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Abstract—Existing data suggest anterior cingulate cortex
(ACC) plays a role in autonomic regulation. In persons with post-
traumatic stress disorder (PTSD), autonomic regulation appears
impaired and smaller mean ACC volume has been reported. This
study examined relationships between ACC volume and the mag-
nitude of respiratory sinus arrhythmia (RSA) in 77 U.S. combat
veterans at rest, 40 of whom met criteria for PTSD. RSA magni-
tude did not differ in combat survivors with and without PTSD,
which contradicts studies comparing civilians with PTSD to non-
traumatized controls. RSA magnitude was positively correlated
with right but not left hemisphere ACC volume. This finding was
statistically independent of the presence or absence of PTSD.

Key words: autonomic denervation, cardiac chronotropy, gyrus
cinguli, heart rate variability, insular cortex, magnetic resonance
imaging, posttraumatic, respiratory sinus arrhythmia, stress dis-
orders, vagotomy.

INTRODUCTION

This article conjoins two previously independent litera-
tures of posttraumatic stress disorder (PTSD) investigation:
studies of autonomic dysregulation and studies of structural
compromise in the brain. The first laboratory indication of
neurobehavioral maladaptation in PTSD was evidence of
excessive (presumably sympathetic) activation in response

to trauma reminders [1]. Research in this area has rami-
fied to include consideration of diagnostic utility [2–3],
genetic determination [4], and the role of the parasympa-
thetic branch of the autonomic nervous system (ANS)
[5–8]. In 1995, Bremner and colleagues showed that
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PTSD is associated with structural abnormality in the
brain [9]. Studies in this arena have now found structural
compromise in both hippocampus [10–15] and anterior
cingulate cortex (ACC) [16–23] and have begun to
address whether such compromise is inherited or
acquired [13,23]. Evidence for functional compromise in
ACC in PTSD is also substantial [24–31]. The possibility
that these two literatures might intersect is evidenced by
the fact that the ACC participates in regulating the cardi-
ovascular system during cognitive, affective, and physi-
cal challenges. Data have come from neuroanatomical
studies in animals, noninvasive neuroimaging studies in
humans, and studies combining vagal nerve stimulation
with neuroimaging in small samples of persons who are
intractably depressed. Though focusing on the human
studies, we will first briefly consider a compelling result
in the rat.

An Animal Study
A small number of exacting studies have used pseudo-

rabies virus, a transneuronal retrograde tracer that crosses
functional synapses [32], to specify the multisynaptic
relays in the central nervous system that participate
directly in regulating the heart. In one such study, Ter
Horst and Postema injected pseudorabies virus directly
into the left ventricles of the hearts of rats [33]. By
transecting the spinal cord at T1 (first thoracic vertebra),
these authors precluded retrograde transport of the tracer to
the brain by way of the sympathetic nerves. By promoting
viral replication, they tracked the infection of neural tissue
to the forebrain and identified cortical units that partici-
pated in cardiac regulation by way of the vagus nerve, the
major efferent and afferent conduit of the parasympathetic
branch of the ANS. At the top of this relay, they found
“vagal command motoneurons” to be layer V pyramidal
cells situated in the ACC, bilaterally. These findings pro-
vide strong evidence that the ACC in the rat participates in
vagal regulation of the heart and perhaps of other end
organs [34–35].

Human Studies

Blood Pressure
A growing number of neuroimaging studies support a

role for the ACC in partnership with the insula in regulating
the human cardiovascular system. Critchley, Gianaros, and
their colleagues have been especially active in this area
[36–40]. Using positron emission tomography (PET),

Critchley et al. observed in six participants that regional
cerebral blood flow (rCBF) in the right dorsal ACC
(Brodmann’s areas 32 and 24) and right posterior insular
cortex covaried directly with mean arterial pressure
(MAP) during physical and mental challenge [36]. Gian-
aros et al. observed a similar finding using functional
magnetic resonance (MR) imaging (fMRI) in a sample of
20 older adults (mean age 64) [37]: Stroop-task-driven
systolic and diastolic blood pressure increases were cor-
related with Stroop-driven blood oxygen level dependent
(BOLD) responses in bilateral dorsal and pregenual ACC
(Brodmann’s areas 32 and 24) and anterior and middle
insula, bilaterally. In this study, positive covariation with
MAP was also exhibited by activations in dorsolateral
prefrontal cortex (PFC); supplementary motor area; and
sections of temporal, parietal, and occipital cortices. In a
follow-up study of 46 postmenopausal women, Gianaros
et al. demonstrated that, across individuals, those partici-
pants with larger blood pressure responses exhibited
larger BOLD activations in left pregenual ACC (in this
case, anterior portions of Brodmann’s area 32, excluding
area 24), left insula, and right posterior cingulate cortex
(Brodmann’s area 31) [38].

Heart Rate
In their PET study just mentioned, Critchley et al. also

assessed covariation of rCBF and heart rate (HR) during
physical and mental challenges [36]. They obtained posi-
tive correlations in (relatively anterior) right insula (Talair-
ach coordinates = 28, 14, 6) and negative correlations in
right middle frontal gyrus, right dorsal ACC, and posterior
cingulate cortex (Brodmann’s areas 24, 23, 31, respec-
tively), bilateral (relatively posterior) insula, and bilateral
orbitofrontal cortex (Brodmann’s area 11). In a later study
using an experimental design common in the PTSD litera-
ture, Critchley et al. elicited HR responses using emotional
stimuli (faces) in a sample of 15 participants and found
that the magnitudes of these responses were positively
associated with BOLD activations in a network of regions
including dorsal ACC, insula, and amygdale [39]. Gian-
aros et al. combined PET imaging and concurrent electro-
cardiogram (ECG) recording in a large sample (N = 93) of
adults engaged in a series of increasingly difficult work-
ing memory tasks [40]. They also observed increased HR
to be associated with rCBF increases in right dorsal ACC
(as well as ventromedial PFC and insular cortex) and
rCBF decreases in bilateral subgenual ACC (and inferior
parietal cortex).
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Heart Rate Variability and Respiratory Sinus Arrhythmia
Different subbands of the spectrum of HR variability

(HRV) are thought to index different components of
autonomic input to the heart, so they are natural targets of
investigations of brain regions involved in autonomic
control. Respiratory sinus arrhythmia (RSA) represents
HR or interbeat-interval (IBI) variation synchronized to
the respiratory cycle. It represents cyclic gating of vagal
input to the sinoatrial node by input from respiratory
drive centers to vagal motoneurons in the medulla [41].
In correspondence with the respiratory cycle, RSA is
conventionally defined as HRV in the band from 0.15 to
0.40 Hz. It is also referred to as high-frequency HRV.
Again, Critchley, Gianaros, and their colleagues have
provided data relevant to the question of whether ACC
activation is systematically associated with variation in
RSA [40,42]. Critchley and colleagues performed fMRI
in six participants engaged in an attentional task with two
levels of difficulty [42]. They found power in the RSA
and low-frequency (LF) (0.05 to 0.15 Hz) subbands to be
correlated with the magnitudes of BOLD activations in
bilateral dorsal and right genual ACC. Correlations were
also observed with BOLD activations in inferior parietal,
somatosensory, and superior temporal cortices. Critchley
et al. interpreted their results to indicate ACC involve-
ment in regulating the sympathetic limb of the ANS [42].
However, power in the LF band is also largely vagally
mediated [41]. In their large PET study, Gianaros et al.
found decreased RSA to be associated with decreased
rCBF in ventromedial PFC (Brodmann’s area 10), ante-
rior to pregenual ACC, and with increased rCBF in the
cerebellum [40]. Positive correlations between RSA and
rCBF were not reported.

Though wholly consistent structural-functional corre-
lations are difficult to discern from the studies just
reviewed, they generally confirm that dorsal and perigen-
ual ACC, neocortical regions proximal to ACC, and insu-
lar cortex are the primary cortical regions contributing to
autonomic regulation of the cardiovascular system in
humans. Evidence was reviewed in the previous para-
graphs that PTSD is associated with structural and func-
tional compromise of ACC. Perhaps ACC hypofunction
can partially account for features of autonomic dysregula-
tion associated with this diagnosis. The present test of this
possibility is limited. First, it relies on the assumption that
the volume of a brain region represents an imperfect
index of its functional capacity. Second, it assumes that
resting RSA magnitude is a useful index of adaptive ver-

sus maladaptive autonomic regulation in PTSD, a notion
which has not been proven or universally accepted [41].
RSA magnitude is only one of many autonomic indexes
of interest in this connection and certainly not the index
that has been most frequently considered. RSA magnitude
is of special interest here, however, because it is thought
to specifically manifest the parasympathetic branch of the
ANS, which has been studied less in PTSD, whereas all
other easily measurable cardiovascular indexes represent
combined parasympathetic and sympathetic efference in
unknown proportions. In addition, growing evidence
points to RSA magnitude as a prognostic indicator and/or
mediating variable in a range of disease states for which
persons with trauma and/or PTSD may be at increased
risk [43–48].

One must observe certain cautions, however, when
employing RSA as an index of vagal or parasympathetic
tone [41]. Ideally, participants should be at rest in a seated
or supine posture and refrain from speaking. Respiratory
influences on HR effectively saturate at high respiratory
frequencies. Speaking introduces HR variations unrelated
to vagal modulation, and nonstationary components into the
behavior of both the index (HR) and the underlying driver
(respiration). Comparisons of RSA magnitude have yielded
mixed results in PTSD and control groups assessed during
speaking [6–7,49]. Using relatively long (15 to 20 minutes)
at-rest recordings, Cohen et al. found RSA magnitudes to
be reduced in two independent samples of civilian patients
with PTSD compared with nonill controls (trauma histories
unreported) [6,50].

In view of studies implicating ACC in the parasympa-
thetic limb of autonomic control of the heart, we predicted
that the ACC volume would correlate with RSA magni-
tude. The current study assessed RSA during four separate
rest periods that totaled approximately 1 hour of recording.
These two rest periods (“baseline” and “preparation”)
comprised subsections of two consecutive administrations
of the Trier Social Stress Tests (hereafter, TSST 1 and
TSST 2) on the afternoon before structural imaging.
Repeated TSST administrations allowed estimation of
habitation of hypothalamic-pituitary-adrenal and auto-
nomic responses to a repeated social stressor in persons
with PTSD+ (positive) versus controls, following a test of
a model for smaller hippocampal volume in PTSD [51].
The study design also compared combat veterans with
PTSD with those without PTSD, thus controlling for any
effects of trauma exposure. Though participants remained
quietly seated during these rest periods, we expected that
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anticipation of the upcoming TSST would exert some
effect on their arousal status. We performed a partial test
of this possibility by comparing the baseline and prepara-
tion periods (see next section).

METHODS

Participants
Participants were Vietnam and Persian Gulf war com-

bat veterans. They met strict criteria regarding diagnostic
status as well as the availability and quality of structural
MR and TSST/ECG data. Ninety-nine participants met
diagnostic and MR data-related criteria. Further details
regarding recruitment, screening, and exclusion leading to
this sample are available elsewhere [15]. Of these 99, 77
met additional ECG and TSST administration criteria.
These latter criteria were as follows:
1. The first TSST began after 12 pm.
2. The first baseline period was at least 5 minutes long.
3. Both preparation periods were at least 7 minutes long.
4. All interview and serial subtraction task periods were

at least 5 minutes.
5. Both serial subtraction tasks were completed.

These criteria assured homogeneity of circadian
effects and TSST task structure across groups. One sub-
ject refused the TSST. Additional participants were
excluded because their RSA values were artifactually
elevated (see “RSA Estimation” section, next page). Par-
ticipants provided written informed consent according to
procedures of applicable institutional review boards.
Completing participants were paid $100.

In the final sample of 77, 40 participants with PTSD+
(of which 3 were female) met criteria for current PTSD
after experiencing one or more military traumas and
37 participants with PTSD– (of which 3 were female)
were without current or lifetime PTSD due to military or
civilian trauma. Participants with positive diagnoses of
comorbid alcohol abuse/dependence (ETOH+) were based
on meeting lifetime, but not current, alcohol abuse or
dependence criteria on the Structured Clinical Interview
for the Diagnostic and Statistical Manual of Mental Disor-
ders-Fourth Edition (DSM-IV) (SCID). Characteristics
of the sample participants are summarized in Table 1.

Psychotropic medications were continued during par-
ticipation. Of the participants with PTSD+, 77 percent were
taking a psychotropic medication, 44 percent a selective
serotonin reuptake inhibitor, and 25 percent an anticonvul-
sant/mood-stabilizing medication. Among participants with
PTSD–, the respective percentages were 14, 5, and 3.

Table 1.
Subject diagnostic and psychometric characteristics of U.S. combat veterans (N = 77) who met criteria for current PTSD. Data presented as mean ±
standard deviation unless otherwise noted.

Variable
PTSD+ PTSD– F or χ2 Tests

ETOH+ ETOH– ETOH+ ETOH–
PTSD ETOH Interactive

(n = 18) (n = 22) (n = 15) (n = 22)
Age (yr) 50.4 ± 5.8 49.2 ± 8.1 49.0 ± 11.4 46.8 ± 9.8 NS NS NS
Caucasian (%) 61.1 68.2 66.7 95.5 9.56* 11.02* 9.56*

Current MDD (%) 83.3 72.7 13.3 9.1 40.8† NS NS
Lifetime MDD (%) 83.3 81.8 20.0 27.3 26.2† NS NS
Education (yr) 14.4 ± 1.9 14.6 ± 1.1 14.4 ± 1.6 15.7 ± 2.2 NS NS NS
Combat Exposure Scale 29.6 ± 11.0 26.5 ± 11.4 17.4 ± 9.0 17.1 ± 12.2 17.6† NS NS
Beck Depression Inventory 25.8 ± 7.6 23.3 ± 9.7 5.45 ± 3.50 4.1 ± 4.3 152.2† NS NS
MISS 125.7 ± 13.7 114.2 ± 22.5 64.7 ± 10.7 62.6 ± 14.5 218.4† NS NS
CAPS Total Severity 78.6 ± 15.5 71.3 ± 20.1 8.5 ± 8.3 8.7 ± 10.1 370.2† NS NS
WAIS-III Vocabulary Score 44.2 ± 10.2 53.3 ± 9.0 55.1 ± 7.1 53.1 ± 8.6 7.0‡ NS 7.4‡

WAIS-III Digit Symbol Score 58.4 ± 14.0 55.5 ± 15.7 73.3 ± 10.5 71.6 ± 10.6 25.7† NS NS
*p < 0.05.
†p < 0.001.
‡p < 0.01.
CAPS = Clinician-Administered PTSD Scale, ETOH+ = comorbid alcohol abuse/dependence positive, ETOH– = comorbid alcohol abuse/dependence negative,
MDD = major depressive disorder, MISS = Mississippi Scale for Combat-Related PTSD, NS = nonsignificant, PTSD = posttraumatic stress disorder, PTSD+ =
PTSD positive, PTSD– = PTSD negative, WAIS-III = Wechsler Adult Intelligence Scale-Third Edition.
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Psychometrics
Participants were administered the Clinician-Adminis-

tered PTSD Scale (CAPS) [52] and selected Axis I modules
of the SCID [53]. Verbal and nonverbal intellectual abilities
were estimated using the vocabulary and digit symbol sub-
stitution subtests of the Wechsler Adult Intelligence Scale-
Third Edition (WAIS-III) [54]. Additional self-report
instruments included the Combat Exposure Scale [55], the
Mississippi Scale for Combat-Related PTSD [56], and the
Beck Depression Inventory [57].

Trier Social Stress Test
The TSST began with instructions to participants to

prepare for a simulated job interview before an audience.
This preparation period then lasted 7–10 minutes. The
simulated interview lasted for 5 minutes and included
inducements to continue speaking for the entire period.
Participants were then asked to perform serial subtrac-
tions before the same audience for an additional 5 min-
utes. If arithmetic errors occurred, participants were
required to start over. In this study, the TSST was
amended to include preinstruction baseline periods. The
second of these fell between the two administrations of
the TSST and lasted approximately 40 minutes.

Respiratory Sinus Arrhythmia Estimation
During the TSSTs, participants were seated and quiet

during both the preparation and baseline periods, which
provided optimal conditions for estimating RSA. ECG
was continuously recorded from gold electrodes located
near the right clavicle and the left ninth rib, analog prefil-
tered to 1 to 100 Hz, and digitized at 400 Hz. ECG was
later digitally filtered to a 5 to 100 Hz bandwidth and
remapped to an instantaneous IBI time series with 0.04 Hz
resolution. RSA estimates were derived every minute
from Welch periodograms applied to the instantaneous
IBI series (single epochs, Hamming-windowed) and were
the sum of coefficient magnitudes from 0.15 to 0.40 Hz.
RSA magnitudes were estimated for each rest period by
the median of all 1-minute epochs wholly contained
within each period. In view of the sensitivity of RSA to
artifact [58], four stages of exclusion were applied to the
ECG/RSA data set, which totaled approximately 77 hours.
Automated artifact detection was applied to individual
R-waves and to 1-minute IBI series. Manual artifact
screening was then applied to both IBI periodograms
(HRV spectra) and to per period values of RSA magni-
tude. Most artifacts were due to contamination of the ECG
by intracostal electromyogram (EMG). Six participants

were excluded because their per period values of RSA
magnitude were more than 2 standard deviations away
from the group mean for one of the four periods of inter-
est. Two of these participants were PTSD+ and four
PTSD– (chi-square test was nonsignificant [NS], χ  =
0.85). Of those excluded, their medical records did not
note cardiological disease and their ECGs were not con-
taminated by premature ventricular contractions.

Brain Imaging
We performed magnetic resonance imaging using

1.5 T General Electric Signa scanners (GE Healthcare
Technologies; Milwaukee, Wisconsin) at similar hardware
and software revisions. One system was housed at the
Diagnostic Radiology Center of the Department of Veter-
ans Affairs (VA) Palo Alto Health Care System (VAP-
AHCS) and one at the Brain Imaging Center of McLean
Hospital (Belmont, Massachusetts). Coronal images were
acquired with a three-dimensional volumetric pulse
sequence (relaxation time = 35 ms, excitation time = 6 ms,
flip angle = 45°, number of excitations = 1, matrix size =
256 × 192, field of view = 24 cm2, slice thickness = 1.5–
1.7 mm with 124 slices). Image optimization was per-
formed in BrainImage (A. L. Reiss; BrainImage v 5.x;
Stanford University, Stanford, California) following the
standard protocols of the Stanford Psychiatry Neuroimag-
ing Laboratory [59–61].

We manually delineated the cingulate cortex following
a protocol developed by one of the authors [17]. Cingulate
gyri were first traced in sagittal view. We then used a coro-
nal view to draw the superior, inferior, lateral, and medial,
boundaries of the cingulate cortex and adjacent white matter.
As in other studies [62–64], substantial intersubject variabil-
ity was noted in rostral ACC landmarks. In our view, these
precluded reliable delineation of subgenual cingulate cor-
tex. This exclusion is noteworthy because multiple fMRI
studies have now suggested that subgenual ACC, among
ACC subregions, may have special relevance to PTSD [65].
After delineation, we fitted a dynamic Talairach grid on each
brain, which subdivided the cingulate (Figure 1). Talairach
sectors corresponding to B, C, D, and E1 defined the anterior
portion of the cingulate, while sectors E2, E3, F, G, and H
defined the posterior cingulate. Two authors blind to subject
identity and diagnosis performed all manual tracing. Cingu-
late tissue volumes (gray matter plus white matter) were
highly reliable (intraclass correlation coefficient = 0.94).
Cross-laboratory reliability results, when conservatively
interpreted, did not support the analysis of segmented gray

2
1
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and white matter volumes in this data set [15]. Further
details of image optimization and cingulate delineation are
available elsewhere [17].

RESULTS

As presented in Table 1, this sample of U.S. combat
veterans exhibited commonly observed features of ele-
vated depressive comorbidity and mildly reduced esti-
mated intellectual ability [66]. Because the sample was
originally constructed to address associations with
comorbid alcoholism, no excess of this diagnosis existed.
Comorbid alcoholism interacted with PTSD in association
with decreased WAIS-III vocabulary scores. Overall, this
subsample of 77 participants appeared to represent the
larger sample of 99 participants from which it was drawn
[15,17,67]. In particular, the association between PTSD
and ACC tissue volume persisted (F1,72 = 19.1, p < 0.001)
in the absence of any effect (F1,72 = 0.84, NS) or interac-
tion (F1,72 = 0.06, NS) involving comorbid alcoholism
[15]. As before, ACC tissue volume was larger on the
right than on the left (F1,72 = 6.71, p < 0.05) and exhibited
no association with age (r75 = 0.025, NS).

HRV spectra did not exhibit the prominent elevations
in the respiratory band typically associated with paced
breathing or sleep (Figure 2). Nevertheless, RSA magni-
tudes (the sum of coefficient magnitudes between 0.15

and 0.40 Hz) were normally distributed, and the expected
negative associations of RSA with age were observed
(r = –0.41 to –0.54, p < 0.001) [68]. Assessed with
univariate repeated measures analysis of variance, RSA
magnitude exhibited no effects of PTSD (least squares
means adjusted for age: PTSD+ = 3.35 ms/Hz, PTSD– =
3.66 ms/Hz; F1,72 = 0.87, NS), comorbid alcoholism
(ETOH+ = 3.66 ms/Hz, ETOH– = 3.35 ms/Hz; F1,72 =
0.85, NS), or their interaction (F1, 72 = 0.80, NS). Addi-
tionally, we found no effect of session (TSST 1 vs
TSST 2; F1,72 = 1.2, NS), no effect of phase (baseline vs
preparation; F1,72 = 1.2, NS), and no interaction of session
and phase (F1,72 = 0.002, NS). Grouping factors did not
interact with within-group factors. HR also exhibited no
effects of PTSD (least squares means: PTSD+ = 77.1 bpm,
PTSD– = 77.8 bpm; F1,72 = 0.07, NS), comorbid alcohol-
ism (ETOH+ = 79.0 bpm, ETOH– = 75.8 bpm; F1,72 =
1.65, NS), or their interaction (F1,72 = 0.13, NS).

First-order Pearson product moment correlations
between RSA magnitudes and ACC tissue volumes are
presented in Table 2. Of interest in this table is the
appearance of medium-sized positive correlations
between right ACC tissue volumes and RSA magnitudes
that were significant in three cases and nearly significant
in the fourth. In contrast, left hemisphere ACC tissue vol-
ume exhibited no correlations with RSA magnitude. The
correlation of left and right ACC tissue volumes was r =
0.32 (p < 0.01) which, though statistically significant,
implied that their shared variance was less than 10 per-
cent of their individual variances. This low level of volu-
metric correlations is compatible with their apparently
divergent relations to RSA magnitude. RSA magnitudes
from the different sessions and phases were highly corre-
lated with one another (r = 0.79–0.86, p < 0.001). How-
ever, the TSST 2 baseline period was the longest of the
four and presumably yielded the most reliable single esti-
mate of RSA magnitude. Figure 3 presents bivariate
plots of TSST 2 baseline RSA magnitude by left and
right ACC volumes. Inspection of these plots indicated
that outliers did not influence the observed pattern of cor-
relations. This pattern of results was preserved in a weak-
ened form in PTSD+ and PTSD– subgroups assessed
separately. All eight correlations between right ACC tis-
sue volume and RSA magnitude were positive, and four
were significant. All eight correlations between left ACC
tissue volume and RSA magnitude were negative, and
none was significant.

Figure 1.
Sagittal view of cingulate region of human brain with a Talairach grid
superimposed in accordance with standard locators.
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As noted earlier, RSA magnitude is strongly associ-
ated with age. Hence, we used hierarchical regression to
determine whether the same pattern of results was
obtained with age contribution controlled. Entering left
and right ACC volumes as predictors of TSST 2 baseline
RSA magnitude in the second step of this model resulted
in a significant increment in R2 (0.49 to 0.58, incremental
F2,73 = 5.23, p < 0.008). Again, however, right but not

left hemisphere ACC tissue volume accounted for sig-
nificant variance in RSA magnitude (right: β = 0.33, t =
3.22, p < 0.002; left: β = –0.08, t = 0.84, NS). Repeating
this analysis in the PTSD+ and PTSD– groups separately
produced similar results. In both cases, the R2 increment
was nearly significant (p = 0.09 and 0.12, respectively)
and right but not left hemisphere ACC volume accounted
for significant variance in TSST 2 baseline RSA

Figure 2.
Heartbeat variability spectra derived from baseline periods of first and second administrations of (a) Trier Social Stress Test (TSST) 1 and
(b) TSST 2 for participants (U.S. combat veterans [N = 77]) with posttraumatic stress disorder positive (PTSD+) and PTSD negative (PTSD–).
Solid lines are mean spectral coefficients; dotted lines are standard deviations of spectral coefficients. No effects of PTSD diagnosis, test session
(1 vs 2), or phase (baseline vs preparation—not depicted) were found. Note that conditions of this experiment did not induce prominent respiratory
sinus arrhythmia peaks in combat-exposed participants with and without PTSD who were ostensibly at rest.
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magnitude (PTSD+ right: β = 0.32, t = 2.23, p < 0.032;
left: β = –0.04, t = 0.28, NS; PTSD– right: β = 0.30, t =
2.08, p < 0.045; left: β = –0.12, t = 0.79, NS).

The results of these analyses present a strikingly simi-
lar pattern of divergent relationships between left and right
ACC tissue volumes and RSA magnitude in participants
with PTSD+ and PTSD–. At the same time, both left and
right hemisphere ACC tissue volumes were smaller in

PTSD, exhibiting, in this sample, comparable effect sizes
(left: partial η2 = 0.15; right: partial η2 = 0.12). Hence, our
interest was to determine whether residualizing left and
right ACC tissue volumes against PTSD (by using CAPS
total severity score) left the pattern intact. In a hierarchical
regression, after entering age, right but not left ACC tissue
volume residual again accounted for significant variance in
TSST 2 baseline RSA magnitude (right: β = 0.28, t = 2.80,
p < 0.007; left: β = –0.069, t = 0.67, NS). Conversely,
residualizing left and right hemisphere ACC volumes
against RSA magnitude left the PTSD group difference
intact.

DISCUSSION

This study examined linear relationships between ACC
tissue volume and RSA magnitude. The findings suggested
that ACC tissue volume in the right hemisphere could
account for significant variance in RSA magnitude during
the quiet periods of the TSST. The shared variance between

Table 2.
Pearson product moment correlations between left and right hemisphere
anterior cingulate cortex (ACC) tissue volumes and respiratory sinus
arrhythmia magnitudes across baseline and preparation periods from
Trier Social Stress Tests (TSSTs) 1 and 2. As noted in text, these values
are based on ACC volume estimates that exclude subgenual tissue.

Hemisphere 
ACC Tissue 

Volume

TSST 1 TSST 2

Baseline Preparation Baseline Preparation

Left 0.00 –0.10 –0.06 –0.10
Right 0.22 0.25* 0.35† 0.33†

*p < 0.05.
†p < 0.01.

Figure 3.
Bivariate scatterplots of respiratory sinus arrhythmia (RSA) magnitude (x-axis) by left and right anterior cingulate cortex (ACC) tissue volumes
(y-axis) of the Trier Social Stress Test 2. RSA magnitudes were based upon longer (40 min) baseline period preceding second administration.
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ACC tissue volume and RSA appeared to be largely
independent of the variance in ACC volume associated
with PTSD. Furthermore, the specific association of right
hemisphere ACC volume with RSA magnitude was appar-
ent in both PTSD+ and PTSD– groups. An important quali-
fication regarding all of these observations is that subgenual
ACC volume was not quantified out of concern that it could
not be done reliably. As noted, multiple fMRI studies have
now implicated subgenual ACC in PTSD [65].

The finding of a positive relationship between ACC
tissue volume and RSA magnitude is generally compati-
ble with evidence reviewed in the “Introduction” section
(p. 451) implicating ACC in autonomic regulation. How-
ever, this interpretation again relies on the assumption
that the volume of a brain region represents a plausible
estimator of its functional capacity when, in fact, multi-
ple intrinsic structural characteristics are likely to be at
least as important. As well, our results are purely correla-
tive. In fact, the usual caveats regarding the indetermi-
nacy of causation given correlation are reinforced by the
findings of Critchley et al. [69]. Using voxel-based mor-
phometry, they observed that peripheral autonomic den-
ervation was associated with reduced gray matter density
in the ACC and insula, a pattern seen in other denerva-
tion syndromes [69]. This finding suggests that the
observed pattern of results could have emerged if a third
mechanism induced a pattern of functional autonomic
denervation resulting in both smaller right ACC volume
and lower RSA magnitude that were then adventitiously
correlated.

We observed no PTSD diagnostic group differences in
RSA magnitude at rest despite using subject and behavior
samples two to four times as large as those used by two
prior studies reporting positive findings [6,50]. Our find-
ings are therefore more compatible with those of Sahar et
al. [7], who also found no effect of PTSD on resting RSA.
One limitation of the current design was the temporal asso-
ciation of the baseline and preparation periods with chal-
lenging social stressors. Temporal association with stress
testing could have aroused subjects and so restricted the
upper range of RSA magnitude. However, HRs were only
mildly elevated [70] and also exhibited no effects of diag-
nosis. Also noteworthy is that the high data quality
requirements for accurate RSA estimation could have
excluded subjects whose ECG records are excessively
contaminated with EMG and/or movement artifact. Exclu-
sion of presumably more aroused subjects could have
restricted the lower range of the RSA distribution. If the

range of RSA magnitude had been restricted in this study,
associations with ACC tissue volumes may have been
attenuated. In sum, the current observations may represent
a “minimal result” involving a static structural probe of
ACC status and perhaps a range-restricted index of tonic
autonomic adaptation. More illuminating findings may
come from studies combining functional neuroimaging
with concurrent recording of autonomic indexes. A num-
ber of the Critchley and Gianaros designs could be applied
to PTSD samples with little modification.

CONCLUSIONS

Consistent with existing evidence implicating fore-
brain cortical regions in cardiac regulation, the findings
of this initial investigation of ACC volume and RSA
magnitude in combat veterans suggest that a smaller
ACC is associated with less parasympathetic regulation
of HR. Further studies in this area can be expected to pro-
vide additional neurobehavioral insights into morbidity
and mortality among those exposed to traumatic stressors
such as military combat.
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