
Sustainable and Autonomic Space Exploration Missions

Mike Hinchey,
James Rash and Walt

Truszkowski
NASA

michael.g.hinchey@nasa.gov,
james.l.rash@nasa.gov,

walter.f.truszkowski@nasa.gov

Roy Sterritt,
University of Ulster,

r.sterritt@ulster.ac.uk

Christopher Rouff,
 SAIC ACBU ,

rouffc@saic.com

Abstract

Visions for future space exploration have long term

science missions in sight, resulting in the need for the
sustainable missions. Survivability is a critical
property of sustainable systems and may be addressed
through autonomicity, an emerging paradigm for self-
management of future computer-based systems. This
paper examines some of the ongoing research efforts
to realize these visions, with specific emphasis on
Autonomic Policies.

1. Introduction

The vision for future Space Exploration Missions
(SEMs) are “not looking at planting flags,” and “not
being able to go back for 100 years.” [1] Systems that
would take humans, via the ISS and the Moon, to Mars
or to the asteroids, would be reusable systems (that
might be nuclear in nature), with mission durations
lasting upwards of 10 years. At this stage we are only
beginning to “build the rail roads.” [2] This vision
requires sustainable space capabilities [1], in
particular since it will mean the establishment of bases
on the Moon for the eventual trip to Mars. [2]

Sustainable SEMs will have many dependant
properties, not least of which is survivability.
Survivable Systems are systems that are able to
complete their mission in a timely manner, even if
significant portions are compromised by attack or
accident [3][4].

The case has been well presented in the literature
for the need to create self-managing systems due to the
complexity problem that causes the ever increasing
total cost of ownership, or to provide the way forward
to enable future pervasive and ubiquitous computation
and communications [5][6][7][8]. Another aspect for

self-management is to facilitate survivable systems
[9][10]. To enable self-management (autonomicity), a
system requires many self properties (self-* or
selfware), such as self-awareness.

This paper looks at some ongoing research in the
autonomic and autonomous systems area that will
contribute to the creation of these survivable and
sustainable exploration missions.

2. Requirements for sustainable systems

Computer-based systems are expected to be

effective. This means that they serve a useful purpose
when they are first introduced and continue to be
useful as conditions change. From this perspective,
they should also be survivable. Decisions and
directions taken by the system automatically without
real-time human intervention are autonomous
decisions. Responses taken automatically by a system
without real-time human intervention are autonomic
responses [11]. The NASA view of autonomic and
autonomous is slightly different from this general
systems view. NASA views Autonomy as indicating
without assistance from ground control, and as such
this could have the astronaut in the loop.

Many branches of computer science research and
development will contribute to the progress in this
area. Research on dependable systems should be
especially influential, as dependability covers many
relevant system properties such as reliability,
availability, safety, security, survivability and
maintainability [13],[14].

Figure 1 highlights the fact that when the mission
requirements are being established there will be
intrinsic survivability requirements underpinning the
mission.

Figure 1. Integrating survivability requirements with system requirements (adapted from [4])

3. Survivability through Autonomic
Systems

The autonomic concept is inspired by the human

body's autonomic nervous system. By analogy, humans
have good mechanisms for adapting to changing
environments and repairing minor physical damage.
The autonomic nervous system monitors heartbeat,
checks blood sugar levels and keeps the body
temperature normal without any conscious effort from
the human. This biological autonomicity is
influencing a new paradigm for computing to create
self-management within computer-based systems
(Autonomic Computing, Autonomic Communications
and Autonomic Systems). There is an important
distinction between autonomic activity in the human
body and autonomic responses in computer-based
systems. Many of the decisions made by autonomic
elements in the body are involuntary, whereas
autonomic elements in computer-based systems make
decisions based on tasks chosen to delegate to the
technology [12].

In the late 1990s DARPA/ISO’s Autonomic
Information Assurance (AIA) program studied defense
mechanisms for information systems against malicious
advance cyber-adversaries and (2) coordinated
responses [11]. These hypotheses may provide general

guidance for creating autonomic survivable systems
responses are more effective than local reactive.
adversaries. The AIA program resulted in two
hypotheses; (1) fast responses are necessary to counter

‘Autonomic’ became mainstream within Computing
in 2001 when IBM launched their perspective on the
state of information technology [5]. IBM defined four
key self properties: self-configuring, self-healing, self-
optimizing and self-protecting [12]. In the few years
since, the self-x list has grown as research expands,
bringing about the general term selfware or self-*, yet
these four initial self-managing properties along with
the four enabling properties; self-aware (of internal
capabilities and state of the managed component), self-
situated (environment and context awareness), self-
monitor and self-adjust (through sensors, effectors and
control loops), cover the general goal of self
management [14].

The premise is that the sustainable need for
survivable properties such as resistance, recognition
and recovery (Figure 1) can be provided through
autonomic techniques.

Autonomic Systems work through creating a
cooperative environment where elements, nodes and
components are each assigned an autonomic manager
(Figure 3).

Figure 2. Progressive autonomy and autonomicity [15]

These autonomic managers provide the self-
awareness (self-monitoring and self-adjusting of the
managed component) and environment-awareness
(monitoring and reacting to the dynamic conditions of
the environment). The autonomic manager to
autonomic communications (AM AM in Figure 3)
includes several dynamic loops of control, for instance
a fast loop provide reflex reactions and a slower loop
providing coordinated event telemetry. These loops
will not only trigger autonomic/self-management
activity but also feed up into higher planes.

Figure 2 depicts the layers in a mission. The top
layer contains the goal of the mission – the science.
This has been classified as autonomous layer due to
the fact it contains the self-governance high level goals
and policies that the mission must meet including the
emergent constraints for discovering and planning new
opportune science.

The middle (self-ware) layer (Figure 2) depicts the
day to day autonomous and autonomic activity to meet
the mission plans.

The bottom (autonomic) layer depicts the
instant/reflex reaction activity that will need to occur
to arising situations to ensure correct and survivable
activity takes place.

Figure 3. Autonomic elements (autonomic

manager + managed component)

4. Challenge in developing sustainable
systems

The required complexity in these systems is
evident. By their very nature the systems are critical
systems due to the remoteness of the missions and the
human life and costs involved. Components in the
system will fail but the system must be flexible and
dynamic in nature to self-configure and self-heal to
avoid system failure and provide an effective work-
around. This requirement to adapt encourages the

facilitating of self-adaptation and emergence in the
system, while at the same time raises concerned with
non-desirable emergent behavior that may endanger
the mission. Ongoing efforts to address this are
discussed in section 6. Development and verification of
autonomic policy-based systems.

Another challenge is the orchestration between the
different planes (autonomic selfware
autonomous planes). As in communications and more
recently in IT (through Autonomic Computing) the
research area of policy based management has been
identified as a potential means to specify top level
policies that are then implemented and self-managed
by the system. Ongoing research efforts in this area
are discussed in section 5. Policies for autonomic
systems.

5. Policies for autonomic systems

Policies have been described as a set of
considerations designed to guide decisions of courses
of action [16] and Policy-based management may be
viewed as an administrative approach to systems
management that establishes rules in advance to deal
with situations that are likely to occur. From this
perspective policy-based management works by
controlling access to and setting priorities for the use
of ICT resources [17], for instance, where a (human)
manager may simply specify the business objectives
and the system will make it so in terms of the needed
ICT [18] for example [19]: (1) "The customer database
must be backed up nightly between 1 a.m. and 4 a.m.,"
(2) "Platinum customers are to receive no worse than
1-second average response time on all purchase
transactions," (3) "Only management and the HR
senior staff can access personnel records," and (4)
"The number of connections requested by the Web
application server cannot exceed the number of
connections supported by the associated database."
These examples highlight the wide range and multi-
level of policies available, the first concerned with
system protection through backup, the second with
system optimization to achieve and maintain a level of
quality of service for key customers; while the third
and forth are concerned with system configuration and
protection.

Policy-based Management has been the subject of
extensive research in its own right. The IETF has
investigated Policy-based Networking as a means for
managing IP-based multi-service networks with quality
of service guarantees. More recently, PBM has become
extremely popular within the telecom industry, for next
generation networking, with many vendors announcing
plans and introducing products. This is driven by the

fact that policy has been recognized as a solution to
manage complexity, and to guide the behavior of a
network or distributed system through high-level user-
oriented abstractions [20].

A policy-based management tool may also reduce
the complexity of product and system management by
providing uniform cross-product policy definition and
management infrastructure [21].

One perspective of Autonomic Computing is
Policy-Based Self-Management.

The long term strategic vision highlighted an
overarching self-managing vision where the system
would have such a level of ‘self’ capability that a
senior (human) manager in an organization could
specify business policies—such as profit margin on a
specific product range or system quality of service for
a band of customers— and the computing systems
would do the rest [22].

It has been argued, and counter argued, that for this
vision to become a reality would require the computer
science grand challenges to be solved before hand: AI
completeness, Software Engineering completeness and
so on [23]. What is clear in this vision is the
importance of policies to empower the system at all
levels to self-manage.

With one definition of Autonomic Computing being
Self-Management based on high level guidance from
humans [24] and considering the IBM’s high-level set
of self-properties (self-CHOP, configuration, healing,
optimization and protection) against the types of
typical policies mentioned previously (optimization,
configuration and protection), the importance and
relevance of polices for achieving autonomicity
becomes clear [25].

The field of Agent-Oriented Software Engineering
(AOSE) has arisen to address methodological aspects
and other issues related to the development of complex
multi-agent systems. AOSE is a new software
engineering paradigm that augurs much promise in
enabling the successful development of more complex
systems than is achievable with current Object-
Oriented approaches which use agents and
organizations of agents as their main abstractions [26].

The organizational metaphor has been proven to be
one of the most appropriate tools for engineering
Multi-Agent Systems (MAS). The metaphor is used by
many researchers to guide the analysis and design of
MASs, e.g., [27][28][29]. A MAS organization can be
observed from two different point of view [29]:

Acquaintance point of view: shows the
organization as the set of interaction relationships
between the roles played by agents.

Structural point of view: shows agents as artifacts
that belong to sub-organizations, groups, teams. In this

view agents are also structured into hierarchical
structures showing the social structure of the system.

Both views are intimately related, but they show the
organization from radically different viewpoints. Since
any structural organization must include interactions
between their agents in order to function, it is safe to
say that the acquaintance organization is always
contained in the structural organization. Therefore, if
we first determine the acquaintance organization, and
we define the constraints required for the structural
organization, a natural map is formed between the
acquaintance organization and the corresponding
structural organization. This is the process of assigning
roles to agents [29]. Thus, we can conclude that any
acquaintance organization can be modeled
orthogonally to its structural organization [30]. We
use this separation to specify policies at the
acquaintance organization level, and deploy them over
the structural organizational of the running system.
The scope of policies usually implies features of
several acquaintance sub-organizations. In such cases,
we must first compose the acquaintance sub-
organizations, this process being guided by the policy
specification, to deploy it later. For more information
on this work please refer to [31].

6. Development and verification of
autonomic policy-based systems

As autonomic systems are essentially concerned
with bring self-management to highly complex
systems, all the existing issues with developing and
maintaining complex systems are still present from
developing effective systems and software in the first
place, and then managing their evolution through
reverse and re-engineering the of systems.

In this section we briefly discuss our work on
formal requirements based programming extending it
as a means to provide provably correct code generated
from policies for autonomic systems. Specifically, we
are developing NASA’s R2D2C technologies for
mechanically transforming policies (expressed in
restricted natural language, or appropriate graphical
notations) into a provably equivalent formal model that
can be used as the basis for code generation and other
transformations, including reverse engineering the
process and working towards the self-generation of
provable autonomic policies.

Figure 4. The R2D2C approach, generating a

formal model from requirements and
producing code

6.1. R2D2C

Our experience at NASA Goddard Space Flight
Center (GSFC) has been that while engineers are
happy to write descriptions as natural language
scenarios, or even using semi-formal notations such as
UML use cases, they are loath to undertake formal
specification. Absent a formal specification of the
system under consideration, there is no possibility of
determining any level of confidence in the correctness
of an implementation. More importantly, we must
ensure that this formal specification fully, completely,
and consistently captures the requirements set forth at
the outset. Clearly, we cannot expect requirements to
be perfect, complete, and consistent from the outset,
which is why it is even more important to have a
formal specification, which can highlight errors,
omissions, and conflicts. The formal specification must
also reflect changes and updates from system
maintenance as well as changes and compromises in
requirements, so that it remains an accurate
representation of the system.

R2D2C, or Requirements-to-Design-to-Code
[32][33], is a NASA patent-pending approach to
Requirements- Based Programming that provides a
mathematically tractable round-trip engineering
approach to system development. In R2D2C, engineers
(or others) may write specifications as scenarios in
constrained (domain-specific) natural language, or in a
range of other notations (including UML use cases).
These will be used to derive a formal model (Figure 1)
that is guaranteed to be equivalent to the requirements
stated at the outset, and which will subsequently be
used as a basis for code generation. The formal model
can be expressed using a variety of formal methods.
Currently we are using CSP, Hoare’s language of
Communicating Sequential Processes [34][35], which
is suitable for various types of analysis and
investigation, and as the basis for fully formal
implementations as well as for use in automated test
case generation, etc.

Figure 5. The entire forward process with D1 thru D5 illustrating the development approach

R2D2C is unique in that it allows for full formal

development from the outset, and maintains
mathematical soundness through all phases of the
development process, from requirements through to
automatic code generation. The approach may also be
used for reverse engineering, that is, in retrieving
models and formal specifications from existing code,
as shown in Figure 4. The approach can also be used to
“paraphrase” (in natural language, etc.) formal
descriptions of existing systems.

This approach is not limited to generating code. It
may also be used to generate business processes and
procedures, and we have been experimenting with
using it to generate instructions for robotic devices that
were to be used on the Hubble Robotic Servicing
Mission (HRSM), which, at the time of writing, has
not received a final go-ahead. We are also
experimenting with using it as a basis for an expert
system verification tool, and as a means of capturing
domain knowledge for expert systems, and most
recently for generating code from policies.

6.2. R2D2C technical approach

The R2D2C approach involves a number of phases,

which are reflected in the system architecture
described in Figure 5. The following describes each of
these phases.

D1 Scenarios Capture: Engineers, end users, and
others write scenarios describing intended policies.
The input scenarios may be represented in a
constrained natural language using a syntax-directed
editor, or may be represented in other textual or

graphical forms. Scenarios effectively describe policies
that must be adhered to. They describe who various
situations and events are to be handled. At the lower
(micro) level, these may describe policies of an
individual autonomic element. At the overall (macro)
level, they may describe policies for a complete
system. Policies may be viewed as being analogous to
requirements, but are likely to be expressed at differing
levels, and to express a mixture of both functional and
non-functional requirements that must be implemented
in order to satisfy the policies.

D2 Traces Generation: Traces and sequences of
atomic events are derived from the scenarios defined in
phase D1.

D3 Model Inference: A formal model, or formal
specification, expressed in CSP is inferred by an
automatic theorem prover, in this case, ACL2 [36],
using the traces derived in phase D2. A deep4
embedding of the laws of concurrency [37] in the
theorem prover gives it sufficient knowledge of
concurrency and of CSP to perform the inference. The
embedding will be the topic of a future paper.

D4 Analysis: Based on the formal model, various
analyses can be performed, using currently available
commercial or public domain tools, and specialized
tools that are planned for development. Because of the
nature of CSP, the model may be analyzed at different
levels of abstraction using a variety of possible
implementation environments.

Figure 6. The reverse process with R1 thru R4 illustrating the code to policies approach

D5 Code Generation: The techniques of automatic

code generation from a suitable model are reasonably
well understood. The present modeling approach is
suitable for the application of existing code generation
techniques, whether using a tool specifically developed
for the purpose, or existing tools such as FDR [38], or
converting to other notations suitable for code
generation (e.g., converting CSP to B [40]) and then
using the code generating capabilities of the B Toolkit.

6.3. Reverse engineer: Code-to-Policies (C2Po)

It should be re-emphasized that the “code” that is
generated may be code in a high-level programming
language, low-level instructions for (electro-)
mechanical devices, natural-language business
procedures and instructions, low level autonomic
element policies, or the like. As Figure 6 illustrates, the
above process may also be run in reverse:

R1 Model Extraction: Using various reverse
engineering techniques [39], a formal model expressed
in CSP may be extracted.

R2 Traces Generation: The theorem prover may
be used to automatically generate traces based on the
laws of concurrency and the embedded knowledge of
CSP.

R3 Analysis: Traces may be analyzed, used to
check for various conditions, undesirable situations
arising, etc.

R4 Paraphrasing: A description of the system (or
system components) may be retrieved in the desired
format (natural language scenarios, UML use cases,
etc.).

7. Conclusion

Sustainable and Survivable Systems are essential to
realize future space exploration missions. Autonomic
Systems – self-managing computer-based systems
inspired by the self-managing activity of the biological
autonomic nervous system – may contribute to
achieving sustainable systems.

One vision of Autonomic Computing is Self-
Management based on high level guidance from
humans. As such policies and policy based
management are a key enabling technology for
achieving autonomicity. Their importance to SEM lies
in realizing and orchestrating high level science goals
(or policies) with the low-level dynamic day to day
survivability requirements.

This paper has briefly described some of our
research in this area including a method that can
produce fully (mathematically) tractable development
of policies for autonomic systems from requirements
through to code generation.

8. Acknowledgements

Part of this work has been supported by the NASA
Office of Systems and Mission Assurance (OSMA)
through its Software Assurance Research Program
(SARP) project, Formal Approaches to Swarm
Technologies (FAST), and by NASA Software
Engineering Laboratory, Goddard Space Flight Center
(Code 581).

This research is partly supported at University of
Ulster by the Computer Science Research Institute
(CSRI) and the Centre for Software Process
Technologies (CSPT) which is funded by Invest NI
through the Centres of Excellence Programme, under
the EU Peace II initiative.

9. References

[1] G. Martin, “NASA Exploration Team (NExT)
program,” World Space Congress, Houston, Texas, Oct. 10-
19, 2002.

[2] D.J. Atkinson, "Constellation Program Return to the
Moon: Software Systems Challenges," Keynote presentation,
3rd IEEE International Workshop on Engineering of
Autonomic and Autonomous Systems (EASe 2006),
Columbia, MD, USA, April 2006.

[3] R.C. Linger, N.R. Mead, H.F. Lipson, “Requirements
Definition for Survivable Systems,” 3rd IEEE Int. Conf.
Requirements Engineering. Colorado Springs, CO, April 6-
10, 1998, pp 14-23.

[4] N. Mead, “Requirements Engineering for Survivable
Systems,” Technical Report CMU/SEI-2003-TN-013, 2003.

[5] P. Horn, “Autonomic computing: IBM perspective on
the state of information technology,” IBM T.J. Watson Labs,
NY, 15th October 2001.

[6] R. Sterritt, “Towards Autonomic Computing: Effective
Event Management,” Proc. IEEE/NASA SEW, Greenbelt,
MD, Dec. 2002.

[7] J.O. Kephart, D.M. Chess. “The Vision of Autonomic
Computing,” Computer, 36(1):41–52, 2003.

[8] R. Sterritt, "Autonomic Computing," Innovations in
Systems and Software Engineering, Vol. 1, No. 1, Springer,
pp 79-88, 2005.

[9] R. Sterritt, G. Garrity, E. Hanna, P. O’Hagan,
"Survivable Security Systems through Autonomicity," Proc.
2nd NASA/IEEE Workshop on Radical Agent Concepts
(WRAC 2005), NASA GSFC, Maryland, USA, 20-22
September 2005, in "LNCS", Springer.

[10] R. Sterritt, G. Garrity, E. Hanna, P. O’Hagan,
"Autonomic Agents for Survivable Security Systems," Proc.
1st IFIP Workshop on Trusted and Autonomic Ubiquitous
and Embedded Systems (TAUES 2005) at EUC'05,
Nagasaki, Japan, 6-9th December 2005, in "LNCS 3823,"
Springer, pp 1235-1244.

[11] SM Lewandowski, DJ Van Hook, GC O'Leary, JW
Haines, LM Rossey, “SARA: Survivable Autonomic
Response Architecture,” DARPA Information Survivability
Conference and Exposition II Proceedings, Vol. 1, pp. 77-88,
June 2001.

[12] IBM, “An architectural blueprint for autonomic
computing,” 2003.

[13] B. Randell, “Turing Memorial Lecture – Facing Up to
Faults,” Comp. J. 43(2), pp 95-106, 2000.

[14] R Sterritt, DW Bustard, "Autonomic Computing: a
Means of Achieving Dependability?" Proc IEEE Int. Conf.
on the Engineering of Computer Based Systems (ECBS'03),
Huntsville, Alabama, USA, April 7-11 2003, pp 247-251.

[15] W. Truszkowski, C.A. Rouff, H.L. Hallock, J. Karlin,
J.L. Rash, M.G. Hinchey and R. Sterritt, “Autonomous and
Autonomic Systems: With Applications to NASA Intelligent
Spacecraft Operations and Exploration Systems, NASA
Monographs in Systems and Software Engineering,”
Springer Verlag, London, 2006.

[16] MJ Masullo, SB Calo, “Policy Management: An
Architecture and Approach,” Proc. IEEE 1st Int. Workshop
on Systems Management, Los Angeles, CA, April 14-16,
1993.

[17] Whatis?com, Online computer and internet dictionary
and encyclopaedia, 2005.

[18] Lymberopoulos L, Lupu E, Sloman M, “An adaptive
policybased framework for network services management,” J
Netw Syst Manage 11(3), 2003.

[19] D. Kaminsky, “An Introduction to Policy for
Autonomic Computing,” IBM white paper, March 2005.

[20] A. Meissner, S. B. Musunoori, L. Wolf, “MGMS/GML
- Towards a new Policy Specification Framework for
Multicast Group Integrity,” Proceedings 2004 Int.
Symposium Applications and the Internet (SAINT2004),
Tokyo, Japan, 2004.

[21] A.G. Ganek, “Autonomic computing: implementing the
vision.” Keynote talk at the autonomic computing workshop
(AMS 2003), Seattle, 25th June 2003.

[22] Horn P, “Autonomic computing: IBM perspective on
the state of information technology,” Presented at AGENDA
2001, Scottsdale, AR, 2001.

[23] Babaoglu O., Couch A., Ganger G., Stone P., Yousif
M., Kephart J., “Panel: Grand Challenges of Autonomic
Computing,” ICAC’05, Seattle, WA, June 2005.

[24] Kephart JO, Walsh WE, "An Artificial Intelligence
Perspective on Autonomic Computing Policies," Policy,
Fifth, pp 3-12, 2004.

[25] Sterritt R, Hinchey MG, Rash JL, Truszkowski W,
Rouff CA, Gracanin D, (Dec 2005) "Towards Formal
Specification and Generation of Autonomic Policies,"
Proceedings of 1st IFIP Workshop on Trusted and
Autonomic Ubiquitous and Embedded Systems (TAUES
2005) at EUC'05, Nagasaki, Japan, 6-9th December, in
"LNCS 3823", Springer, Pages 1245-1254.

[26] N. Jennings. “An agent-based approach for building
complex software systems,” Communications of the ACM,
44 (4):35–41, 2001.

http://www.infc.ulst.ac.uk/staff/r.sterritt@ulster.ac.uk
http://www.infc.ulst.ac.uk/staff/dw.bustard@ulster.ac.uk
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=26873&page=2
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=26873&page=2

[27] J. Odell, H. Parunak, and M. Fleischer. “The role of
roles in designing effective agent organizations,” in LNCS
2603, pages 27–28, Berlin, 2003. Springer–Verlag.

[28] H. V. D. Parunak and J. Odell. Representing social
structures in UML. Proceedings of the Fifth International
Conference on Autonomous Agents, pages 100–101,
Montreal, Canada, 2001. ACM Press.

[29] F. Zambonelli, N. Jennings, and M. Wooldridge.
Developing multiagent systems: the GAIA methodology.
ACM Transactions on Software Engineering and
Methodology, 12 (3) pp317–370, July 2003.

[30] E. A. Kendall. Role modeling for agent system analysis,
design, and implementation. IEEE Concurrency, 8(2) pp 34–
41, Apr./June 2000.

[31] J. Pena, M.G. Hinchey, R. Sterritt, “Towards Modeling,
Specifying and Deploying Policies in Autonomous and
Autonomic Systems Using an AOSE Methodology,”
Proceedings of the Third IEEE International Workshop on
the Engineering of Autonomic and Autonomous Systems
(EASe 2006), March 2006.

[32] M. G. Hinchey, J. L. Rash, and C. A. Rouff.
Requirements to design to code: Towards a fully formal
approach to automatic code generation. Tech. Rep. TM-
2005-212774, NASA Goddard Space Flight Center,
Greenbelt, MD, 2004.

[33] J. L. Rash, M. G. Hinchey, C. A. Rouff, and D.
Graˇcanin. Formal requirements-based programming for
complex systems. In Proc. Int. Conference on Engineering of
Complex Computer Systems, Shanghai, China, 16–20 June
2005. IEEE Computer Society Press.

[34] C.A.R. Hoare, “Communicating sequential processes,”
Comms of the ACM, 21(8):666–677, 1978.

[35] C.A.R. Hoare, “Communicating Sequential Processes,”
Prentice Hall International Series in Computer Science.
Prentice Hall Int., Englewood Cliffs, NJ, and Hemel
Hempstead, UK, 1985.

[36] M. Kaufmann and Panagiotis Manolios and J Strother
Moore. Computer-Aided Reasoning: An Approach.
Advances in Formal Methods Series. Kluwer Academic
Publishers, Boston, 2000.

[37] M. G. Hinchey and S. A. Jarvis. Concurrent Systems:
Formal Development in CSP. International Series in
Software Engineering. McGraw-Hill Int., 1995.

[38] Failures-Divergences Refinement: User Manual and
Tutorial. Formal Systems (Europe), Ltd., 1999.

[39] H.J. van Zuylen, “The REDO Compendium: Reverse
Engineering for Software Maintenance,” Wiley, 1993.

[40] M.J. Butler, csp2B : A Practical Approach To
Combining CSP and B, Dept. Electronics and Computer
Science, University of Southampton, February 1999.

	1. Introduction
	2. Requirements for sustainable systems
	3. Survivability through Autonomic Systems
	4. Challenge in developing sustainable systems
	5. Policies for autonomic systems
	6. Development and verification of autonomic policy-based systems
	6.1. R2D2C
	6.2. R2D2C technical approach
	6.3. Reverse engineer: Code-to-Policies (C2Po)
	7. Conclusion
	8. Acknowledgements
	9. References

