

Smartwaves International

Assumptions

- Wireless communication, that is not line of sight, has a limited usable spectrum due to propagation issues (0-3GHz)
- There is no limit to the amount of data we will wish to send
- Therefore, this spectrum must be used as efficiently as possible
 - All degrees of freedom must be used optimally

Outline

- Environment
- Goal
- Space Diversity Combining
- Multiple Beam Arrays
- Digital Beam Forming
- Frequency Scanned Systems
- Holographic Beam Forming
- Conclusions

• Overview

New

Angular Spread

• Angular spread is a function of base station location, distance and environment

Angular Spread

Suburban base station directed toward a • town 3dB Angular Spread (deg) 20 10 0 5 10 Position (km)

Angular Spread

7

Link Directivity

Interference Rejection

• Resolution is directly related to interference rejection

Smart Antenna Systems

- Main Goals:
 - Increase Capacity
 - Increase Range
 - Eliminate Down Time
- Additional Advantages
 - Emergency Tracking
 - Jamming Suppression

- GSM, AMS, CDMA all reside in two dimensions
- Space is four dimensional (x,y,z, polarization)
- Code is a subset of the time-frequency space

Present Standard Trends

- UMTS plans services and features
- Wide Band CDMA is the leading future standard
 - TD-CDMA as a subset for smart antennas
- Data over Voice
- Down link limits performance
 - why not allocate more bandwidth to the down link

Common Space Diversity Combining Techniques

Selection Combining

Maximum Ratio Combining

Equal Gain Combining

Antenna

Down

Converter

Estimate Weight

and Phase

Space Diversity

- Configuration can be considered 2 element array
- Optimized when antennas are maximally spaced
 - more than 2 wavelengths
 - decorrelated noise
- Maximum ratio is preferred in basic combiners
- A dual polarized antenna may be used instead of two antennas
 - polarization diversity

Butler Matrix Fed Array

15

Butler Matrix Fed Array

• Utilization

- Sectorize a cell into n-cells with increased link energy
 - 3dB gain increase
- Combined beams eliminate gaps
 - 6dB gain increase
- Cross channel interference is reduced
 - 10dB improvement
- Frequency hopping dramatically improves worst case fading
- Application
 - Low density sites with large cells

RF Phased Array

RF Scanning Array

- All channels are directed together
- Best for broad band TDMA packeted information

• Fade compensation

Digital Beam Forming Array

- Total independent channels
- Channel bandwidth limited
 - DSP speed relates to bandwidth
 - Wide band CDMA?
- Allows distributed power
 - One low power amp per element
- Very good interference rejection
 - channels(elements-1) "nulls"

Frequency Scanned Array

Frequency Scanned System

- Employs frequency tracking mobiles
 - Radio chooses the optimal channel band
- Improves range
 - High gain frequency scanned antennas are easily constructed
- Adaptive nulling through frequency channel selection
 - Each direction corresponds to a frequency
- Best used in wide band systems

Holographic Communications Concept

Holographic

- VLBI applied to wireless communications
- Local signal maxima are formed on transmit
- Fades are uncorrelated at the base stations
- Offers the maximum capacity and range increase of any conceivable system
- Allows tracking, and jamming suppression (GPS like)

Holographic 7.7dB, -7.6dB 3.4dB Single Omni -17.8dB Array Element 2.6dB -29.6dB \diamond Measurement CH1 igodolMeasurement CH2 \bigcirc 19.8dB, -12.6dB \diamond 62.6dB, \diamond 13.0dB, \bigcirc -22.6dB

- Channel link improvement
- Adaptive nulling (WSF)

Optimized Hardware Control

• Create the best link through optimized hardware control

Conclusions

- We will use SDMA schemes as they become cost effective
- SDMA implementation becomes more cost effective as new DSPs become available
- SDMA will be necessary to improve capacity
- TDMA (ATM) combines nicely with SDMA
- Holographic techniques provide the greatest potential