‘gJit dqi K~(~~:::~~) 

l-l 

where I(,” is given in Eq. 19. The same boundedness 

conditions pq&tyin % in Sec. III. 

(36) 

(37) 

(38) 

(39 ) 

Therefore if we keep the first two terms in the expansion of 
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det (1 - Ka) we have as our eigenvalue condition 

D =1-trK =0 
a (Y (40) 

Daz<&q~coq)je $!$ Qcr [(n-2u;;~-(2q2+m2’] -1 =,, 

sO (40 

The second integral in this expression is analogous to one encountered 

for Yukawa potentials [ 31 when the exchanged particle is replaced by 

a continuous distribution of masses. The integral ena, untered is 

1 ds’ Qa (1 + -$) I . 

sO 

The important point is the behavior of the spectral function u( s’ ) at 

infinity. We consider the case 

lim U(s’) =Cs’ 
-1 +rj 

(42) 
s' -m 

If n = 1 the integral above does not converge for any (Y. For 0 < n <I, 

Da will have a fixed simple pole at LY = n - 1. For n 5 0, the first (Y 

in Dcu is at cy = -1. 

For the s’ integral in Eq. (41), 

u(s’) = - 1 
s’ - s (43)' 

Therefore 
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lim u(E? ) = -J- = E! -i (i.e., r) =O) (44) 
S-tm 

Therefore the first singularity in De is at (Y = -1, or, in other words, 

the leading Regge singularity begins at a = -1 at s = - a. 

V. DISCUSSION 

We have made a comparative study of the angular momentum 

properties of a Bethe-Salpeter equation describing composite particle 

scattering and an eigenvalue equation for the crossed channel process 

at high energy, which we call a “multiperipheral” model with continued 

cross channel unitarity. Provided that certain boundedness conditions 

hold, we can solve for the amplitude in the Bethe-Salpeter equation in an 

NQ !DQ form where NQ and DQ are written as determinental power series 

expansions. A similar determinental solution can be developed for the 

cross channel problem. The same determinental equation locates the 

leading angular momentum singularity in one case (Bethe-Salpeter ) and 

the leading Regge pole in the other (“multiperipheral”). 

We found the behavior of the angular momentum singularities at 

s = -m to be the same in both cases, i.e., Q = -1 at s = -m. For s 

finite we found that the determinental condition for the eigenvalue in the 

Bethe-Salpeter case led to a transcendental equation for Q with an 

infinite number of solutions. This was linked to the non-separability 

of the kernel for the Bethe-Salpeter equation for finite S. 



-17- NAL-Pub-74/46-THY 

The fact that the value for Q at s = -m is the same as that for 

ladder models [3] is not surprising, since for s = -m, we are very far 

from the threshold for the breakup of the composite in the composite 

particle channel; it acts like a bound state (or “elementary particle”). 

Thus, we may say that we see internally the “ladder” part of the model for 

large, negative s. The effects of three body unitarity are felt for s 

near or greater than the threshold for composite breakup where the 

problem is very difficult to solve. 

We feel that further work on this problem neceesitates numerical 

calculations on the computer. Nevertheless, we feel that a framework 

has been given in this paper and in Paper I for the study of high energy 

composite particle amplitudes and, as a result, for the study of many 

related problems. Examples are particle production and triple Regge 

limits since a two to three production amplitude, a two to four production 

amplitude, and a three to three amplitude can be constructed from our 

composite particle amplitudes via the attachment of appropriate composite 

particle propagators and dissociation vertex functions to the composites. 

Also we may study effects of unitarity on Reggeon-Reggeon particle 

vertices if we Reggeize the composites. Work on these aspects is 

continuing. 

Authoress wishes to thank Drs. B. W. Lee and A. R. White (of 

Fermilab Theory Group) for helpful conversations. 
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APPENDIX 

PARTIAL WAVE PROJECTION OF THE BORN TERM 

We have for the potential 

2 
g (cd +w +w 

B(p,q,s’ = 
P+9’ 

wP+9 lCWP q 
+w +w Ptq J2 - s 1 

(A.1’ 

where o p = (Q2 +m2)’ and w p+q(P2 +q2 + m2+ 2pqz) +;p = Ipj. (A.2) 

This may be written 

B(p,q,s) = g2(wp+ w + w 
c1 c2 c3 

9 P+s) - +(a +oq-vz) +cwp+wq+d3 
wP+s P 

(A.3) 

where 

c* = 1 

bp q2 ’ +w) -s 

c2 = 
-1 

Z&(w 
P 

+ wq - 6) 

c3 = 
1 

2G(w + j, +&‘. 
P q 

Rationalizing the denominators in the last two terms, we obtain 

B(p,q,s) = g2 cl + 
t 

C1(w +a) 9 
wP+q 

(A. 4) 
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iw )-w +w +w 
+ 

C,[(o q2 2+q -dS(w q p+q )I 

(w fw 
P q 

- &)2 - 2 
wP+q 

2 2 
c [(w+w)-w 

3 
+dF(W 

+ 
p + wq + up+ )I 

(wp + wq + m2 - w;+g 
(A. 5) 

=CIA +C2B +C3C (A.6) 

To partial wave project these terms we need two things--signatured 

amplitudes and an alternative definition of the Legendre function, PQ (cos 0 ) . 

A. Signatured Amplitudes 

Keeping only the dependence on the scattering angle, z, explicit, 

let 
B(z) = BR(z) + BL(s) (A.7) 

where BR(z) contains only the right hand (RH) singularities of B(z) in z 

and BL(z) contains only the left hand (LH) ones. We then define amplitudes 

of definite signature 

B*:(z) = BR(z) zt BL(-z) L4.8) 

each of which has only right hand singularities in z. For all s, the C1 

term in Eq. (A. 5) has only left hand singularities in z. For s large 

and negative, the C2 and C3 terms in Eq. (A. 5) have only left hand 

singularities. Then our signatured terms are 

B*(z) = + [C, B(z) + C3 C(-z) + Ci A( (A.9) 
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B. Alternative Definiticmof the Legendre Function 

In terms of the hypergeometric function PQ (cos 0 ) may be 

written [ 6 1 

But 

Thus 

PQ (cos e) = F(Q+1, -Q,l,sin’ e/2). 

PQ (cos 0) = (-1)Q PQ(COS e) ; 

(A. IO) 

CA. 11’ 

~~(~0s e) = 
1 1 

- pQ (-cos e) = - 
wQ we 

F(Q +I, -Q, 1, cos2e/ 2) 
(A. 12) 

so 

f,(p,q)= $ d(cosO )PQkOse)fkOse,p,q) 

1 =- 
2 I 

d(coS e) F(Q+1,-Q,i,COS' e/2)f(COS e,P,CI) 

2 = -- dx 
P 

X Jp (pb) Jo(X b) db f(cos 0 ,p,q) 

where p = 2d pq , x=psine/2and p=2Q +1 

(A. 13) 

(A. 14) 

(A. 15) 

C. Projection of the Born Term 

We consider each term separately. 

i) CIA(z) 

c1 CIA(z) = - = c1 
1 

wP+4 (p2 +q2 +m2 + 2pqz)’ 

CiA(-z) = 
c1 

(p2+q2+m2 
1 

- Zpqz)’ 

(A. 16) 

(A. 17) 
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c1 c1 
[(,p-q)2+ m2 

A= 
+4pq sin2 e/21" [a2 

l- 
+x2 I” 

(A. 18) 

where 

Thus, 

= f(x,p,q) (A.19) 

2 
x = p2 sin2 ei2~; p2 = 4Pq (A. 20) 

dx x J”(pb) Jo(xb) fk,p,q)db (A.211 

c~-d~v 1 L 24% 1 

ii) C2 B(z) 

C2BQ(p.q,s’ =C2 dx x J,,(pb) Jo(xb)db Wx,p,q) (A. 23) 

where 
2 

X = p2 sin2 e/2 (A. 20) 

Now 

(A. 24) 

and 

c2 [(w +o 2 2 
P 4 

) -w 
C2BW = P+4 

- d3cdp+ wq + w -q)l 

(wpi wq -x&J2 - up2* 

C2B(-z) = 
c2 [(w +o J2 - 0 

2 
-d-F(w +w +o _ )I 

P q Pq (A. 25) 
(0 

P 
+ wq- &J2 - uiMq 
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22 2 

C2BQ(p.q,s) = si- QQ 
(p +q +m ) - ( w + w - dss2 

4Pq 2Pq 1 5, 

where 5, = [I i (-l)l+il 

contributes only to odd signature trajectories. 

ii) C3C(z) 

Projecting 

C3Cp(p.q.s) =-c 2 
3 P J 

dx x J,,(pb)Jo kb1dbCkp.q) 

where x 
2 

= p2 sin2 e12. 

Now 
[P 
(W 

2 2 
+w1 -0 

9 p+q + d-ii(, +w +o 
C3C(z) = c3 

(opiwq + &I2 - cd2 
P+9 

and 
w +c!d2-o 2 

+ 6 (0 
c3 C(-2) = c3 P-q 

‘wp + wq +,m2 - w 2 
p-4 

(A. 26) 

(A. 27 1 

(A. 28) 

(A. 20) 

(A.29 ) 

(A. 30) 

so 
C3 C,(p,q,s) = L QQ 

(p2 + q2 + m2) - (0 + wq + &j2 

4Pq 2Pq I 5, 
(A.31) 

where again 

5, = [I + (-llQ +I] (A. 27) 

. 
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FIGURE CAPTIONS 

Fig. 1 The composite particle scattering eql:ation. 
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