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Geodetic imaging: reservoir monitoring using satellite interferometry
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S U M M A R Y
Fluid fluxes within subsurface reservoirs give rise to surface displacements, particularly over
periods of a year or more. Observations of such deformation provide a powerful tool for map-
ping fluid migration within the Earth, providing new insights into reservoir dynamics. In this
paper we use Interferometric Synthetic Aperture Radar (InSAR) range changes to infer sub-
surface fluid volume strain at the Coso geothermal field. Furthermore, we conduct a complete
model assessment, using an iterative approach to compute model parameter resolution and co-
variance matrices. The method is a generalization of a Lanczos-based technique which allows
us to include fairly general regularization, such as roughness penalties. We find that we can
resolve quite detailed lateral variations in volume strain both within the reservoir depth range
(0.4–2.5 km) and below the geothermal production zone (2.5–5.0 km). The fractional volume
change in all three layers of the model exceeds the estimated model parameter uncertainty by
a factor of two or more. In the reservoir depth interval (0.4–2.5 km), the predominant volume
change is associated with northerly and westerly oriented faults and their intersections. How-
ever, below the geothermal production zone proper [the depth range 2.5–5.0 km], there is the
suggestion that both north- and northeast-trending faults may act as conduits for fluid flow.
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1 I N T R O D U C T I O N

When fluid is produced from or injected into the subsurface, it in-
duces a volume change, which in turn deforms the Earth’s surface.
If the reservoir is horizontal and homogeneous, the resulting dis-
placements will be distributed concentrically around the produc-
tion/injection borehole. If a preferential flow path such as a fault zone
exists, a frequent occurrence in many reservoirs, the flow will mostly
occur along this pathway, and the distribution of volume change
and subsequent surface displacements will be skewed. Therefore,
the pattern of surface displacements can be used to make inferences
about reservoir volume change. The distribution of volume change
is tightly coupled to the spatial variation in reservoir permeability
and compressibility, so that heterogeneities in volume change are
directly related to lateral variations in these properties.

The surface expression of reservoir dynamics can be monitored
by using high-precision tiltmeters (Evans et al. 1982), GPS, laser
altimeters (Ridgway et al. 1997) and Interferometric Synthetic
Aperture Radar [InSAR] (Zebker et al. 1994), depending on the
magnitude of the displacements. A large number of measurement
points are often needed to estimate reliably the distribution of reser-
voir volume changes. Monitoring of deformation at or near the sur-
face costs very little compared to drilling a set of wells to reservoir
depths and instrumenting them with pressure sensors. Recent tech-

nologies, such as InSAR, are able to provide very dense estimates
of surface deformation at relatively low cost. Surface displacement
observations provide independent data on reservoir dynamics that
can be used to verify flow models based upon borehole data alone.
Observations of surface deformation have proven useful in monitor-
ing hydrofracturing (Evans et al. 1982; Castillo et al. 1997; Wright
et al. 1998), fluid migration associated with volcanism (Vasco et al.
1988, 1990; Massonnet & Feigl 1995; Briole et al. 1997; Wicks
et al. 1998; Dzurisin et al. 1999), steam injection (Bruno & Bilak
1994), well testing (Vasco et al. 1998) and petroleum production
(Vasco et al. 2000).

In this paper we shall describe the use of InSAR observations
to map changes in the state of a reservoir. That is, we develop
and apply techniques for mapping InSAR range change data into
volume changes within the reservoir. In many cases we may asso-
ciate such volume change with pressure changes due to reservoir
production. We pay particular attention to the calculation of reso-
lution and uncertainty associated with the estimates. For example,
we derive singular value decomposition (SVD) based assessment
techniques for inverse problems with very general regularization.
Using a Lanczos iteration scheme, we outline an approach which
makes the calculation of resolution and covariance matrices feasible
for inverse problems with very large data sets. The methodology is
applied to a set of InSAR images from the Coso geothermal field.
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2 M E T H O D O L O G Y

In this section we describe how the observed surface displacements
may be used to infer the distribution of fractional volume change
within the reservoir.

2.1 The equation governing static deformation
in an elastic medium

The governing equation for displacements in an elastic medium,
ui (x), i = 1, 2, 3, due to an internal strain is (Aki & Richards 1980,
p. 19)

∂
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δi j = fi (x) (1)

where fi (x) is a source term,

fi (x) = − ∂

∂x j
[K (x)�(x)]δi j . (2)

The quantity �(x) is the stress-free volume strain, often denoted by
	θ , given by

�(x) = 	e11 + 	e22 + 	e33

where 	e11 are stress-free strain components (Aki & Richards 1980,
p. 60). The relationship between the stress-free or transformational
strain, which is the strain that a volume would undergo in the absence
of the elastic matrix, and the constrained strain (strain in the presence
of the matrix) is described in Eshelby (1957). The spatially varying
functions µ(x), λ(x) and K (x) are the shear modulus, the Lame
constant and the bulk modulus, respectively. In this work we invoke
the Einstein summation convention in which we sum over repeated
upper and lower indices.

There are several approaches one could take in order to solve
eq. (1), depending on how well the medium is known. We might con-
sider simplified elastic structures and solve the equation analytically.
Examples of possible distributions of elastic properties are a homo-
geneous whole-space (Eshelby 1957), a homogeneous half-space
(Mogi 1958; Maruyama 1964) and a layered half-space (Singh 1970;
Jovanovich et al. 1974). Another approach extends this method by
considering small perturbations of properties about one of these
simple models (Du et al. 1994). The result is an equation for the
displacement perturbations which may often be solved efficiently.
Purely numerical techniques such as finite differences (Mitchell &
Griffiths 1980; Vasco et al. 2000) or finite elements (Smith 1982)
provide the most flexible methods for solving (1) given an arbitrary
distribution of elastic properties. Such numerical techniques require
more computational resources than the other approaches. However,
because we are considering the static displacement problem, time
stepping is not required and it is feasible to solve (1) numerically.

2.2 Green’s function representation of the solution

In what follows we shall require the Green’s function representa-
tion of the solutions of eq. (1). That is, we will need the functions
Gin(x, y), i, n = 1, 2, 3 satisfying
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δi j = δin δ(x − y)
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where δinδ(x − y) is a delta function source located at y with a
non-zero nth component. Physically, Gin(x, y) represents the ith

component of displacement at x due to a point body force at y with
non-zero component n. It is well known (Stakgold 1979; Aki &
Richards 1980) that, given the solutions to (3), we may write the
solution to (1) as the integral

un(x) =
∫

V

fi (y)Gin(x, y) dy. (4)

Substituting the definition of fi (y) from eq. (2) produces

un(x) = −
∫

V

∂

∂yi
[K (y)�(y)]Gin(x, y) dy. (5)

Because we are integrating over a volume containing the source and
we may assume that �(y) vanishes at the integration boundaries, we
may write (5) as

un(x) = −
∫

V

K (y)
∂Gin(x, y)

∂yi
�(y) dy. (6)

Defining the modified Green’s function

gn(x, y) = −K (y)
∂Gin(x, y)

∂yi
(7)

we may write (6) as

un(x) =
∫

V

gn(x, y)�(y) dy. (8)

Thus, the nth component of displacement at point x is a scaled
integral of the transformational volume strain within the reservoir.
In the inverse problem we solve eq. (8) for the distribution �(y),
given a discrete set of displacement observations, un(xi ).

A key component of this approach is the modified Green’s func-
tion gn(x, y) which appears in eq. (8). In the application described
below, we implement an analytical solution for a uniform half-space,
based upon a generalization of the results of Maruyama (1964), as
described by Vasco et al. (1988). The modified Green’s function is
expressed as

gn(x, y) = (ν + 1)

3π

(xn − yn)

S3
(9)

where ν is Poisson’s ratio and

S =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 (10)

is the distance from the source point to the observation point. This
Green’s function is appropriate for stress-free volume strain. When
describing volume change constrained by the matrix, as in Mossop
& Segall (1999), we must scale this function as describe by Eshelby
(1957).

2.3 InSAR observations

InSAR, utilizing satellite-borne synthetic aperture radars, is a rel-
atively recent development in observational geodesy (Zebker &
Goldstein 1986). InSAR has been used to map topography (Zebker
& Goldstein 1986), to image displacements induced by earthquakes
(Massonnet et al. 1993; Zebker et al. 1994; Massonnet & Feigl 1995;
Feigl et al. 1995; Murakami et al. 1996), to image deformation as-
sociated with magmatic systems (Massonnet & Feigl 1995; Briole
et al. 1997; Wicks et al. 1998; Dzurisin et al. 1999) and to image
ice dynamics (Goldstein et al. 1993; Fahnestock et al. 1993; Remy
et al. 1999). InSAR has also proved useful in observing subsidence
associated with mining (Carnec et al. 1996), geothermal produc-
tion (Vadon & Sigmundsson 1997; Massonnet et al. 1997; Carnec
& Fabriol 1999; Fialko & Simons 2000) and aquifer compaction
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(Galloway et al. 1998; Hoffmann et al. 2001). We shall not concern
ourselves with the details of extracting phase changes from satellite
radar data. Information on this, with references, may be found in
the recent review papers by Massonnet & Feigl (1998) and Bamler
& Hartl (1998).

In the interferometric mode we measure phase changes, φ, be-
tween radar backscatter from the Earth’s surface taken at various
orbits of the satellite. The phase is related to the surface displace-
ment projected onto the line of sight to the satellite by the expression
(Zebker et al. 1994)

φ = 4π

λ
(H + 	ρ) (11)

where λ is the wavelength of the radar wave, H is the contribution
from topography and 	ρ is the change in distance to the satellite
(range) that we seek. The effect of topography can be removed by
using either a digital terrain model (DTM) or by using additional or-
bits to remove the topography term (Gabriel et al. 1989; Zebker et al.
1994). Removal of the topography using a DTM results in a range
estimate which is accurate to 0.25–1.2 cm, for a nominal DTM er-
ror of 30 m. Using multiple satellite passes to remove topographic
effects results in estimates which are accurate to a few millimetres
(Zebker et al. 1994).

The basic datum in InSAR is the change in range over some time
interval. If the surface of the Earth deforms during this period, the
accumulated displacements of the imaging elements are projected
onto the range vector, l, a unit vector which points toward the satel-
lite. Thus,

	ρ(x) = u · l = ui li (12)

where we are again invoking the summation convention for repeated
indices. From eq. (8) we find that

	ρ(x) =
∫

V

r (x, y)�(y) dy (13)

where

r (x, y) = li gi (x, y) (14)

is the projection of the displacement Green’s functions onto the
range vector. The components of the vector l are known from the
geometry of the satellites orbit. Note that, if different orbital geome-
tries are available, it is possible to acquire different combinations
of displacement components. For example, in our application at the
Coso geothermal field, we use data from both the ascending and de-
scending portions of the orbit to constrain subsurface volume strain
better.

2.4 Estimation and assessment of reservoir
fractional volume strain

2.4.1 Range change data, regularization and model
parameter estimation

Discretization of the integral (13) is accomplished by expanding the
distribution of reservoir fractional volume changes using a set of
orthogonal basis functions e.g., Parker (1994). The basis set consists
of the rectangular constant functions. We represent the volume strain
in the reservoir by a finite number, M, of non-overlapping cells
(Vasco et al. 1988, 2000). Each cell may undergo a distinct fractional
volume change, sayν j , for the jth cell. The contribution to the surface
displacement from the volume strain in a single cell, 	ρ j (x), is
given by

	ρ j (x) = ν j

∫
Vj

r (x, y) dy (15)

where Vj denotes the region occupied by cell j. The total fractional
volume change in the reservoir is a summation over all M component
cells. Hence, the accumulated range change at xi is given by

	ρ(xi ) = Ri jν j (16)

where

Ri j =
∫

Vj

r (xi , y) dy (17)

and ν j denotes the stress-free fractional volume change in cell j.
Given a large number (N ) of range change observations, at various
points on the Earth’s surface, we may solve the linear system of
eq. (16) for the subsurface volume strain. A standard approach is
to find the model parameters ν j which minimize the sum of the
squares of the residuals, leading to the well-known least-squares
estimate (Parker 1994). At this juncture we shall normalize each
equation by the estimated standard error of the associated datum.
This normalization proves convenient later, when we estimate model
parameter covariances. Denoting the standard error of the ith datum
by σi , we scale the data 	ρ(xi ) and the coefficients Ri j :

di = 	ρ(xi )

σi
(18)

�i j = Ri j

σi
. (19)

The weighted sum of the squares of the residuals is then given by

�d (ν) =
N∑

i=1

[di − �i jν j ]
2. (20)

One important consideration when solving for the volume strain
is the conditioning of the eq. (16). In the case of InSAR data,
the equations may be significantly over-determined and inconsis-
tent. Even when the system is formally over-determined, trade-offs
between parameters may render the system effectively underdeter-
mined (Menke 1984). For example, there is often a trade-off between
fractional volume changes at different depths (Dieterich & Decker
1975). To stabilize the inverse problem we shall include a roughness
penalty as a regularization term. Such a term characterizes the spa-
tial continuity of the volume strain, as measured by either the first
or second spatial derivative (Menke 1984). In detail, the roughness
penalty is of the form

�r (ν) =
M∑

i=1

(Di jν j )
2 = ν j Sl jνl , (21)

where

Sl j = Dlk Dkj (22)

and Di j is a linear differencing operator which approximates the spa-
tial derivative operator. The inclusion of a roughness penalty makes
precise the notion that the observed surface deformation is most
likely due to a connected body rather than a collection of numerous
isolated sources. We could easily include a norm penalty (damp-
ing) in addition to the roughness term. However, the truncation of
singular values and singular vectors, introduced below, is roughly
equivalent to a model norm penalty, as discussed in Menke (1984).
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The penalized misfit is given by the sum

P(ν) = �d(ν) + Wr�r(ν), (23)

where Wr is a weighting factor determining the relative importance
of the regularization with respect to the data misfit. The solution to
the inverse problem is the volume strain distribution ν which mini-
mizes eq. (23). The necessary equations for a minimum of eq. (23)
may be written in vector form (Tarantola 1987; Pratt & Chapman
1992)

[ΓTΓ + LTL]ν = �Td, (24)

where L = W 1/2
r D. Defining the (N + M) × M matrix

G =
[

�

L

]
(25)

and

T =
[

d

0

]
, (26)

we may write eq. (24) as

GTGν = GTT. (27)

If the product matrix GTG in eq. (27) is invertible (non-singular) we
may write the estimate of ν as

ν = (GTG)−1GTT. (28)

2.4.2 Assessment of the model parameter estimates

An essential part of an inverse problem entails assessing the unique-
ness and uncertainty associated with the model parameter estimates.
Formally, this is accomplished by constructing resolution and co-
variance matrices corresponding to the solution. As outlined in many
texts (Aki & Richards 1980; Menke 1984; Tarantola 1987; Parker
1994), these measures may be constructed directly from the SVD of
�. For the augmented matrix, G, in eqs (25) and (27) we must mod-
ify the derivation of the resolution and covariance matrices. That is,
when non-diagonal regularization terms are included, such as those
associated with roughness penalties, the conventional SVD repre-
sentation of resolution as the matrix product VpV

T
p (Aki & Richards

1980; Menke 1984) no longer holds. In the Appendix we derive the
necessary modificaions.

Model parameter resolution. In terms of the SVD of G the resolution
matrix is expressed as

R = VpϒVT
p , (29)

where

ϒ = I − Λ−1
p UT

2pU2 pΛp, (30)

as derived in the Appendix. The quantity U2 is associated with the
lower M rows of the (N + M) × (N + M) matrix U, which corre-
spond to the regularization (L). The matrix R constitutes the formal
resolution matrix. Rows of R may be thought of as averaging or
filtering coefficients which operate on the true parameters to pro-
duce an estimate. Deviations of R from an identity matrix indicate
increased averaging or blurring.

Model parameter covariance. The model parameter covariance ma-
trix, Cm, describes the uncertainties associated with the estimates.
As outlined in the Appendix, for a problem in which the rows have
been scaled by the standard errors, Cm is given by,

Cm = Vp�VT
p, (31)

where

� = Λ−2
p − Λ−1

p UT
2pU2pΛ

−1
p . (32)

There is a trade-off between model parameter resolution and model
parameter covariance. For example, as the cut-off p is varied reso-
lution may be increased or decreased with a corresponding increase
or decrease in model parameter covariances. Thus, it is important
to examine these measures in tandem when assessing a solution to
the inverse problem.

3 A P P L I C A T I O N : M O N I T O R I N G
P R O D U C T I O N A T T H E C O S O
G E O T H E R M A L F I E L D , C A L I F O R N I A

In this section we present an application of our methodology to field
data. Specifically, we use InSAR data to estimate the production-
induced fractional volume change, �(x), at the Coso geothermal
field, California.

3.1 Geological, geothermal and geophysical setting

The Coso geothermal field is located at the southwestern mar-
gin of the Basin and Range province. It produces approximately
240 MW of electricity, making it the largest and most developed of
the high temperature Basin and Range hydrothermal systems (Lutz
et al. 1996). More than 100 wells define the production zone, ranging
in depth from 0.4 to 2.5 km (Moore et al. 1989). The fluid temper-
atures within the field are quite high, values as large as 340◦C have
been measured at depths of less than 2.5 km (Moore et al. 1989).

The field lies at the confluence of three tectonic and structural
regimes: the Basin and Range, the Sierra Nevada and the San
Andreas–Garlock fault system (Wright 1976; Roquemore 1980).
At least three sets of faults are mapped in the Coso volcanic field
(Fig. 1) (Bacon et al. 1980; Roquemore 1980). Much of the volcanic
and geothermal activity appears to be controlled by the orientations
of these faults and fractures. For example, geothermal production
is concentrated on a north-trending zone that passes through Devils
Kitchen (Lutz et al. 1996). A second production zone is associated
with a subparallel fault slightly to the east. The region between these
faults is an area of low permeabilities with depressed near-surface
temperatures (Lutz et al. 1996). The dominant host rock appears
to be granitic plutons which are thought to be related to the Sierra
Nevada batholith (Duffield et al. 1980). In addition, metamorphic
and volcanic rocks are widely distributed throughout the region.
Geophysical investigations (Plouff & Isherwood 1980; Young &
Ward 1980; Reasenberg et al. 1980; Walter & Weaver 1980) sup-
port the presence of a small magma chamber 5–20 km below the
Coso volcanic field. Local earthquake traveltime delays (Walck &
Clayton 1987; Walck 1988) and shear wave amplitude attenuation
(Sanders et al. 1988; Ho-Liu et al. 1988), suggest yet another low
velocity, attenuating body, 3–5 km in depth and directly to the south
of the Coso volcanics, beneath Indian Wells Valley.

3.2 InSAR observations at the Coso geothermal field

In an effort to better understand fluid flow in the Coso geothermal
reservoir we examined surface displacements over a five year period,
from 1992 to 1997 (Fig. 2). The displacement estimates were derived
using SAR data from the ERS-1 satellite. The actual data consisted of
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Figure 1. (a) Surface topography within and surrounding the Coso volcanic field. The area of study is indicated by the green rectangle. Inferred traces of
regional faults are indicated by the yellow line segments. Regional seismicity is indicated by the filled red circles. The size of each circle is proportional to
the earthquake magnitude. (b) Detailed topography in the study area. Mapped basalt and rhyolite domes are indicated by the yellow and blue squares. Mapped
fault traces are denoted by the green line segments. Local seismicity is shown as yellow and red circles. The white rectangle denotes the location of the Coso
geothermal production area.
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Figure 2. Map view of (a) the 325 375 descending orbit and (b) the 296 566 ascending range change rates that comprise our basic data set. The descending
orbit estimates are a combination of range changes for five time intervals. A positive rate indicates an increase in distance between the satellite and that point
on the Earth’s surface. Subsidence over the time interval 1992–1997 maps into a positive range change. Discarded phase observations are indicated by white
pixels in this figure.

range estimates from five pairs of descending satellite orbits (4/95–
6/92, 5/96–9/93, 5/96–9/92, 9/96–6/92, 7/97–6/92) and a single pair
of ascending satellite orbits (2/96–8/92).

Range changes associated with the descending orbits were con-
verted to velocities (cm yr−1) and averaged together to provide es-
timates of the overall velocity during the period 1997–1992. The
pattern and magnitude of the velocities were very similar for all de-
scending intervals, suggesting that the deformation was relatively
constant from mid-1992 to mid-1997. Averaging over several time
intervals should reduce the contamination by both atmospheric vari-
ations and satellite positioning errors. In addition, such averaging
allows us to calculate sample variances associated with the estimates
by examining the scatter about the mean velocities. The resulting
average velocities are shown in Fig. 2(a). Note the dense sampling in
Fig. 2(a), each pixel is 30 m by 30 m, for a total of 325 375 velocity
estimates over the region.

The 296 566 velocity estimates from the single ascending orbit
pair are shown in Fig. 2(b). As might be expected, the ascending or-
bit velocity estimates appear noisier than the averaged descending
orbit velocity values. Also, there are significant regions in the
geothermal field where, due to incoherence, we are simply unable
to estimate range change. In these regions we have set the range
change to zero, for display purposes only. Values from these regions
are discarded and not used in the inversion described below. The

amplitude of the computed velocities from the ascending orbits is
similar to estimates made using descending orbits. Also, the pattern
is roughly similar to the that in Fig. 2(a). However, there are notable
differences in detail between the descending and ascending velocity
estimates.

Overall, the Coso geothermal field has undergone consider-
able surface displacement from 1992 to 1996, on the order of 2–
3 cm yr−1. The displacement appears as an increase in range that
is, the distance from the satellite, during this period. Note the
detailed structure contained in the map of descending range change.
For example, there are at least three relative maxima in range
change in Fig. 2(a). Also, there is an elongated, north-south zone of
range increase in the centre of the figure.

3.3 Model assessment and estimates

The estimates of subsurface fractional volume change are based
upon the inversion of the InSAR range measurements in Fig. 2. In
particular, the subsurface volume strains are related to the range
changes by eq. (13). The satellite look vector for the descending
orbit, ld, has components (0.41, −0.08, 0.92) (east–west, north–
south, vertical). For the ascending orbit the look vector com-
ponents are la = (−0.35, −0.08, 0.93). In calculating the Green’s
function we assume that the elastic medium is a homogeneous
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half-space, neglecting variations in topography and material
properties. Ideally, we would account for the detailed variations
in volcanic rocks in the subsurface. However, it is not possible to
obtain an accurate distribution of lithology at Coso nor can we esti-
mate the variation in elastic properties with any certainty. There are
indications from seismic reflection studies that the Coso geothermal
field in underlain by fairly uniform granitic material (Malin 1994).

Because of the irregular reservoir geometry, which consists of
numerous intersecting faults, we chose simply to subdivide the entire
region in Fig. 2 into a rectangular grid of cells. The dimensions of
the grid are 19 (0.8 km) by 25 cells (0.8 km) in the east–west and
north–south directions, respectively. In depth, the model consists of
three layers, each of differing thickness. The first two layers roughly
span the production interval (0.4–1.2 km and 1.2–2.5 km) of the
Coso geothermal field. The lower layer 2.5–5.0 km is intended to
model fractional volume changes below the geothermal field proper.
This layer may be responding to geothermal production as well
as capturing the behaviour of a possible hydrothermal–magmatic
system underlying the geothermal field. In total, there are 1425 cells
in the reservoir model. The volume strain distribution is constrained
by the combined set of 62 1012 ascending and descending range
change observations shown in Fig. 2.

Even though the inverse problem is formally over determined
there are potential trade-offs between depth and volume strain
which would introduce some degree of non-uniqueness. In order to
stabilize the inverse problem we include a roughness penalty in the
inversion. That is, we minimize the lateral roughness of the frac-
tional volume change distribution in each layer, as given in eq. (21).
Because we are only including three layers in our model we have not
included a smoothing penalty in depth. Regularization of this type
would minimize the differences between layers in the model. Such a
penalty could prove useful for models with many layers. The penalty
weight Wr used in the inversion is 0.00001, based upon an examina-
tion of the fit to the data produced by the inversion. That is, we pick
Wr such that the data are neither significantly over-fit nor under-fit
with respect to the estimated data errors. Additional regularization
is provided by an SVD-based generalized inverse which incorpo-
rates a cut-off p, based upon the singular values associated with G.
In Fig. 3 we plot the spectrum of singular values associated with the
matrix G. We employed a cut-off of 1/500 of the peak value. That
is, vectors vi and ui associated with λi less than 0.002 of the peak
value are not used in calculating the generalized inverse, eq. (A2),
nor are these vectors included in the computation of resolution or
covariance, as given by eqs (29) and (31), respectively.

3.3.1 Model parameter resolution and covariance

In Fig. 4 we plot the diagonal of the model parameter resolution ma-
trix, corresponding to the roughness penalty and the singular value
cut-off of 1/500. Each diagonal element is plotted in its correspond-
ing cell. The diagonal elements provide an overall measure of our
ability to recover the volume strain in each cell. Values near 1.0
indicate that we are able to estimate the volume change in a spe-
cific cell with very little contribution from other parts of the model.
Conversely, values near 0.0 signify substantial trade-off between
the estimate and surrounding volume strain estimates. We see that
cells in the top layer (0.4–1.2 km) are very well resolved, with val-
ues extremely close to 1. For the most part, the two deeper layers
(1.2–2.5 and 2.5–5.0 km) are also well resolved, with values vary-
ing between 0.3 and 1.0. The most poorly resolved cells lie at the
corners of the grid. The loss of resolution at the edges is most likely
due to the fact that we have not included observations beyond the

Figure 3. Spectrum of singular values associated with the matrix G in
eq. (25).

boundaries of the inversion grid. By extending the set of observa-
tions beyond the grid we should improve the resolution in the two
deeper layers. Note the extension of the well resolved cells in the
east-west direction, particularly for the deepest layer (2.5–5.0 km).
This is most likely due to our inclusion of observations from both
ascending and descending orbits. The most significant difference
between the descending orbit look vector, ld = (0.41, −0.08, 0.92)
and that of the ascending orbit, la = (−0.35, −0.08, 0.93), is in the
first (east–west) component. Thus, we might expect that the combi-
nation of these two orbital geometries would improve the resolution
in the east–west direction.

Additional insight is obtained if we examine a few rows of the
resolution matrix. The elements of the ith row are averaging coeffi-
cients, which describe the contribution each component of volume
strain makes to the estimate in the ith cell of our model. In Fig. 5 we
present the averaging coefficients associated with a volume element
located in the second layer of the model, the 788th row of the resolu-
tion matrix. Our resolution of the volume change in this cell is quite
good, the diagonal component is 0.95 and there is little trade-off with
estimates in the surrounding blocks. Similar results are obtained if
we consider a block in the interior of the third layer, consider row
1243 of the resolution matrix (Fig. 6). The diagonal component is
0.99, very close to 1.0 and we observe essentially no trade-off in
depth or within the layer. Thus, we find that we can reliably image
volume changes over most of the inversion grid. In contrast, con-
sider a block at the corner of the inversion grid, cell 1385, which is
situated in the lowermost layer (Fig. 7). The diagonal component of
resolution for this cell is 0.55 and we observe averaging within the
layer of cells. The contributions from adjacent cells are both pos-
itive and negative in sign. The largest averaging coefficients have
magnitudes of −0.15 and correspond to cells to the northeast and
to the south-west of grid block 1385 (Fig. 7). There also appears to
be somewhat more averaging in the north–south direction, perhaps
reflecting the contribution of the descending and ascending orbits in
constraining the volume strain model. In summary, it appears that
the distribution of range change data with respect to the grid bound-
aries and the orbital geometries are contributing to the variations in
model parameter resolution.

In computing the covariance matrix we first normalized the in-
verse problem by scaling each equation by the standard error of
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Figure 4. Diagonal elements of the resolution matrix R, computed using the Lanczos algorithm and the SVD representation of eq. (29). Each element has
been plotted at the position of its associated block.

the particular data value (eqs 18 and 19). For the descending orbit
data, the errors were computed from the scatter between the five or-
bital estimates. A base error of 0.5 cm yr−1 was provided for those
averages with anomalously low scatter. For the ascending orbit pair
we used the average error derived from the descending orbit data,
scaled by the square root of the number of descending orbit pairs
(to account for the averaging). In Fig. 8 the estimates of model pa-
rameter standard error are shown. Overall, the estimated errors are

less than 0.15 × 10−4, increasing with depth from the surface. The
error estimates are important when examining the significance of
fractional volume changes in the model.

3.3.2 Estimates of fractional volume change

We used an iterative technique to generate the solution of the penal-
ized least-squares problem. The resulting distribution of reservoir
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Figure 5. The 788th row of the resolution matrix. This block is roughly at the centre of the second layer (1.2–2.5 km). The grey scale indicates the relative
contribution made by each model parameter to the estimate of volume change in block 788.

volume change is shown in Fig. 9 for the three layers of the model.
The pattern of volume change in the uppermost layer (0.4–1.2 km) is
quite intricate, with the largest anomalies associated with regions of
geothermal production. For example, a peak volume change of over
1.5×10−4 is found beneath the primary production zone. The largest
volume decreases seem to lie at, or near, north- and west-trending
faults and their intersections. There are isolated volume decreases
both to the east and to the north of the primary geothermal produc-
tion zone. These anomalies appear to be significant, the magnitudes

exceed the model parameter uncertainties (Fig. 8). The northern-
most volume decrease, which underlies the Coso Hot Springs, ap-
pears to be disconnected from the largest anomaly in this depth
interval.

At depth, but still within the geothermal field (1.2–2.5 km), the
largest volume decrease also coincides with the primary production
zones. This peak volume decrease underlies a west-trending fault
and occurs just to the east of Sugarloaf Mountain. We find a slight
elongation of the peak anomaly along the fault trend. However, there
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Figure 6. The 1243th row of the resolution matrix. This block lies in the third layer (2.5–5.0 km).

is also a component of volume change extending to the south of the
peak anomaly. There is an additional, roughly linear, trend of volume
change associated with the northeast portion of the geothermal field.
This part of the field underlies Coso Hot Springs. It is not clear if
this volume decrease constitutes a disconnected part of the reservoir
in this depth range.

In the deepest interval (2.5–5.0 km) the peak fractional volume
decrease is oriented to the northeast. The anomaly extends from

just to the southeast of Sugarloaf Mountain to beneath Coso Hot
Springs. The trend of this anomaly parallels the northeast trending
faults mapped on the surface (Duffield et al. 1980). There is also
some elongation of the fractional volume decrease in the north–
south direction, particularly to the north of the production zone.
Unfortunately, the resolution degrades at the northernmost edge of
the grid and we cannot completely constrain this portion of the
model. In particular, there may be some degree of north–south
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Figure 7. The 1,385th row of the resolution matrix. This block lies in the
third layer (2.5–5.0 km) near the northeast corner of the grid. In this figure
only volume changes in the third layer are shown.

averaging at the northern edge, as in Fig. 7. By including addi-
tional observations beyond the inversion grid we should be able to
improve the resolution in this region.

The fractional volume change in the 1425 cells of the model
produces a reasonable fit to the 325 375 descending and the 296 566
ascending orbit data (Fig. 10). Most observations are fitted to within
1.0 standard error and all observations are fit to within 1.5 standard
errors. This suggests that we may have overestimated the error in our
data somewhat or that the data are not all independent. For a normal
distribution we expect that around 5 per cent of the data would
exceed 2 σ . Note that the signal-to-noise ratio is lower overall for the
ascending data. These data are derived from a single pair of orbits,
in contrast to the descending orbit estimates, which are averages
over five pairs. Hence, there is considerably more scatter in the
ascending orbit values and the estimates of their standard deviations
are correspondingly higher. Given the possible errors in the data,
due to atmospheric and topographic variations and the simplifying
assumptions in the model, the fit to both sets of measurements seems
acceptable.

3.4 Interpretation

It is interesting to examine features of the inversion result in light
of previous geological and geophysical investigations at Coso. The
location of significant volume change near north- and west-trending
faults and their intersections agrees with previous observations.
In particular, the mapped faults in the region are thought to
control fluid flow in the geothermal reservoir. Recent travel-
time tomography studies (Wu & Lees 1999; Lees & Wu 1999)
suggest a complicated distribution of seismic velocities and a
significant variation in seismic anisotropy above 4 km in depth.
The distribution of microseismicity also implies substantial hetero-
geneity in the seismically active upper 4 km (Walter & Weaver
1980; Feng & Lees 1998). Such complexity is mirrored in
the distribution of fractional volume changes within the upper

layer (0.4–1.2 km) of the model (Fig. 9). A recent interpretation
of InSAR observations over the Coso geothermal field has pro-
duced similar patterns of volume change in the subsurface (Fialko &
Simons 2000). For example, they find that the InSAR observations
can be largely explained by volume changes in the depth range
1–3 km. Similarly, we find that the largest components of vol-
ume change are located in the two uppermost layers 0.4–2.5 km in
depth. Also, the orientations of the deformation sources of Fialko &
Simons (2000) share common orientations with our patterns: a shal-
low (approximately 1 km depth), east-northeast-trending volume
increase and a deeper (3.1 km) and larger north-northeast-trending
body. There are differences between the solutions as well which may
be due to differences in our approaches as well as in our data sets.

One surprising feature of the volume strain model is the occur-
rence of a rather linear, northeasterly oriented volume decrease 2.5–
5.0 km in depth. This deeper anomaly is interesting because it is
located above the low-velocity anomaly noted by Reasenberg et al.
(1980). The northeast end of this anomaly is directly beneath the
Coso Hot Springs. Furthermore, there is evidence from both teleseis-
mic tomography at Coso (Reasenberg et al. 1980) and geochemistry
(Manley & Bacon 2000) that the top of a magmatic body may lie
just below a depth of 5 km. The absence of substantial earthquake
activity below 5 km suggests a brittle–ductile transition as might
be associated with such a magmatic body. Thus, the fractional vol-
ume decrease at the base of the model may be associated with a
mass transfer of fluids related to a more deeply emplaced magma
body. The northeast orientation of the fractional volume change
anomaly is also interesting. This direction parallels the trend of a
set of mapped surface faults (Hulen 1978; Duffield et al. 1980). Also,
seismicity patterns and focal mechanisms surrounding the geother-
mal area suggest both right-lateral motion along northwest-striking
planes and conjugate northeast left-lateral strike-slip motion (Walter
& Weaver 1980). Within the field itself north-northeast normal-
faulting mechanisms predominate. Overall, the focal mechanisms
are consistent with north–south compression and east-west exten-
sion (Walter & Weaver 1980). Both 3-D P and S velocity tomogra-
phy results (Wu & Lees 1999) and the 3-D distribution of seismic
anisotropy (Lees & Wu 1999) support a northeast fast direction,
an indication of local fault and fracture orientations, beneath Coso
Hot Springs. Such northeast-trending faults and fractures agree with
the fractional volume change pattern. Combined chemical analysis
of the fluids and fluid inclusion measurements indicate a general
migration of high temperature fluids from a deeper source in the
southern part of the geothermal field (Moore et al. 1989; Lutz et al.
1996). The thermal plume migrates upwards towards the north and
east through the fractured host rock (Moore et al. 1989). Such fluid
migration is compatible with the model of fractional volume change
(Fig. 9). As a final point, we note that the pattern of fractional vol-
ume change in Fig. 9 (2.5–5.0 km) contains a long wavelength signal
which is oriented roughly north–south to north-northeast, following
the trend of mapped normal faults in the region. Thus, these faults
also appear to play a role in the deep large-scale fluid movement at
Coso.

4 C O N C L U S I O N S

Observable surface deformation has been associated with min-
ing, volcanic deformation, faulting, hydrofracturing, fluid move-
ment into and out of aquifers, oil field operations and geother-
mal production. Even sources several kilometres deep have been
shown to generate measurable surface displacement. In general,
such deformation has not been fully utilized to infer reservoir
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Figure 8. Model parameter standard error estimates derived from the covariance matrix. The covariance matrix was computed using eq. (31) and the Lanczos
algorithm. The standard errors are the square roots of the diagonal elements of the covariance matrix. As in Fig. 4, we have plotted the values at the position of
the blocks to which they correspond.

dynamics. As demonstrated in this paper, we can gain important in-
sights into reservoir processes through the use of surface displace-
ments. In particular, we may image fluid migration along faults
or fractures in the subsurface. Recent innovations such as bore-
hole tiltmeters, relative Global Positioning System (GPS) networks
and Interferometric Synthetic Aperture Radar (InSAR) promise to

extend observational capabilities in a number of ways. For ex-
ample, both borehole tiltmeters and GPS networks provide dense
temporal sampling of surface displacements. InSAR provides al-
most continuous spatial coverage of large regions of the Earth’s
surface at low cost. There are advantages in combining several
of these technologies to better constrain subsurface processes. For
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Figure 9. Stress-fress volume strain estimates for the three layers of the model. The colour scale is a unitless measure of fractional volume change (volume
strain). The solid lines indicate mapped faults, taken from Duffield et al. (1980). Note that the faults shown here are only a subset of those in Duffield et al.
(1980).

example, GPS provides three components of displacement while
InSAR observations are a weighted sum of the displacement com-
ponents. It has been demonstrated that the use of all components
of displacement can better constrain subsurface volume change
(Dieterich & Decker 1975). Therefore, it makes sense to combine

InSAR data, with its dense spatial coverage, with three-component
GPS data.

Surface deformation data are sensitive to the dynamics of reser-
voir processes. That is, it measures changes over time rather
than static quantities. Thus, it is somewhat like transient pressure
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Figure 10. Observed range changes and range changes predicted by the model of volume strain (Fig. 9). The data are scaled by their estimated standard errors.

observations in boreholes, sensing the temporal variation in the state
of a reservoir. It would be interesting to couple surface deformation
observations with other dynamic reservoir data such as transient
pressure, tracer and multiphase flow data.

Like many other geophysical measurements made at the Earth’s
surface, there are limitations in our ability to resolve volume changes
in depth. Therefore, it is particularly important to calculate model
parameter resolution and covariance. We have shown how this may
be accomplished for large linear inverse problems with fairly general
regularization. Using these methods we found that we are able to
discern important variations in depth. Given sufficient information
about the reservoir geometry it is possible to provide even sharper
constraints on the 3-D variations in volume change. For example, if
the reservoir is defined by known boundaries we may resolve more
detailed variations in fractional volume change, or if fluid flow is
confined to a set of known faults we can better constrain the reservoir
volume changes laterally and in depth. Also, if the geometry of the
faults are known we can tailor our dislocation source to represent
the opening of a narrow fracture zone better. For example, we could
represent the opening of an extensional crack by a strain nucleus
W11 (Maruyama 1964) rather than by an array of volume changes
as we have done here.
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A P P E N D I X A : R E S O L U T I O N
A N D C O V A R I A N C E E S T I M A T I O N

Our model parameter estimates are based upon a singular value
decomposition (SVD) of G. That is, the representation of G as the
product

G = UΛVT, (A1)

where Λ is a diagonal matrix of singular values and the matrices U
and V satisfy the orthogonality relations UTU = I and VTV = I
Golub & Van Loan (1989). As outlined here, the resolution and co-
variance follow directly from the SVD of G. Once the decomposi-
tion is performed, it is a relatively straightforward matter to examine
the trade-off between model parameter resolution and uncertainty,
based upon a cut-off of singular values. There is an efficient itera-
tive algorithm, rooted in a three-term recursion proposed by Lanczos
(1950), for constructing a partial SVD. This technique is applicable
to very large inverse problems Vasco et al. (1999), problems which
are simply too big to reside in core memory.

The relative sizes of the elements λi provide a direct measure of
the singularity of the problem Golub & Van Loan (1989). One way
to regularize an inverse problem is to form a truncated represen-
tation of G. In the truncated representation, the column vectors of
V and U associated with small elements of Λ are ignored. That is,
a representation of the form eq. (A1), based only on the singular
vectors associated with values of λi which are deemed to be signif-
icantly different from zero. The truncated representation, in which
only p singular values and singular vectors are retained, is written
UpΛpV

T
p . The generalized inverse of G is written in terms of the

truncated representation

G† = VpΛ−1
p UT

p (A2)

and the model parameter estimates are given by

ν̂ = VpΛ−1
p UT

pT (A3)

Menke (1984).
It must be emphasized that we are forming the generalized inverse

of the augmented matrix G in eq. (25). The presence of the additional
equations such as those associated with the roughness penalty will
act to shape or filter the spectrum of the original matrix �. As
noted by (Pratt & Chapman 1992), in the presence of smoothing,
the estimates will contain contributions from the singular vectors
of the null space of the unconstrained problem. The conventional
SVD representation of the resolution matrix as VpV

T
p is restricted

to a damped least-squares solution (Pratt & Chapman 1992). In this
Appendix we present a generalization to non-diagonal regularization
terms, such as those associated with roughness penalties.

Formally, resolution is a relationship between the model param-
eter estimates and a hypothetical ‘true’ model, ν. It may be derived
directly from the estimated solution, ν̂, as given by eq. (A3):

ν̂ = VpΛ−1
p UT

pT. (A4)

From the fact that d = �ν and eq. (26) we have

ν̂ = VpΛ−1
p UT

p

[
�

0

]
ν. (A5)

The resolution matrix R is defined as the matrix

R = VpΛ−1
p UT

p

[
�

0

]
, (A6)

relating ν̂ to ν. Some degree of simplification is afforded by con-
sidering the SVD

G =
[

�

L

]
= UΛVT (A7)

in a partitioned form. In particular, the matrix U is written

U =
[

U1

U2

]
, (A8)

where the vectors U1 correspond to the N data rows (associated with
�) and U2 correspond to the M regularization rows (associated with
L). Based upon the partition eq. (A8), we have the representation

Γ = U1ΛVT (A9)

and the resolution matrix takes the form

R = VpΛ−1
p UT

1pU1 pΛpV
T
p. (A10)

Because the columns of U1 contain only part of the singular vectors
Ui they are not necessarily orthogonal. However, by the orthogonal-
ity of the singular vectors Ui we do have

UTU = [
UT

1 UT
2

] [
U1

U2

]
= I. (A11)

Thus, we may write the product of the U1 matrices in terms of
U2 and its transpose

UT
1U1 = I − UT

2U2. (A12)

The advantage of equation (A12) is in the relative sizes of the ma-
trices U1 and U2. The array U1 has dimensions N × Mr where Mr

is the rank of U while array has dimensions M × Mr . Typically, we
have many more data N than model parameters M. This is partic-
ularly true with InSAR data sets which are composed of hundreds
of thousands range change values. A further advantage is in the
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sparsity of L which is a finite difference operator with only a few
non-zero elements per row. Thus, we can efficiently compute U2

from the columns of V and the singular values Λ, using

Lvi = λi u2i (A13)

Aki & Richards (1980). Using eq. (A12) the expression for the
resolution matrix becomes

R = VpϒVT
p, (A14)

where

ϒ = I − Λ−1
p UT

2pU2 pΛp. (A15)

A1 The covariance matrix

Similar considerations lead to the construction of the model pa-
rameter covariance matrix. The derivation of the model parameter
covariance matrix is based upon the fact that the model parameter
estimates, ν̂ are linearly related to the data d as seen in equation
(A4). If we use the partitioned form of U, as in (A8), we may write

ν̂ = VpΛ−1
p UT

1pd = G†d (A16)

where G† is the generalized inverse. Given this linear relationship
we may relate the covariance associated with the data, Cd , to the
covariance of the model parameters, Cm ,

Cm = G†Cd (G†)T. (A17)

We shall assume that the problem has been scaled, that every row
has been normalized by the standard error of the associated datum
(see eqs 18 and 19). Then Cd takes the form I. Thus,

Cm = G†(G†)T, (A18)

or, in terms of the SVD of G,

Cm = VpΛ−1
p UT

1pU1 pΛ
−1
p VT

p (A19)

or

Cm = Vp�VT
p, (A20)

where we have made use of eq. (A11), and

� = Λ−2
p − Λ−1

p UT
2pU2pΛ−1

p . (A21)
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