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Abstract 
 

Autonomic computing for spacecraft ground 

systems increases the system reliability and reduces 

the cost of spacecraft operations and software 

maintenance. In this paper, we present an autonomic 

computing solution for spacecraft ground systems at 

NASA Goddard Space Flight Center (GSFC), which 

consists of an open standard for the message oriented 

architecture referred to as GMSEC architecture, the 

GSFC Mission Services Evolution Center, and an 

autonomic computing tool, Criteria Action Table 

(CAT). This solution has been used in many upgraded 

ground systems for NASA’s missions, and provides a 

framework for developing solutions with higher 

autonomic maturity.  

 

1. Introduction 
 

The concept of autonomic computing is the ability 

of computing systems to manage themselves based on 

the high level objectives from the management. It is 

inspired by the human autonomic system that 

maintains an optimal internal state through self 

regulation, while adapting to the changing 

environment. The vision[1] of autonomic computing is 

necessitated by the explosive growth in network 

applications and information services that are 

increasingly complex, dynamic, and heterogeneous, 

which have led to profound changes in almost every 

aspect of our lives. Using the technology, such as the 

autonomic computing, to manage technologies will be 

crucial to meet the challenges of the increasing 

complexities of computing systems that may reach the 

limit of the human capability to manage and maintain 

in the near future, especially when systems require a 

timely and decisive response to the demands of rapidly 

changing environments.   There have been 

considerable efforts in both industry and the academic 

world to investigate autonomic computing concepts, 

architecture as well as the applications [2]. 

Spacecraft ground systems provide an important 

testing ground for the autonomic computing concept. A 

spacecraft ground system is complex: it involves many 

processes and subsystems working together, such as 

the flight dynamics subsystem, data processing 

subsystem, scheduling and planning subsystem, and 

command, control and communication subsystems. It 

is distributed: the subsystems and processes with a 

system are generally in different geographical locations 

and interacting and communicating with each other 

through networks. It is heterogeneous:  a ground 

system generally consists of main frame or legacy 

systems for data processing and product generation and 

workstations for command, control, and commutations 

on different platforms and operating systems. It also 

runs on real time, which has high standard 

requirements for reliability, availability, 

maintainability as well as performance. 

The new generation of spacecrafts will be 

empowered with new capabilities to generate new 

products for remote sensing, imaging with much higher 

data rate and volume, such as the next generation of the 

geostationary operational environmental satellites[3]. 

The ground system and operations will become more 

complex and demanding, and process spacecraft data at 

the daily scale of tera-bytes or even higher in the 

future. Autonomic computing for spacecraft ground 

systems will not only provide the long term solution to 

confront the increasing complexity, but also bring  

short term benefits to the current spacecraft operations 

as well: it increases the system reliability and security, 

enables automation and autonomy at the system level, 

and thus reduces the costs for system maintenance and 

operations.  

An autonomic computing system generally consists 

of managed elements and autonomic elements. The 

managed element is generally a functional unit, a 

hardware or software system that provides certain 

services. The autonomic element captures the signals 

from the managed elements on its health and 

operational status, analyzes the data based on the 

existing knowledge and high level objectives from 
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management, and plans and carries out the appropriate 

actions for self configuring, self healing, self 

protection, and self optimization.  There are 

considerable scientific and engineering challenges to 

bring the concept into the reality. For spacecraft 

ground systems, autonomic computing requires an 

architectural solution to create an autonomic 

computing environment, and tools or middlewares to 

provide autonomic computing services. The 

architectural solution for autonomic computing should 

provide an open standard for the interfaces and 

protocols for the interactions and communications 

among the components in a heterogeneous 

environment. It should also enable self awareness, 

which should make the detailed knowledge of its 

components, operational status, as well as other 

necessary information available for the decision 

making process in the autonomic elements. The 

autonomic computing tool should be scalable, efficient, 

flexible and extensible to provide core services at the 

system level. The focus of this paper is to present the 

ongoing efforts at Goddard Space Flight Center 

(GSFC) to define a reference architecture referred to as 

the GMSEC architecture[4]  and to develop a GMSEC 

component, CAT, for providing autonomic computing 

services by Lockheed Martin Space Operations. 

 

2. GMSEC architecture 
 

The GMSEC architecture is a solution for 

spacecraft ground systems that facilitates new and cost 

effective approaches for system development, 

integration, testing, and operations to meet the growing 

challenges in the current and future NASA missions.  

The main concept of the GMSEC architecture is 

component based with a centralized message oriented 

middleware (MOM) shown in Figure 1. MOM 

provides the message services common to all system 

components, such as the security, message filtering and 

routing, and guaranteed delivery. The message services 

include the point-to-point and multicast services 

through the request/response the publish/subscribe 

schemes. The applications or components 

communicate with each other through their interface to 

MOM using messages. Each message includes a 

specific subject name that categorizes the message. 

Component publish message by subject categories. The 

components receive messages by providing the subject 

names to the message middleware. The message 

delivery mechanism by MOM can be either 

synchronous or asynchronous.  

The GMSEC architecture represents a natural 

extension from the existing ground systems, in which 

the interfaces and communications among the 

subsystems and processes are implemented through the 

TCP/IP socket connections that are mostly system 

dependent and proprietary.  Using the middleware 

solution to provide the services common to all 

subsystems or component enables the component 

development to concentrate on its business logic. The 

divide and conquer strategy simplifies both 

components and middleware developments.  It also 

provides the flexibility to allow missions to choose 

components and middleware that meet their own 

specific requirements. 

 

 
Figure 1. GMSEC architecture for spacecraft 

ground system 

 

The GMSEC architecture standardizes the interfaces 

and protocols for the message deliveries through 

MOM, and the standard is open and non-proprietary. 

The experience in the Java enterprise computing 

standard, J2EE, that defines an open standard interface 

between the container and enterprise application 

components shows that the open standard facilitates the 

technological innovations and infusions in the market 

place for both component and middleware 

developments, which leads to the rapid development, 

deployment, and testing of enterprise applications at 

much lower cost. The granularity of the coupling 

among components under the GMSEC architecture is 

higher than that in the standard component 

architecture, which leads to considerably simplified 

component integration and testing.  

The GMSEC standardization efforts are two fold: 

the open standard API for the programming interface 

between the component and MOM that allows the 

point-to-point and multi-cast communications with 

certain levels of the quality-of-service, and the 

standard schema for event message, telemetry, 

directive, data values, data transfer, and other types of 

messages. The GMSEC standard event message 

definition schema generally consists of a message 

header and a content section, which has gone beyond 

the traditional “time, type, fixed length text string” 

format, and provides much more content to allow new 



system monitoring capabilities. Key message 

definitions and reference implementations of 

programming API in some commonly used 

programming languages, such as Java, C++, and Perl, 

have been developed and released [4]. The reference 

implementation of the programming API converts 

proprietary interfaces of the several MOMs on the 

market into the open standard interfaces on Windows, 

Linux, and UNIX operating systems.  

To provide an autonomic computing environment at 

the system level, the GMSEC architecture has gone 

beyond the standardization of the interfaces and the 

message formats by establishing requirements for 

GMSEC compliant components: every component 

under the GMSEC architecture should be able to 1) 

publish event messages of its own operational status 

for real time monitoring and archiving, and 2) accept 

and process GMSEC standard directive messages. 

Components within the system may exercise discretion 

in what event messages they publish and what services 

they provide based on number of attributes, including 

the source and authorization of requestor. The 

expanded message definition as well as the real time 

event log that covers every component in the system 

enables system level monitoring and provides a very 

broad context to analyze the system performance. It 

also provides a very rich environment for data analysis 

and data mining to identify the correlations among the 

system components and system trends, and to 

anticipate the potential system problems. These 

requirements lead to a self-aware and interactive 

system that provides a standard for autonomic elements 

to interact with the managed elements, and enables the 

development of autonomic computing tools    

 

3. CAT Development under the GMSEC 

architecture 
 

CAT is a component under the GMSEC architecture 

with standard interfaces to MOM, and also a part of 

spacecraft ground systems. Thus, it should meet the 

general requirements for a component in both GMSEC 

architecture and ground systems.  These requirements 

are: the flexibility to manage any GMSEC compliant 

component, the scalability to monitor a system with 

many subsystems and processes, the extensibility to 

incorporate additional capabilities in the future, and the 

reliability and efficiency in a real time environment. In 

addition, CAT should also be able to incorporate the 

knowledge accumulated in the existing spacecraft 

operation, which is particularly important for the 

upgraded ground systems. This requires rigorous 

testing of autonomic computing tools. GMSEC has 

developed a laboratory for testing and simulating 

GMSEC compliant components, which primarily tests 

the robustness, reliability and performance of a 

GMSEC component. The event analysis and 

monitoring tool, GMSEC Reusable Event Analyses 

Toolkit (GREAT)[5], has been developed for real time 

event monitoring, archiving, report generation, and 

event message generation for simulation and testing 

purposes. GREAT provides the necessary support to 

test and monitor the correctness of the decision making 

process in an autonomic computing, real time 

environment.  

 

3.1. The CAT architecture 
 

To meet these requirements, the system design and 

implementation of CAT are based on the best 

engineering practices and lessons learned in 

developing component and middleware solutions for 

both spacecraft ground systems and enterprise 

applications. CAT is implemented with Java and the 

latest J2EE technologies to ensure the portability 

across the operating systems and rapid development 

from significant code re-use.  

      A layered approach for the CAT architecture is 

shown in Figure 2, which consists of three layers: the 

network layer, the service layer, and the configuration 

layer. The network layer captures all messages in 

MOM, and forwards them to the service layer. At the 

same time, the network layer also accepts the actions 

generated by the autonomic agents in the service layer, 

and publishes them as GMSEC standard messages to 

MOM. The message could be a directive message to a 

specific component to change its behavior, or simply 

an event log message for monitoring, archiving and 

debugging purposes. 

Network Layer

Managed System

Configuration Layer

Service Layer (Agent Pool)

. . .Agent Agent Agent Agent. . . . . .

Monitor Class Monitor Class

 
Figure 2 CAT architecture 

 

The configuration layer is an XML file that can be 

configured during deployment or integration. The 

configuration file contains the domain specific 



information, rules and policies, as well as the 

knowledge base for a managed element. It also 

includes the necessary network information for the 

network layer to interface with the message 

middleware. The configuration management tool has 

also been developed as part of CAT to manage, 

modify, and create the configuration file through a 

GUI. The configuration file provides the inputs for the 

autonomic agents in the service layer that controls life 

cycles, internal states, and the decision making 

processes of autonomic agents, and determines the 

number of the autonomic elements at run-time. The 

configuration setup approach for the domain specific 

layer allows the operation personnel and management 

to setup the decision making rules based on their 

accumulated knowledge in spacecraft operations, 

which is important for upgrading the existing 

spacecraft ground systems. The schema for CAT 

configuration will be discussed in detail in the next 

section.  

The service layer is a component container, referred 

to as the agent pool. The components within an agent 

pool are monitor classes. A monitor class manages a 

service provided by components or entities within a 

system, and contains a group of autonomic agents that 

have the same lifecycles, rules for data analyses and 

decision making, and actions associated with decisions. 

Each agent within a monitor class manages a service 

provided by a single component or entity, has its own 

internal state, and runs as an independent thread.   

The monitor class manages the lifecycles of its 

agents and provides the filtering capability to route the 

relevant agent in the monitor class. The agent pool 

provides mechanisms for fine grained collaboration 

among the agents within the same agent pool.  

Life cycle management is very important in 

maintaining the efficiency of CAT and ensuring its 

scalability. An autonomic agent is created dynamically 

by an incoming message that meets certain criteria, and 

it can be terminated if the internal states of an agent 

satisfy a set of rules. Once an agent is terminated, it is 

removed from the agent pool by a pre-defined action. 

The life time for some agent could be very short, such 

as the agents that monitor the limit violations of 

spacecraft mnemonics, while the agent for monitoring 

of the health and safety of a component in a ground 

system remains active as long as the corresponding 

component remains active. 

Message filtering and routing ensure that the 

autonomic agents only process the relevant incoming 

messages from their managed elements. This is 

particularly important since the message traffic in the 

middleware can be heavy in real time, and most of the 

messages in the traffic are not relevant for a particular 

agent in the agent pool.  

CAT provides the mechanisms for both fine and 

coarse grained collaborations among the agents. The 

fine grained collaboration enables a direct access of the 

internal states of one agent by the other agent within 

the same agent pool, while the coarse grained 

collaboration among agents in the same agent pool or 

different agent pools is achieved by exchanging the 

information through the event message publishing and 

monitoring scheme. For example, one agent could 

publish its own internal states to the message 

middleware as the event log message once its internal 

states have been updated, while the other agent could 

set up the configuration to monitor these states, and 

extract the data accordingly. The agent collaborations 

are very important at the system level monitoring to 

identify the correlations among the different 

subsystems, which provide comprehensive information 

on the system health and performance. For example, 

the power level of a spacecraft depends on whether the 

spacecraft is facing the sun or in the dark, as 

spacecrafts generally use solar power. The 

collaboration between the agent that monitors the 

power level on the spacecraft instruments and the agent 

that monitors the positions of the spacecraft in the 

spacecraft flight dynamics subsystem will provide 

complete contextual information on the spacecraft 

power status. 

 

3.2. Data Processing within an Autonomic 

Agent  
 

The data processing and decision making processes 

in an autonomic element generally have the local and 

global control loops[2] based on Ashby’s Ultra-stable 

system. The local loop handles known environmental 

states based on the knowledge embedded in the 

elements, which maps the environmental states to its 

behaviors. When an environmental state changes, the 

autonomic element will automatically generate actions 

based on the existing knowledge and policies. The 

global loop can handle the unknown environment 

states. It generally involves machine learning, artificial 

intelligence and/or human intervention, which in turn 

generates the necessary knowledge base for the local 

loop. The same architecture has been used in the 

Learning Classifier Systems proposed by Holland[6]. 

One could create agents specifically dedicated to both 

local and global loops in CAT. The agent collaboration 

allows local agents to access the internal states of the 

global agents to modify the existing rules and policies. 

The basis of the data processing and decision 

making in CAT is a standard representation, on which 

the data analyses and decision making can be 

performed. Generally, a set of attributes is used to 



represent the internal states of an autonomic agent, 

which can have integer, float, Boolean, and String 

types. The attributes can also have the customized time 

type, which are used regularly in a real time 

environment. The attributes for a given agent are 

classified into two groups: the original attributes { }o

iα  

and derived attributes { }kd

jα . The original attributes 

are extracted directly from the incoming messages 

using the pattern matching technology, and the values 

of derived attributes { }kd

jα  are updated by 

{ } { } { }( )kd

j

o

i

kd

j f ααα ,
1 =+

 

where the integer k represents the kth iteration of the 

update triggered by the incoming messages with 

specified patterns. The function { } { }( )kd

j

o

if αα , could 

be a simple mathematical expression, such as the 

trigonometry functions or exponential functions, or it 

could also be a routine for machine learning 

algorithms, such as the decision tree algorithm, which 

depends on whether the routine or function is in the 

CAT data processing library. Currently, a 

mathematical library containing some basic 

mathematical functions is included in CAT. This 

framework could be easily extended to include libraries 

containing the advanced machine learning algorithms, 

adaptive algorithms, or an inference engine. 

Both derived attributes { }kd

jα and original 

attributes { }o

iα  represent the actionable data, on which 

an informed decision could be made.  The decisions 

made in an autonomic agent are based on rules having 

both original attributes and derived attributes, and each 

rule is associated with several actions. There could be 

several rules for a given agent that correspond different 

internal states, which may require different responses 

or actions. The rule based autonomic agents are widely 

used for monitoring and steering scientific 

applications[7]. CAT provides the capability to 

perform additional data processing and analysis so that 

the data would be actionable, and the informed 

decision can be made based on the management rules 

and policies.  

Figure 3 shows the data processing and decision 

making process in CAT.  It starts with the extraction of 

the data from the fields of the incoming messages 

using the pattern matching technology to generate the 

original attributes. The incoming messages with 

specified patterns may also trigger the update of the 

values of derived attributes through the user defined 

rules, the mathematical manipulation, or other data 

analysis routines. The combination of the original and 

derived attributes forms the actionable data. The 

decision making combines the actionable data with the 

management policies or rules, which leads to the 

actions sent to the network layer.  
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Figure 3. Data processing in CAT 

 

3.3. The Configuration Schema 
 

The configuration file defines data processing, 

decision making, and the lifecycle of a particular agent. 

The basic unit for CAT configuration is the monitor 

class, which defines a group of autonomic agents that 

manage the same service provided by different 

components. There could be as many monitor classes 

for a configuration as needed.  A monitor class 

contains the following main sub-elements: 

• The constraint element provides the filtering 

mechanism for an agent pool to process only the 

messages relevant to the attributes defined in the 

monitor class, and also ensures the messages to be 

processed come from the managed elements. This 

element is an optional feature to improve the 

processing efficiency. 

• The attribute element defines both original 

attributes and the derived attributes. The element 

defines how the values of original attributes are 

obtained from the incoming messages. 

• The monitor trigger element defines the rules for 

the agent pool to create an autonomic agent. It 

represents a logical relationship between the 

attribute value being extracted from the incoming 

message and the critical value defined by the user.  

• The primary key is used to uniquely identify an 

autonomic agent within the agent pool, and it is 

created by combining the values of the original 

attributes in an agent. There is one-to-many 

relationships between monitor classes and 

autonomic agents, since there may be several 



components that provide the same services.  

• The action element provides the information 

necessary for autonomic agents to send either 

directive messages, or log messages to the 

specified destination through the message 

middleware, which is defined by the GMSEC 

standard.  

• The rule element defines a set of conditions for 

both original and derived attributes and action 

names that link to the action definition. The 

conditions are defined as the logical expressions 

for the relationship between the attributes 

extracted and the critical values defined by the 

user.  

• The function element defines how a derived 

attribute is updated from the existing attributes 

through a combination of mathematical 

expressions or an existing algorithm and rules.  

In practice, not all elements listed here are needed 

for a given monitor class. If there is a one-to-one 

correspondence between the monitor class and an 

autonomic agent, the primary key entry is not needed. 

The monitor trigger element is not needed if the 

message has only one pattern monitored by monitor 

class. For a simple monitor that requires no data 

processing, the equation element is not needed as well. 

For example, the configuration for a monitor class 

that monitors the heartbeat messages from components 

is shown in Figure 4. The availability of the mission 

critical component for continuous operations on 24/7 

basis is one of the crucial requirements for spacecraft 

ground systems. The subject and class constraints 

provide the filtering mechanism, which identify the 

messages with the specified patterns in their subject 

field and specified subfields to be processed by the 

agents. The two sub-elements within the same class 

constraint element have an AND relationship: if both 

patterns appear in their specified subfields of the 

incoming message at the same time, the requirements 

for processing the message are satisfied. The schema 

allows more than one class constraint elements. The 

class constraint elements in a monitor class have an OR 

relationship. The primary key for corresponding 

autonomic agents is the component name that appears 

in the COMPONET subfield of heartbeat messages. 

When an agent pool receives a heartbeat message from 

a new component, it automatically creates a new agent 

with the new primary key to monitor its heartbeat 

message. The requirement sub-element in the rule 

elements represents a logical expression; if the time 

since receiving the last heartbeat message is larger than 

5 seconds, the action with the name GIVE_UP will be 

executed. The time variable t_sinceReceivingLastMsg 

is an internal attribute, which automatically resets 

when a new heartbeat message from the same 

component is received. The GIVE_UP action in the 

action element identifies the type of message as a 

GMSEC event log message, the destination of the 

message, and the entries in the specified message 

fields. The expressions ${attribute_name} will be 

replaced with the values of the attributes in the agent 

when the GMSEC log message is generated. The 

<monitor-class name="HeartBeatMonitor" enabled = "true"> 

<subject-constraint> 

<requirement attribute="SUBJECT" operator="~" value=".*C2CX.*"/> 

</subject-constraint> 

<class-constraint> 

<requirement attribute="MESSAGE-SUBTYPE" operator="~" value=".*C2CX.*"/> 

<requirement attribute="COMPONENT" operator="!~" value="CAT"/> 

</class-constraint> 

<primary-key> 

<key order="0">component</key> 

</primary-key> 

<attributes> 

<attribute name="component” type="String” field="COMPONENT" pattern="(.*)"/> 

</attributes> 

<rule name=“GIVE_UP" enabled=“true"> 

<act>GIVE_UP</act> 

<requirement attribute="t_sinceReceivingLastMsg" operator=">" value="5"/> 

</rule> 

<action name="GIVE_UP"> 

<destination type="LOG">GMSEC.DEMO.LOG.CAT</destination> 

<text field="SEVERITY">4</text> 

<text field="MSG-TEXT">frequency=${t_sinceReceivingLastMsg} component=${component} Heart beat missing </text> 

<text field="COMPONENT">CAT</text> 

</action> 

</monitor-class> 

Figure 4. The configuration for a heartbeat monitor 



schema allows more than one action to be specified in 

a given rule. In practice, the actions include the 

directive to be sent to a backup component for the 

failover procedure, the log message, and an exit action 

that terminates the agent and removes it from the agent 

pool.  

The heartbeat monitor class listed here is very 

simple and generic, but at the same time, very 

powerful. The agent pool manages the heartbeat 

autonomic agents for the whole system and is adaptive 

to the changing environment: it automatically creates 

an agent when the heartbeat message from a new 

component is detected, and takes the failover action 

and removes the agent from the agent pool in case of a 

component failure. As the failed component is 

generally off-line, the corresponding agent is no longer 

needed. 

 

4. Autonomic Computing in Spacecraft 

Operations 
 

Both the GMSEC architecture and the autonomic 

tool, CAT, have been deployed in many NASA 

missions for increasing automation and autonomy, and 

reducing the operational cost, and have become a 

standard for the ground systems in the current and 

future NASA missions.  

The autonomic computing solution for ground 

systems is used to replace operations personnel for 

monitoring and steering spacecraft operations. The 

self-configuring and self-healing capabilities of 

autonomic elements are crucial for fully autonomous or 

“lights out” operations. In the upgraded ground system 

for the Tropical Rainfall Measuring Mission (TRMM) 

spacecraft, CAT is used to monitor the healthy and 

safety data from the spacecraft and to inform the 

management if an error is detected, which may 

indicates a failure of either hardware or software on the 

spacecraft. Generally, there are hundreds or even 

thousands of parameters and attributes referred to as 

mnemonics that describe the health and safety of each 

hardware/software item on a spacecraft. Creating one 

agent for each mnemonic is simply not practical and 

inefficient; the combination of agents and a generic 

monitor class has reduced 180 rules to around 40 rules 

in CAT, and enables much more efficient processing in 

real-time. CAT is also used to monitor the heartbeat for 

the mission critical components and to initiate a 

failover operation in case of a component failure.  

As users get more familiar with CAT and its 

capabilities, more sophisticated scenarios for 

increasing the automation in their operations are being 

implemented. In the effort for upgrading the ground 

system for the Earth Observing System (EOS) satellite 

Terra, CAT is providing the decision making for 

configuring the ground system components for data 

acquisition, command and control before, during and 

after the contact between the satellite and the ground 

stations. In particular, CAT will be performing the 

tasks normally performed by operators during the 

execution of procedures. Currently, Terra procedure 

executions that configure the ground equipment for the 

contact between the satellite and ground stations 

require operator inputs at various decision points 

during the execution process. These decision points 

will be monitored and executed by CAT in the new 

ground system. The same services for self healing in 

the TRMM ground system will also be provided in 

Terra. 

The actionable data obtained through data analysis 

in an autonomic agent provides the basis for decision 

making not only for the autonomic agents, but also for 

the management as well. One could configure an agent 

that uses the data analysis capability to monitor system 

wide events for statistical collections and other useful 

data, and these data can be archived by defining an 

action to send a directive message to the archive 

component in the system. This is called business 

intelligence in enterprise applications. The summary 

report for spacecraft and ground activities can be 

generated automatically for management.  

The architectural solution and autonomic computing 

concept have also been used in the ground system for 

Small Explore (SMEX) mission, which controls a 

constellation of small scientific spacecrafts. The 

upgrade of the ground systems for other EOS satellites, 

Aqua, and Aura missions, is planned in the near future. 

The GMSEC architecture and autonomic computing 

for the ground systems in the new missions are also 

planned. 

 

5. Summary: increasing autonomic 

maturity 
 

The architectural blueprint for autonomic 

computing by IBM proposed an autonomic computing 

maturity model in 5 levels[8]:  1) basic, 2) managed,  

3) predictive, 4) adaptive, and 5) autonomic. The 

capabilities provided by CAT under the GMSEC 

architecture suggest that the autonomic maturity for the 

current solution is between the predictive and adaptive 

levels. Increasing the autonomic maturity requires the 

improvements in both the GMSEC architecture and 

CAT. The current GMSEC architecture does not go far 

enough in the standardization process to enable 

autonomic computing with a higher maturity.  

To increase the autonomic maturity at the 

architectural level, the GMSEC architecture should be 



upgraded to the service-oriented GMSEC architecture 

(SOGA). The component re-use paradigm in the 

current GMSEC architecture will be replaced by the 

service re-use paradigm. A service received from one 

component is obtained through a locating, negotiating, 

and leasing procedure, which is called “find bind and 

execute” scheme. Thus, the service re-use enables 

completely plug and play components. 

The open standard for the message delivery through 

the middleware under the GMSEC architecture is a 

very important step toward SOGA. To upgrade 

GMSEC architecture into a SOGA, new standard 

ontology and protocol are needed for services, quality 

of service, service discovery, and service contract in 

the GMSEC standard messages. In addition, a service 

registry based on these standards needs to be 

developed as part of SOGA.  

To ensure system awareness and an interactive 

environment for autonomic computing, the common 

attributes that represents the run-time properties of a 

service need to be defined and standardized. Thus, 

SOGA should require that a compliant component for a 

given service publish these attributes as the standard 

event messages when the values of these attribute 

changes, and process directives that can change these 

run-time properties. Both messages for publishing 

these attributes and directive messages for changing 

these attributes in a component should be standardized 

as well. 

The monitor classes defined in CAT are autonomic 

elements that manage services. The same service in 

SOGA can be provided by several components with 

different qualities of service. Considering the heartbeat 

monitor class example, publishing the heartbeat 

message by each component in a system could be 

regarded as a universal service in a SOGA 

environment. Thus, the monitor class manages the 

heartbeat service regardless of the specifics of a 

component, and adapts to the changing environment. 

Because the heartbeat service in the GMSEC 

architecture is a standard, the same configuration can 

be used in any GMSEC compliant system, which 

makes it more adaptive, generic, and portable. The 

standardized service in SOGA will standardize monitor 

classes as services, which allows them to be re-used 

from one mission to another without significant 

changes. 

The standardized event and directive messages for 

attributes in a service make it possible to define 

attributes at a system level for its overall performance, 

which could be functions of the attributes of different 

services in a system. Therefore, an optimal 

performance boundary could be specified by 

management or an administrator as overall objectives. 

The machine learning algorithm and optimization 

algorithm could be introduced on this platform for 

establishing the relationship between the optimal 

performance boundary that could generally be multi-

objective and the attributes of services. When a new 

service component is connected with the message 

middleware, the autonomic agent could be created 

automatically, configure the service attributes based on 

the optimal boundary. 

There are still considerable scientific and 

engineering challenges ahead for an autonomic 

computing system. The GMSEC architecture and the 

autonomic computing tool, CAT, presented here are an 

important and significant step toward an autonomic 

computing solution for spacecraft ground systems. 

This approach may hopefully provide some useful 

lessons in developing autonomic computing solutions 

for other enterprise application systems. 
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