EXPLORER: Long-Range Untethered Real-Time Live Gas-Main Inspection System Natural Gas Infrastructure Reliability Industry Forums NETL - DOE Tuesday, September 17, 2002 Presented by: Dr. George Vradis N.Y

BACKGROUND

Cameras are used for visual inspection of pipes for:

- Condition monitoring
- Maintenance and/or construction planning

GasCam Video Inspection System

Probably most cannot negotiate turns, thus providing limited range of operation (less that 250 ft from launching point)

PRIMARY INCENTIVES/DRIVERS

- Increase range of operation of cameras in order to:
 - Reduce excavation costs
 - Reduce operational costs
 - Increase range of applications
- Develop a versatile modular system to deploy other instrumentation and/or repair tools; not just a camera

OBJECTIVES

Develop a tele-operated long-range unterthered video-inspection system for live distribution mains □ 6" and 8" pipes Able to negotiate 90 deg turns and vertical elements Battery powered with long battery life Wireless communication with long range Range-extension through in-situ keyhole recharging Modular design that will allow for future expansion of capabilities

BENEFITS - Quantitative

Inspection of a 1500 ft long pipe segment using Explorer would cost 30 – 50% less than using existing technology (Aries camera) Assumptions: \$1,000/day for Aries, \$2,000/day for Explorer \$1,000 to \$2,500 per excavation \$300 ft/day for Aries \$1500 ft/day for Explorer \$1,000 access fitting left behind

BENEFITS - Qualitative

- Explorer will be able to inspect non-straight pipe with:
 - Expansions/contractions
 - Bends and tees
 - Vertical segments
- Modular design can expand its field of use dramatically in the future

WORKSCOPE

Phase I: Feasibility study and preliminary design (completed) □ Phase II: – Final design (completed) – Prototype construction (nearing completion) – Lab testing (under way) Phase III: Field demonstrations

EXPLORER Configuration

EXPLORER Configuration (continued)

Explorer Physical Descriptors

- □ System Length 50"
 - Module Length limited by 90° elbow, 6" ID pipe, 4" Body O.D
 - 5 Modules (2 drivers, 1 Electronics, 2 Battery) + Conn.
- Weight 35 lbs.
- Locomotion Speed 4.5" per sec horizontal
 - Based on highest-density Li-Ion rechargeable pack-size
 - Can covers about 2 miles in an 8-hr. day
- Recharge Topside or via coupling

EXPLORER Configuration Locomotor

Able to climb vertical pipe segments
Able to negotiate 90 deg-turns in 6" and 8" pipes
Able to center itself in the pipe

3 drive-wheels on articulated linkage driven by brushless DC motor

EXPLORER Configuration Camera

Camera system

- Two fisheye cameras; one on each end
- 190-deg field of view
- Miniaturized and rugged
- Dewarping & mosaiquing software for better images of the pipe wall

EXPLORER Configuration Camera (continued)

EXPLORER Configuration Wireless Communication

- □ Wireless module
 - off-the-self wireless technology
 - performance in lab set-up and field demos very encouraging

EXPLORER Configuration Wireless Communication (continued)

- OEM Wireless PC LAN-Card
 - 2.4GHz (IEEE 802.11b)
 - Range-extending antenna
 - Exchangeable as OEMfrequencies increase

EXPLORER Configuration Power Supply

Rechargeable Li-Ion

67x17mm C Panasonic
Integral PCB Control
NOT sealed but purged

Structural mounting
Alternative – NimH

Stand-in

EXPLORER Configuration Computing

Navigation Computer – Hitachi SuperH (HSH) running LINUX OS **Communication Adapter** Video Processing Support I/O Interface & **Communications Bus** Video & Antenna Switch

EXPLORER Configuration Computing (continued)

Coo

Hitachi SH-4 "SuperH"
32-bit, superscalar RISC microprocessor
Up to 1000MIPS per Watt
Four power-down states (down to 25 mW)
2.5W(Max) @ 200MHz
Integral Memory bus controller

EXPLORER Configuration Launching System Taping via Mueller C1-36 system Special launcher designed; under construction **Features** » Vertical entry, no-blow, high pressure » Sealed and Purgeable » Deployable Antenna » Built-in charger & comm-interface connector » Jib-crane deployable

EXPLORER Configuration Launching System (continued)

Mueller C1-36 Line

» Weld-on Line Stopper Fitting » Machine Adapter » C1-36 Drilling Machine » 9" Gate Valve » Power Plant » Completion Machine » One-time Cost: \$40,712 Left-behind buried fittings: \$1,308 (6") to \$1,936 (8")

EXPLORER Configuration User Interface

Portable Case

- » Embedded PC104 CPU
- » Ethernet Antenna Cable
- » High-Resolution Display
- » Integral Joystick
- » Alphanumeric Interface
- » Custom GUI

Explorer Robot Deployment

Day 1

- 08:00 Drive up & dig hole
- 12:00 Install Launcher
- 15:00 Wake-up Robot
- 15:15 Test Launcher & Comm
- 15:30 Test Robot
- 16:00 Secure System

Day 2

- 08:00 Show up at Job-Site
- 08:30 Wake up Routine
- 09:00 Launch Robot * Travel 10,000 ft RT
- 16:30 Retrieve Robot
- 17:00 Secure & Charge Robot

Teleop Control Console

Day 2 + (1<N<3)

OPEN ISSUES/RISK

- Ability of locomotor to make 90-deg turns demonstrated; optimization of turning routines underway
- Performance of wireless system in real piping systems very promising; still being evaluated
- System integration issues appear manageable
- Development of recharging and antenna deployment systems to be considered during commercialization effort

SCHEDULE

Design finalization and drawings Wireless testing in field Prototype building Testing in lab and improvements Delivery of prototype to funders Field demos Identification of commercialization partner

completed 12/01 completed 12/01 in progress by 3/03 by 5/03 by 10/03 in progress