
Governor: Autonomic Throttling for Aggressive Idle Resource Scavenging∗

Jonathan W. Strickland† Vincent W. Freeh† Xiaosong Ma†‡ Sudharshan S. Vazhkudai‡

Abstract

Scavenging (or resource borrowing) is a common ap-
proach used to harness unused resources to perform use-
ful calculations. Since these are volunteer contributions
from resource owners, it is vital to reduce the impact of
scavenging activities on their native workload to a min-
imum. To this end, existing impact control systems are
either overly conservative in stopping scavenging alto-
gether or inflexible and lack user autonomy to regulate
resource usage as in some priority-based techniques.

In this paper, we propose a systematic impact con-
trol framework for resource scavenging, by quantifying
the performance impact a scavenging application incurs
on a set of tasks stressing different system resources:
CPU, network, and I/O. For a user-configurable impact
threshold, the framework monitors the native workload,
determines the dominating native task, and autonomi-
cally and adaptively throttles the scavenging applica-
tion, to bring the impact below acceptable levels. This
novel approach has unique benefits of 1) making impact
control explicit to resource owners and an easy-to-tune
“knob,” and 2) adapting to different scavenging applica-
tions and native workloads. Our experiments with two
scavenging applications, which use resources in very
different ways, demonstrate that this framework allows
both more aggressive resource scavenging and less im-
pact on native workloads at the same time, compared to
a priority-based method. Finally, the framework itself is
a lightweight user-level process whose monitoring over-
head on native workloads averages as low as 1%.

∗This research was supported in part by an IBM UPP award.
†Department of Computer Science, North Car-

olina State University, Raleigh, NC, 27695-7534
{jwstric2,vwfreeh,xma}@ncsu.edu

‡Computer Science and Mathematics Division, Oak Ridge Na-
tional Laboratory {vazhkudaiss}@ornl.gov

1 Introduction

A typical personal computer is under-utilized most of
the time [9, 19]. This has lead people to build scavenger
systems, such as Condor [15] and SETI@home [2], to
harvest idle resources. Such scavenging is very success-
ful and desirable, for aggregating existing, distributed
idle resources into massive compute power. Meanwhile,
because these systems rely on good-will based contri-
butions, their paramount concern is to have little or no
negative impact on the workstation contributor or owner.

The impact of scavenging systems on resource own-
ers is complicated and has implications on their com-
puters’ performance, storage, security, and privacy. In
this paper, we focus on performance impact control, i.e.,
to control and minimize the slow-down of a resource
owner’s native tasks by foreign, resource scavenging ap-
plications. Performance impact itself is a complex is-
sue, involving both the scavenging application, the na-
tive workload and system resources on a particular scav-
enged desktop. As the native workload varies from com-
puter to computer, and is typically dynamic on each of
them, it is difficult for a fixed impact control strategy
to incur minimum impact and yet manage to scavenge
resources aggressively on all the scavenged computers.

One simple—yet safe—approach is to stop the scav-
enging application whenever user activity is detected on
the scavenged system. However, as commonly recog-
nized, this method over reacts. First, most native tasks
can tolerate and co-exist with scavenging applications
to a certain degree before deteriorating. In particular,
Gupta et al. [12] showed through experiments of per-
sonal computer users that most of them, when perform-
ing a set of typical desktop tasks, do not feel obvious
performance impact even when a significant amount of
CPU, memory, and I/O resources are consumed by scav-
enging processes. Second, most personal computers
have bursty work loads as users are often idle and fre-
quently switch between different tasks. Stopping and
resuming scavenging applications causes wasteful dis-
turbance to the system, and has extra overhead to scav-

1

enging systems that choose to migrate the scavenging
application to another machine (e.g., Condor). The lat-
ter is especially expensive and sometimes undesirable
for applications scavenging persistent resources such as
disk space. Finally, in performing impact control this
way, such as running the scavenging application in the
screen saver mode (e.g., SETI@home), a large amount
of system idle time fails to be utilized because it typi-
cally takes minutes for the screen saver to be turned on.

Another commonly used method for performance im-
pact control is based on assigning the scavenging ap-
plication a lower scheduling priority [9, 19]. This ap-
proach is convenient to deploy, and automatically adapts
to a native workload. Nevertheless, it has several limi-
tations. First, priority-based methods work are only ef-
fective for traditional “cycle-stealing” systems that ex-
ploit idle compute power. Recently, there have been
efforts in disk storage space aggregation [4, 8, 22]. A
disk scavenging system behaves much differently than a
CPU scavenging system, and causes a different impact
to the same native workload. As we will show later in
this paper, priority-based impact control does not work
well for this type of scavenging system. In addition,
for a given scavenging application and native workload,
using a low priority for a scavenging process performs
implicit, “best-effort” performance control, without ob-
serving the actual performance impact of this particular
process on native workloads. Further, although prior-
ity adjustment is possible, it is confined by the range
and increments offered by the operating system, hence
sometimes not able to deliver the desired impact level or
tuning granularity.

In this paper, we present a performance impact con-
trol framework, Governor,1 that can seamlessly and au-
tonomically restrict a scavenging application’s resource
consumption, and adapts to the ever-changing native
workload. The main idea is to characterize the perfor-
mance impact of a given scavenging application on a
set of micro-benchmarks, each of which intensively uses
one type of system resource, such as CPU, network, and
I/O. Performance control is based on assigning the scav-
enging processes time slices to run, therefore inserting
“slack” into their execution. For a mixed, dynamic na-
tive workload, our method monitors its activities and dy-
namically determines how much slack is necessary to
bound the performance impact (to be formally defined
in Section 3) of this workload within a given threshold.

We consider the major contribution of our work as

1Governor: A feedback device on a machine or engine that is used
to provide automatic control, as of speed, pressure, or temperature. –
dictionary.com

follows:

• We proposed and implemented a novel framework
for controlling scavenging induced performance
impact. This framework systematically quantifies
performance impact and resource restriction, and
provides an execution framework to control a scav-
enging application’s pace at an arbitrary level. Our
impact benchmarking scheme allows this frame-
work to accommodate diverse scavenging applica-
tions and native workloads at very affordable cost.

• We designed an explicit impact control method that
derives the target level of restricting resource scav-
enging from a pre-specified impact level. This pro-
vides the basis for future user interfaces for impact
feedback and fine tuning.

• We exploited user level impact control that does
not require any kernel modification or administra-
tor permission. In addition, it is operating sys-
tem independent and can be easily dispatched along
with a resource scavenging application.

• We evaluated our impact control scheme using
two types of scavenging applications, one CPU-
intensive and one network/disk-intensive. Our re-
sults show that this new impact control scheme can
successfully confine the actual performance impact
within various specified levels, and works espe-
cially well for network/disk-intensive scavenging
applications.

The rest of the paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 presents our
impact control model and methodology. Section 4 dis-
cusses implementation details and Section 5 presents ex-
periment results. Finally, Section 7 lists potential future
work and concludes the paper.

2 Related Work

An investigation very closely related to ours was by
Gupta et al. [12], which studied real workstation own-
ers’ discomfort from impacted performance when re-
source scavenging applications run on their computers.
In comparison, our work studies objective performance
impact. We demonstrate that we can establish the corre-
lation between resource usage throttling and measured
performance impact. Although this objective impact
does not directly translate into subjective user discom-
fort, these two projects can be connected by GUI tools

2

used in Gupta’s work for resource owners to provide
feedback and limit performance impact dynamically.

As mentioned earlier, one approach to impact
control is to adopt a highly conservative mode of
operation wherein resource consumption is stopped
altogether upon user/process return (Condor [15],
SETI@Home [2], and Entropia [9]). These systems
scavenge CPU cycles and operate during intermittent in-
tervals of user inactivity when the screen saver is ac-
tivated. The basic premise therein is if the resource
owner experiences the slightest discomfort they might
withdraw their donations altogether. A variation is
to have the scavenging process co-exist with resource
owner’s native workload by assigning it a low priority
[14, 21]. However, as stated above, such a mechanism
is limited to cycle stealing scavenging systems and has
coarse-grained impact control. In contrast, our proposed
framework provides a generic method for resource usage
throttling for continuous and full-range impact control,
while allowing aggressive resource scavenging.

Peer-to-Peer file sharing systems (Kazaa [18], etc.)
are space and I/O bandwidth scavenging instances that
extend resource borrowing beyond a conservative realm.
These client programs run alongside native user work-
load to download and exchange files (in the background)
with other peers in the Internet. However, this is made
feasible due to a strong incentive of “exchanging data
files of interest” as opposed to the “goodwill” based
contributions in SETI-style systems. Impact control in
such P2P file sharing networks has taken the following
forms. First, due to its deployment across millions of
desktops and potential to generate a lot of traffic, or-
ganizations employ tools such as PacketWise that tag
P2P packets and limit their bandwidth [20]. This is
very similar to QOS-based discrimination in networks
and is performed at the router level [11, 24]. Alterna-
tively, several P2P clients come with desktop tools with
which resource owners themselves can specify higher
level policies such as “maximum number of simultane-
ous downloads/uploads”, “enable/disable sharing with
other P2P client users”, “do not function as supernode”
or “maximum bandwidth to be used while transferring
files” [18, 1]. However, such resource restrictions per-
form coarse-grained impact control only and lack dy-
namic adaptation capabilities. Our work explores adap-
tive fine-grained impact control, and can potentially be
applied to existing P2P systems.

In a similar vein, Rate Windows [21] is a technique
to limit disk and network I/O bandwidth consumption
by throttling I/O usage based on job classes, albeit at
the kernel level. Another approach to network I/O throt-

tling is to perform rate-based clocking of network traffic
by sending out packets at a preset interval, but requiring
kernel-level modifications [6]. An additional approach
to containing resource consumption for scavenging ap-
plications is through the use of virtual machines [9, 19].
While virtual machines are well known for sophisticated
resource isolation through partitioning [3], concurrent
execution, etc., they also result in unsatisfactory perfor-
mance, heavyweight implementations and lack of per-
formance guarantees [7]. Compared to such approaches,
our proposed impact control framework is lightweight,
operates at user level, and does not require the modifi-
cation of either the scavenger programs or the operating
system.

In addition, there are numerous projects on adap-
tive methods for controlling applications’ resource con-
sumption. For example, Odyssey used predictive re-
source management for dynamically choosing a qual-
ity of computation for wearable computers, so that a
task’s resource consumption can be bound by current
supplies and its latency meets certain specifications [17].
Also, there is a wealth of projects on power-preserving
computation that adaptively monitor applications’ be-
havior and reduce power consumption (e.g., [13]). In
our work, we use resource restriction as a means for con-
trolling resource owner perceivable performance impact,
and aim at maximizing resource scavenging while meet-
ing a given impact target.

There exists rich lieterature in the area of system
resource monitoring. Well-known tools such as NWS
[23], Remos [16] and dproc [5] monitor real resource in-
formation by deploying resource-specific sensors. How-
ever, these are highly geared towards an HPC or a dis-
tributed setting. In addition, tools like NWS and Remos
also delve into predicting resource availability which
might be onerous for our purposes. The DGMonitor
[10] from Entropia monitors resource consumption and
availability in a desktop Grid setting. It monitors several
resource metrics on desktops periodically so that global
job scheduling decisions can be optimized. While, we
can derive significantly from the experience of several
of the aforementioned monitoring schemes, our moni-
toring is intended for use by the local throttling system
to limit resource consumption. In addition to the above,
operating system tools such as perfmon provide a wealth
of information on system performance counters that can
be used for our purposes.

Finally, to the best of our knowledge, no research yet
has taken a quantitative approach to systematic perfor-
mance impact control for resource scavenging systems.

3

3 Performance Impact Model

This section describes the overall model used in our
impact control scheme. Before discussing the model and
rationale for Governor’s impact control strategy, we de-
fine several key terms used throughout the paper.

First of all, what is performance impact? Here we
use simple metrics to define the performance impact:
the slow-down factor. Suppose a set of tasks takes time
toriginal to complete without a scavenging application
running concurrently, and time tscavenged to complete
with such an application running on the same work-
station, the performance impact (or just “impact”) is
(tscavenged−torginal)/toriginal. The goal of this work is
to enable the self-configuration of a resource scavenging
system to achieve a given performance impact, say 10%
or 5%. Note that this objective impact metric does not
immediately reflect the resource owner perceived impact
or discomfort caused by resource scavenging, as this is
a complex object involving issues such as the length, in-
teractive nature, and frequency of such tasks, as well as
the resource owners’ sensitivity and personality. How-
ever, as discussed in Section 2 these two metrics can be
connected by a user interface.

Next, in our system there are three entities. First,
the scavenging application (also called “scavenger” for
brevity) runs on distributed workstations and executes at
the invitation of resource owners. The second entity is
the governor, a process that monitors the machine and
controls the scavenger. All other processes are grouped
together and referred to as the native workload.

The goal of the governor is to limit the impact the
scavenger has on the native workload to a desired level,
while maximizing the throughput of the scavenger. In-
stead of assigning scavenging processes low priority,
and relying on the operating system to schedule these
processes unfavorably, we throttle the intensiveness of
resource scavenging by inserting sleeping time between
time intervals in which a scavenging process can exe-
cute. This reduces the demand on resources and hence
reduces the impact on the native workload. The Gov-
ernor framework performs fine-grain impact control by
choosing and adjusting the ratio between “run time”
and “sleep time”. We define the throttle level, β, to be
(run time)/(total time). β varies from 0 to 1. β = 0
means the scavenger is not running at all, while β = 1
means the scavenger is running at full speed, without
being slowed down.

The big question is: how do we find the appropriate β
for a given impact level? We approach this through two
mechanisms: scavenger specific impact benchmarking

and real-time native workload monitoring, as outlined
below. Implementation details will be presented in the
next section.

Impact benchmarking helps us to characterize the ef-
fect of a scavenger on major resource types. Since native
workload can be viewed as a combination of resource
consumption components, we establish a resource vec-
tor, R = (r1, r2, ..., rn), where each ri is a system re-
source, such as CPU, memory, disk bandwidth, network
bandwidth, etc. We design a set of micro-benchmarks
that stress each individual resource in R. Given a scav-
enger, it is executed at various throttle levels and the
impact values on the micro-benchmark are recorded.
Given enough data points, we can estimate the function
impacti(β). Suppose the box wants to restrict the max-
imum impact on any resource to a target impact level, α.
The corresponding β to use in throttling the scavenger is
determined as βi = impact−1

i (α).
Now we know how to restrict the scavenger for a

single-minded micro-benchmark. How do we decide
the appropriate throttle level for a complex, and ever-
changing native workload? We attack this problem
through periodic monitoring of the native workload: for
resources that have non-trivial native consumption de-
tected, we activate the corresponding β. More for-
mally it works as follows. A trigger vector, T =
(τ1, τ2, ..., τn), is defined on the resource vector R. Each
(τi) defines a threshold where the native consumption of
resource ri is considered non-trivial and a correspond-
ing βi needs to be activated. Note that here βi has been
computed for the target impact level α using the im-
pact benchmarking results. The governor monitors the
machine to determine the user activity, ai, for each re-
source. Then it determines the effective β for each re-
source ri:

β̄i =

{

βi ai ≥ τi

1 ai < τi

The overall throttle level, β, is the smallest β̄:
β = min(β̄1, ..., β̄n). This means that when the native
workload is using two or more resources simultaneously,
multiple throttling triggers will be turned “on”, and the
governor will choose the most restrictive throttling level
to slow down the scavenger.

Figure 1 depicts the Governor impact control frame-
work. Note that Step 0 is likely to be performed when
a scavenger is first installed in a donated workstation,
while Steps 1-3 are periodically repeated whenever the
scavenger is running. Details such as the frequency of
executing this loop will be discussed in the next sec-
tion. The dotted arrow from inside the Governor box
to the “resource valve” shows that the Governor is able

4

scavenger

system

resources

vectors

0. impact
benchmarking

1. monitor
resource activity

2. compute
overall

3. throttle
scavenger

Governor

User
target

Figure 1. Governor architecture

to control resource consumption implicitly, by assigning
execution time slices to the scavenger.

The design of the Governor framework is unique in
three ways. First, it is fine-grained and adaptive. A
scavenger can effectively utilize idle cycles in very small
bursts, whereas existing scavenging systems rely on long
periods of user inactivity. Second, it builds a two-
dimensional impact relationship between diverse scav-
enging applications and critical system resources. This
enables a scavenger to be restricted in different ways
when it collides with the native workload on different
resources. Third, this framework is generic and ex-
tendible. For example, the “stop” strategy used by scav-
enging systems such as Condor and SETI@home can be
viewed as a special case of Governor’s strategy: where
both the triggers (τi) and throttle levels (βi) are 0s for all
resources in R. Governor does not modify or analyze the
internals of scavengers, making it trivial to handle new
scavenging applications. Meanwhile, new resources can
be easily accommodated by extending the resource vec-
tor and adding new impact micro-benchmarks.

4 Implementation Details

4.1 Scavenger Throttling Mechanism

Governor uses a straightforward scheme of restricting
the execution time of a scavenger process. It operates
in fixed, discrete throttle intervals, of I seconds. At a
given throttle level of β a scavenger will execute for βI
seconds.

The Governor entity itself is a user-level process. The
scavenger is a child of this process. After forking the
scavenger, the Governor executes the following steps ev-
ery throttle interval. First, it unblocks the scavenger, and
unblocks it after βI seconds. Then, it monitors machine
activity twice, at the beginning and the end of the re-
mainder of the interval, (1 − β)I seconds. Using these
activity levels, it determines which resources are active
based on their differences. Because the scavenger is
blocked during this period, all the monitored activities
belong to the native workload. Finally, it calculates the
overall throttle level, which is the minimum β of the
resources that have logged activity beyond their corre-
sponding trigger level.

If no resources have triggered, then β = βmax < 1.
Note that maximum β value has to be less than one, be-
cause Governor requires the scavenger to sleep for a cer-
tain period to perform accurate native activity monitor-
ing. Therefore, if M is the minimum time we must mon-
itor for user activity, then βmax = 1−M/I . The throttle
interval I needs to be long enough to reduce Governor’s
overhead, and short enough to react quickly to changes
in the native activities. For this paper, we have fixed
these values at I = 1 second and M = 0.1 seconds.
Therefore, the maximum β is 0.9. We have tested that
these are reasonable choices. However, the optimal val-
ues for I and M are open questions.

The Governor process sends signals, using the kill
system call, to block and unblock the scavenger. It
sends SIGINT/SIGCONT to block/unblock, and uses
the usleep system call to delay the scavenger between
throttle intervals.

This prototype of Governor does not track the chil-
dren of the scavenger. Future versions will suspend
groups of scavenger processes, whether forked by the
scavenger or by the Governor itself. We do not intend
to deploy any devices to track ill-behaving scavengers,
because a workstation owner should not host such scav-
engers.

4.2 Resource Usage Monitoring

In this section, we explain which system resources
we choose to monitor, how we monitor them, and how
we decide the triggers for them.

Our current prototype implementation of the Gover-
nor process monitors three resources, namely CPU, disk
read, and network write. We believe they are the most
important resource types, as explained below. However,
more resource types can be easily added to the Governor
framework.

5

We do not monitor disk write because most writes
are asynchronous and the operating system is very
good scheduling such actions “in between” synchronous
reads. Therefore, a scavenger writing to a disk has little
impact on a user workloads, as we found in our previ-
ous experiments [22]. Also, we do not monitor network
read because we assume a scavenger will not download
a significant amount of data. Memory usage is not mon-
itored for two reasons. First, Gupta et al. [12] shows that
memory usage has little user impact. Second, it is dif-
ficult to get an accurate measure of memory use for the
native workload. We plan to monitor more resources if
it becomes necessary or useful. However, at this point
the three resources monitored appear to be sufficient for
the scavenging applications we experimented with.

The Governor process collects CPU usage from
/proc/stat, which lists total cycles and cycles active since
the system startup. These values are recorded at the be-
ginning and the end of the monitor phase, from which
we calculate the CPU utilization during the monitor
phase. This reflects the amount of CPU activity from
the native workload. To decide the trigger, τCPU , we
measure an idle system and determine that the CPU uti-
lization of system daemons and other background pro-
cesses is less than 1%. We have hence chosen a trigger
value of 1% CPU utilization. Although not included in
this paper, experiments have shown that the performance
of Governor is not significantly dependent on the CPU
trigger level.

The disk read activity statistics can be obtained
from /proc/partitions, which shows the total number of
blocks read since the system startup. Similarly, the
network write activity statistics can be obtained from
/proc/net/dev, which shows the total number of bytes
written since the system startup. Similar to the way we
calculate CPU activity, we calculate the disk and net-
work activity at the end of the monitor phases. The idle
activity level for both the disk and the network is essen-
tially zero. Therefore we set the τIO and τnet to be 0
blocks and 0 bytes, respectively. In other words, any na-
tive disk read or network write activity will activate the
corresponding β for throttling the scavenger.

4.3 Impact Micro-benchmarks

Finally, we discuss the impact micro-benchmarks
used to characterize the impact of a specific scavenger
on the resource vector. For each resource monitored
by the Governor, there is a micro-benchmark code that
stresses this resource exclusively, in so far as possible.
Given these micro-benchmarks, the impact benchmark-
ing process concurrently executes each of them and the

scavenger. The scavenger is controlled by the Governor
to perform at a variety of throttle levels. The outputs
from the benchmarking tests are tables (one for each re-
source) that list the measured impact of the scavenger on
each individual resource’s micro-benchmark, at a series
of β values.

The CPU micro-benchmark is EP from the NAS
benchmark suite.2 This test generates pairs of Gaussian
random deviates. It is CPU-intensive, uses very little
memory, and has no disk or network activities.

The I/O micro-benchmark simulates a large sustained
read. A large sustained read size of 1GB was used to
simulate an unsually intensive case of a user’s file re-
trieval from the disk.

Finally, the network benchmark simulates a user
downloading a web page using wget. A single web
page was accessed and downloaded from a server within
the same subnet. Each page was requested hundreds of
times back to back in order to make it cached by the web
server but not by the requesting client.

5 Experiment Results

This section presents our experimental results. In
our experiments we chose two scavengers, SETI@home
and FreeLoader, that consume system resources in dra-
matically different ways. SETI@home [2] is a well
known resource-borrowing program that uses Internet-
connected computers in the Search for ExtraTerrestrial
Intelligence (SETI). This application is embarrassingly
parallel, with almost no communication, and is hence
ideally suited for such an execution environment. It
is also very compute-intensive. A typical execution
of SETI@home at a workstation will download KBs
of data, and crunch numbers for hours. In contrast,
FreeLoader [22] is a storage scavenging system that
mainly consumes disk and network resources. It ag-
gregates unused disk space for storing large datasets.
Unlike systems such as SETI@home, where a piece of
task can be executed on any idle machine, FreeLoader
requires data serving be provided, where the requested
data is persistently stored. Impact control is especially
important for FreeLoader, as it is not feasible to refuse
serving data or to migrate data away whenever any
workstation owner’s activity is detected.

First, we present the impact benchmarking results for
SETI@home and FreeLoader respectively. We then val-
idate Governor’s impact control approach by measuring
the actual performance impact of two workload samples
comprising of desktop computer tasks. Our results show

2http://www.nas.nasa.gov/Software/NPB/

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Im
pa

ct

Beta

cpu
disk reads

network requests

Figure 2. SETI@home impact on multiple
micro-benchmark

that the overall impact can be closely contained by de-
ploying appropriate throttle levels dynamically. Finally,
we show that the Governor framework outperforms ex-
isting impact control mechanisms in achieving two goals
simultaneously: lowering impact on the native workload
and improving scavengers’ performance.

All tests were conducted on a Linux workstation run-
ning kernel version 2.6.1. The machine has a 2.8 GHz
Pentium 4 with 512KB L2 cache and 512MB of DDR
memory. The hard disk drive is 80G with a SATA in-
terface. All experiments are repeated multiple times and
we use the average results. Since small variances are
observed, we omit the error bars.

A quick side note before we examine performance
impact and scavenger performance results: the impact of
the Governor framework itself is small. With the gover-
nor monitoring but no scavenger running, the impact on
multiple native workloads averages about 1%, and was
never more than 2%. We tested several different throt-
tle intervals, as small as 0.5 seconds, and there was not
a noticeable difference in terms of impact on the native
workloads.

5.1 Impact Benchmarking Results

This section presents results from the micro-
benchmarks described in Section 4.3, yielding impact
characterizations of the two scavengers on a set of sys-
tem resources: CPU, I/O (disk reads), and network.

Figure 2 shows the impact curves for SETI@home.
The x-axis shows the throttling level, β, where 0 means
the scavenger process is not running and 1 means that
the scavenger process is running at full speed along
with a microbenchmark. The y-axis shows the perfor-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Im
pa

ct

Beta

cpu
disk read

network request

Figure 3. FreeLoader impact on multiple
micro-benchmarks

Impact level α
Resource 0.05 0.10 0.20 0.25

βCPU 0.02 0.05 0.10 0.2
βIO 1.0 1.0 1.0 1.0
βnet 1.0 1.0 1.0 1.0

Table 1. SETI@home throttle levels at a se-
ries of given impact levels

mance impact measured for each micro-benchmark at
these throttle levels. From this we can see that for SETI-
@home, heavy restriction is necessary in order to keep
the impact on the CPU low: for a target impact level of
10%, we must use a βCPU value of 0.05. However, the
impact SETI@home has on I/O or network resources is
always low, as expected. Therefore, both βIO and βnet

should be 1.
Figure 3 shows results of the same experiments for

FreeLoader. As expected, these curves are very differ-
ent from those of SETI@home. Here, for a 10% impact
on CPU, the βCPU value can be relaxed to 0.4, which
is much less restrictive than with SETI@home. On the
other hand, I/O and network are more restrictive here,
for which a 10% performance impact requires a βIO of
0.1 and a βnet of 0.2.

As discussed in Section 3, from the data collected in
the above experiments we can derive corresponding βs
for target impact level, α. In other words, given an α for
a particular system resource, we select the βs that will
throttle the scavenger to that impact level using the im-
pact curves above. For example, suppose a user selects
α = 0.1(10%) for FreeLoader. We draw a horizontal
line at 0.1 in Figure 3. The points where this line inter-

7

Impact level α
Resource 0.05 0.10 0.20 0.25

βCPU 0.30 0.4 0.70 0.90
βIO 0.05 0.10 0.20 0.25
βnet 0.10 0.20 0.30 0.50

Table 2. FreeLoader throttle levels at a se-
ries of given impact levels

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Im
pa

ct

Beta

Freeloader
SETI

Figure 4. Impact of SETI@home and
FreeLoader on kernel compile

sects the three curves correspond to the βs for each of
these resources. Tables 1 and 2 show the βs determined
this way from Figures 2 and 3, respectively.

5.2 Workload Tests

The micro-benchmarks only stress a single resource
each, and are not representative user programs. This
section shows the above impact benchmarking results
applied to impact control for realistic user workloads.
Therefore, we tested both FreeLoader and SETI@home
executing alongside two user workloads.
Single-task workload. The first workload contains a
single task: a kernel compile. This workload is inter-
esting because it uses both the processor and the disk.
Figure 4 shows the impact of scavenging on the kernel
compile at a series of throttling levels. FreeLoader has
very little impact on the kernel compile. Its greatest im-
pact is only 30%. On the other hand, SETI@home in-
duces impact of 4.5 on the kernel compile when unre-
stricted. This is mainly because SETI@home is CPU-
intensive and will execute for hours without blocking on
I/O. In contrast, FreeLoader is mostly performing I/O,
reading from the disk and writing to the network. It

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ca

ve
ng

er
 P

er
fo

rm
an

ce

Beta

Freeloader
SETI

Figure 5. Normalized scavenger perfor-
mance during kernel compile

rarely completes its assigned time slice before blocking
on I/O, leaving more space for the kernel compile.

Now we take a look at how the scavengers themselves
will be affected by the throttle levels, running with the
kernel compile. As a companion to Figure 4, Figure 5
shows the performance of the scavenging processes dur-
ing a kernel compile. The performance of FreeLoader
and SETI@home are normalized to their maximum per-
formance, which is achieved when the scavenger process
executes unrestricted on the machine as a peer to the ker-
nel compile, without the Governor. Both processes ap-
proach their unrestricted performance at β = 0.9, our
maximum β value. Also, at β = 0 neither process exe-
cutes, so the performance is 0 as well. FreeLoader’s per-
formance scales almost linearly, while the performance
improvement of SETI@home accelerates as β grows.
This figure shows that with gradually relaxed throttle
level, a scavenger will at least steadily get more work
done, which rewards using an aggressive β whenever al-
lowed by the pre-specified impact level.

Measuring progress of SETI execution posed some-
thing of a challenge. Analysis of a datablock takes sev-
eral hours, significantly longer then the kernel compile.
Initially, we tried measuring the CPU time that SETI-
@home receives. But the competition for cache and
memory made that metric unreliable. In the verbose
mode, SETI@home continuously outputs status mes-
sages. More lines of output means more throughput.
However, the lines are emitted at irregular intervals. To
solve this problem, we measured how many lines are
emitted in each 10 second interval by SETI@home when
executing it without any other processes running. Using
this table, we convert the number of lines emitted in a
test run into the number of ideal seconds that represents

8

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 20 40 60 80 100 120 140 160 180

be
ta

Elapsed time (seconds)

 0
 0.2
 0.4
 0.6
 0.8

 1

C
P

U

 0
 5

 10
 15
 20
 25

I/O

0.0
2.0
4.0
6.0
8.0

ne
tw

or
k

Figure 6. Time-line showing resource uti-
lization levels and the corresponding β
chosen by Governor

the time it took SETI@home to get that far in the best
case. All SETI@home performance numbers presented
in this paper are on these ideal seconds.
Composite workload. The second workload is to sim-
ulate typical user activities. To simulate common inter-
mittent user activities, this synthetic workload sleeps for
a short set period of time between 1-3 seconds between
executing the following operations in order: 1) Writing
80 MB of randomly-generated data to files in a specific
directory. This simulates unzipping a downloaded file
into a local directory. 2) Browsing arbitrary system di-
rectories in search of a file. 3) Compressing the written
data from the first part of the simulation with bzip into a
file and transferring this file across the network to a data
repository. 4) Browsing a few more local directories. 5)
Finally, removing all data files written from the begin-
ning of the simulation. This composite workload takes
148 seconds to complete without any other user load on
the system.

With this synthetic workload designed to stress mul-
tiple resources in a short period of time, we can take
a closer look at how Governor switches between dif-
ferent throttle levels dynamically as the workload pro-
gresses. Figure 6 shows the resource utilization levels
and the βs used for a run of the composite workload with
FreeLoader, for a target α value of 0.2. Each second
along the x axis is a throttle interval, generating three
resource utilization levels, as well as one β value to be
used for the next throttle interval. For CPU, we show the
utilization level, which varies between 0 and 1. For I/O,

Impact level α

Scavenger 0.0 0.05 0.10 0.20 0.25 1.0

SETI@home 142 148 154 168 180 261
% impact 0% 4.0% 8.4% 18.5% 26.8% 83.8%

FreeLoader 142 150 157 172 180 211
% impact 0% 5.6% 10.6% 21.1% 26.8% 48.6%

Table 3. Overall execution time and impact
on the composite workload

we show number of blocks read, which varies between
0 and 25. For network, we show number of MBs writ-
ten, which varies between 0 and 8. Note that our current
monitoring does not consider disk writes, which were
observed to be unaffected by FreeLoader [22]. Also, the
file system cache masks subsequent reads to the same
data blocks. Therefore, I/O activities were only detected
occasionally.

From Figure 6, we can clearly see that Governor
switches between four different β levels, from high to
low: the maximum β of 0.9 allowed by Governor when
no triggers are on (the sleep times), βCPU when the CPU
trigger is on (true for most throttle intervals), βnet when
the network trigger is on (around the 140 second mark),
and βIO when the I/O trigger is on (between the 40 and
60 second marks). The values of the resource-specific
βs can be found in Table 2.

Table 3 shows the impact of our two scavengers at
four target α values, along with the minimum and max-
imum αs represented as 0.00 and 1.0, respectively. We
show both the measured execution time of the compos-
ite workload, and the performance impact calculated ac-
cordingly. The β values used can be found in Table 1
and 2. We have excluded the 6 seconds of total sleep
time in all measured completion times, as obviously that
time is not affected by the scavengers.

Table 3 verifies that the impact is indeed con-
trolled by the Governor, and approximately contained
within the target impact levels. Both SETI@home and
FreeLoader exceed the target αs by less than 2% of over-
all impact. We are looking into two possible causes.
One, the throttle interval might be too long. Two,
we have only considered resources individually in our
benchmarking. There may be some complex interac-
tion between tasks consuming multiple resources simul-
taneously, in which case we need to have a composite
β rather than simply picking the lowest one. Overall,
these results validated that our scheme of selecting tar-
get βs with impact benchmarking and real-time work-
load monitoring works successfully.

9

Impact level α

Scavenger 0.00 0.05 0.10 0.20 0.25 1.0

SETI@home 0 40 57 60 84 142
% of max 0% 28% 40% 42% 58% 100%

FreeLoader 0 2.94 3.56 5.77 6.66 6.92
% of max 0% 42% 51% 83% 96% 100%

Table 4. Scavenger absolute and relative
performance (lines/s for SETI@home and
MB/s for FreeLoader as absolute perfor-
mance)

Again, Table 4 shows the performance of the scav-
enger processes themselves catering to various α values
running with the composite workload. We see from this
table that with a relatively low α value of 0.1, SETI-
@home and FreeLoader can work at around half speed,
compared to the unrestricted case. At a more restrictive
α value of 0.05, they still get to progress at a pace that is
28% and 42% of their full speed respectively, perform-
ing significant amount of work rather than being sus-
pended.

5.3 Comparison to Existing Methods

The Governor framework is in general more aggres-
sive in resource scavenging than the traditional “stop”
(i.e., screen saver) impact control for scavengers like
SETI@home. When SETI@home is active the worksta-
tion owner is not, Governor lets the scavenger run unre-
stricted, too. Governor also allows SETI@home to run
when the workstation owner is idle but the screen saver
has not been turned on. On the other hand, when the
work station owner is active, the screen saver method
generates both zero impact and zero scavenger perfor-
mance. However, there is not an obvious way to com-
pare the two schemes for the last case.

On the other hand, we can compare Governor with
priority-based impact control schemes, such as using the
command nice in UNIX. This section shows that prior-
ity is not as effective in controlling impact or extracting
performance as Governor. Figures 7 and 8 show scatter
plots of user impact and scavenger performance at dif-
ferent throttle levels. For Governor this throttle level is
of course the β value, while for nice this is the nice pa-
rameter indicating a given priority, specified when start-
ing the scavenging process. The x axis shows the execu-
tion time of the composite workload. Closer to the origin
is less impact. The y axis plots scavenger performance.
Further from the origin is more scavenger throughput.

 20

 40

 60

 80

 100

 120

 140

 160

 140 160 180 200 220 240 260 280

Id
ea

l S
et

i C
om

pl
et

io
n

T
im

e
(S

ec
on

ds
)

Workload Execution Time (Seconds)

0.05

0.10
0.20

0.25 0.3

0.4

20

10

0

Governor
nice

Figure 7. Scatter plot of impact and
throughput for SETI@home.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 150 160 170 180 190 200 210 220

F
re

el
oa

de
r

T
hr

ou
gh

pu
t (

M
B

/s
)

Workload Excecution Time (Seconds)

0.25

0.20

0.10

0.05

20

12

10

8

0

Governor
nice

Figure 8. Scatter plot of impact and
throughput for FreeLoader.

So a point to the left and above another point is pre-
ferred for generating less impact to the native workload
and yielding more scavenger performance. To make the
labels more readable, we chose to mark only a subset of
nice data points with their nice parameters.

Figure 7 shows the results for SETI@home. The nice
point with the most impact (furthest to the right) has a
nice parameter of 0, while the leftmost point has 20 (the
lowest priority possible). In between are points for nice
equal to 1, 2, 4, 8, 10, 12, and 16. At a nice value of
0, the scavenger is unrestricted, so this point also rep-
resents the Governor with β = 1. This plot shows that
Governor and nice behave similarly at most impact lev-
els, but Governor clearly out-performs nice when a small
impact is desired (allowing much higher SETI@home
throughput).

Figure 8, which plots FreeLoader results, tells a dif-
ferent story. In this case, Governor is by far superior

10

to the priority-based nice. In fact, the entire Governor
curve is to the above and left of the nice curve. Suppose
a workstation owner is willing to have a 20% impact.
That means the composite workload execution time (x
axis) can be about 185 seconds. Draw a vertical line at
185, we will discover Governor yields more than twice
the FreeLoader performance than nice, 6.5 MB/s versus
2.6 MB/s. Similarly, to get 3.5 MB/s out of FreeLoader,
we draw a horizontal line at 3.5 MB/s and find the com-
posite workload completes in about 165 seconds with
Governor, 13% lower as compared to in 190 seconds
with nice. Further, Governor can deliver low impact lev-
els that nice cannot achieve in its capability range. This
plot clearly shows that the Governor framework offers
a much better solution than nice for I/O- or network-
intensive scavengers such as FreeLoader.

6 Summary

In this paper, we have put forth the design and con-
struction of a novel impact control framework for perfor-
mance constrained execution of scavenging programs.
This framework, Governor, serves as a means to ad-
dress systematic impact control of resource usage, as
well as to proactively consume idle resources, on con-
tributed workstations. Given a user-configurable impact
threshold, our framework monitors a scavenged work-
station’s native workload and autonomically throttles the
scavenging program to bring its performance impact on
the native worklaod approximately within the threshold.
We demonstrated the effectiveness of our impact con-
trol framework for two different scavenging paradigms:
cycle stealing, and disk-network I/O scavenging. Exper-
iment results indicate that Governor can perform better
than priority-based impact control for both scavenging
paradigms. In addition, it is lightweight and operates at
the user level.

Our future work is comprised of designing interface
knobs so that users can specify and tune impact toler-
ance levels, optimizing the throttle intervals and monitor
intervals dynamically, evaluating Governor with popu-
lar instances of scavenging applications such as peer-to-
peer file sharing programs, and memory usage throttling.

7 Acknowledgments

This research was supported in part by the U.S.
Department of Energy under contract No. DE-AC05-
00OR2275 with UT-Battelle, LLC.

References

[1] File sharing with peer-to-peer (p2p) applica-
tions. http://www.ncsu.edu/resnet/pages/p2p/-
p2p.php/.

[2] Seti@home: The search for extraterrestrial in-
telligence. http://setiathome.ssl.berkeley.edu/,
2003.

[3] Planetlab: An open platform for developing, de-
ploying and accessing planetary-scale services.
http://www.planet-lab.org, 2005.

[4] A. Adya, W. Bolosky, M. Castro, R. Chaiken,
G. Cermak, J.Douceur, J. Howell, J. Lorch,
M. Theimer, and R. Wattenhofer. FARSITE: Fed-
erated, available, and reliable storage for an incom-
pletely trusted environment. In Proceedings of the
5th Symposium on Operating Systems Design and
Implementation, 2002.

[5] S. Agarwala, C. Poellabauer, J. Kong, K. Schwan,
and M. Wolf. Resource-aware stream management
with the customizable dproc distributed monitor-
ing mechanisms. In Proceedings of the 12th High-
Performance Distributed Computing Conference,
2003.

[6] M. Aron and P. Druschel. Soft timers: efficient mi-
crosecond software timer support for network pro-
cessing. In Proceedings of the 17th Symposium
on Operating System Principles, pages 232–246,
1999.

[7] P. Barham, B. Dragovic, K. Frase, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In
Proceedings of SOSP’03, October 2003.

[8] A. Butt, T. Johnson, Y. Zheng, and Y. Hu. Kosha:
A peer-to-peer enhancement for the network file
system. In Proceedings of Supercomputing, 2004.

[9] A. Chien, B. Calder, S. Elbert, and K. Bhatia. En-
tropia: Architecture and performance of an enter-
prise desktop grid system. Journal of Parallel and
Distributed Computing, 63(5), 2003.

[10] P. Cicotti, M. Taufer, and A. Chien. Dgmonitor:
A performance monitoring tool for sandbox-based
desktop grid platforms. In Proceedings of the 3rd
International Workshop on Performance Model-
ing, Evaluation, and Optimization of Parallel and
Distributed Systems, 2004.

11

[11] T. Faber, L. H. Landweber, and A. Mukherkee.
Dynamic time windows: packet admission con-
trol with feedback. In Proceedings of SIGCOMM,
pages 143–135, 1992.

[12] A. Gupta, B. Lin, and P. Dinda. Measuring and
understanding user comfort with resource borrow-
ing. In Proceedings of the 13th IEEE Inter-
national Symposium on High Performance Dis-
tributed Computing, 2004.

[13] C. Hughes and S. Adve. A formal approach to
frequent energy adaptations for multimedia appli-
cations. In Proceedings of the 31st International
Symposium on Computer Architecture, 2004.

[14] P. Krueger and R. Chawla. The stealth distributed
scheduler. In Proceedings of the IEEE Interna-
tional Conference on Distributed Computing Sys-
tems, pages 336–343, 1991.

[15] M. Litzkow, M. Livny, and M. Mutka. Condor - a
hunter of idle workstations. In Proceedings of the
8th International Conference on Distributed Com-
puting Systems, 1988.

[16] B. Lowekamp, N. Miller, D. Sutherland, T. Gross,
P. Steenkiste, and J. Subhlok. A resource query
interface for network-aware applications. In Pro-
ceedings of the 7th High-Performance Distributed
Computing Conference, 1998.

[17] D. Narayanan and M. Satyanarayan. Predictive re-
source management for wearable computing. In
Proceedings of the 1st International Conference on
Mobile Systems, Applications, and Services (Mo-
biSys), 2003.

[18] SHARMAN NETWORKS. The kazaa media
desktop. http://www.kazaa.com.

[19] R. Novaes, P. Roisenberg, R. Scheer, C. North-
fleet, J. Jornada, and W. Cirne. Non-dedicated
distributed environment: A solution for safe and
continuous exploitation of idle cycles. In Proceed-
ings of the Workshop on Adaptive Grid Middle-
ware, 2003.

[20] PACKETEER. Control peer-to-peer downloads.
http://support.packeteer.com/, 2005.

[21] K.D. Ryu, J.K. Hollingsworth, and P.J. Keleher.
Efficient network and I/O throttling for fine-grain
cycle stealing. In Proceedings of Supercomput-
ing’01, 2001.

[22] S. Vazhkudai, X. Ma, V. Freeh, J. Strickland,
N. Tammineedi, and S. Scott. Freeloader:
Scavenging desktop storage resources for bulk,
transient data. Submitted for publication,
http://www.csm.ornl.gov/ vazhkuda/Morsels/.

[23] R. Wolski. Dynamically forecasting network per-
formance to support dynamic scheduling using the
network weather service. In Proceedings of the 6th
High-Performance Distributed Computing Confer-
ence, 1997.

[24] L. Zhang. Virtual clock: A new traffic control algo-
rithm for packet switching networks. In Proceed-
ings of SIGCOMM, pages 19–29, 1990.

12

