
Autonomic Computing for Spacecraft Ground Systems

Zhenping Li, Cetin Savkli

Lockheed Martin Space Operations

7500 Greenway Center, Suite 200

Greenbelt, MD 20770

Zhenping.Li@lmco.com

Abstract

Autonomic computing for spacecraft ground

systems increases the system reliability and reduces

the cost of spacecraft operations and software

maintenance. In this paper, we present an autonomic

computing solution for spacecraft ground systems at

NASA Goddard Space Flight Center (GSFC), which

consists of an open standard for the message oriented

architecture referred to as GMSEC architecture, the

GSFC Mission Services Evolution Center, and an

autonomic computing tool, Criteria Action Table

(CAT). This solution has been used in many upgraded

ground systems for NASA’s missions, and provides a

framework for developing solutions with higher

autonomic maturity.

1. Introduction

The concept of autonomic computing is the ability

of computing systems to manage themselves based on

the high level objectives from the management. It is

inspired by the human autonomic system that

maintains an optimal internal state through self

regulation, while adapting to the changing

environment. The vision[1] of autonomic computing is

necessitated by the explosive growth in network

applications and information services that are

increasingly complex, dynamic, and heterogeneous,

which have led to profound changes in almost every

aspect of our lives. Using the technology, such as the

autonomic computing, to manage technologies will be

crucial to meet the challenges of the increasing

complexities of computing systems that may reach the

limit of the human capability to manage and maintain

in the near future, especially when systems require a

timely and decisive response to the demands of rapidly

changing environments. There have been

considerable efforts in both industry and the academic

world to investigate autonomic computing concepts,

architecture as well as the applications [2].

Spacecraft ground systems provide an important

testing ground for the autonomic computing concept. A

spacecraft ground system is complex: it involves many

processes and subsystems working together, such as

the flight dynamics subsystem, data processing

subsystem, scheduling and planning subsystem, and

command, control and communication subsystems. It

is distributed: the subsystems and processes with a

system are generally in different geographical locations

and interacting and communicating with each other

through networks. It is heterogeneous: a ground

system generally consists of main frame or legacy

systems for data processing and product generation and

workstations for command, control, and commutations

on different platforms and operating systems. It also

runs on real time, which has high standard

requirements for reliability, availability,

maintainability as well as performance.

The new generation of spacecrafts will be

empowered with new capabilities to generate new

products for remote sensing, imaging with much higher

data rate and volume, such as the next generation of the

geostationary operational environmental satellites[3].

The ground system and operations will become more

complex and demanding, and process spacecraft data at

the daily scale of tera-bytes or even higher in the

future. Autonomic computing for spacecraft ground

systems will not only provide the long term solution to

confront the increasing complexity, but also bring

short term benefits to the current spacecraft operations

as well: it increases the system reliability and security,

enables automation and autonomy at the system level,

and thus reduces the costs for system maintenance and

operations.

An autonomic computing system generally consists

of managed elements and autonomic elements. The

managed element is generally a functional unit, a

hardware or software system that provides certain

services. The autonomic element captures the signals

from the managed elements on its health and

operational status, analyzes the data based on the

existing knowledge and high level objectives from

klittle
Note
#34

management, and plans and carries out the appropriate

actions for self configuring, self healing, self

protection, and self optimization. There are

considerable scientific and engineering challenges to

bring the concept into the reality. For spacecraft

ground systems, autonomic computing requires an

architectural solution to create an autonomic

computing environment, and tools or middlewares to

provide autonomic computing services. The

architectural solution for autonomic computing should

provide an open standard for the interfaces and

protocols for the interactions and communications

among the components in a heterogeneous

environment. It should also enable self awareness,

which should make the detailed knowledge of its

components, operational status, as well as other

necessary information available for the decision

making process in the autonomic elements. The

autonomic computing tool should be scalable, efficient,

flexible and extensible to provide core services at the

system level. The focus of this paper is to present the

ongoing efforts at Goddard Space Flight Center

(GSFC) to define a reference architecture referred to as

the GMSEC architecture[4] and to develop a GMSEC

component, CAT, for providing autonomic computing

services by Lockheed Martin Space Operations.

2. GMSEC architecture

The GMSEC architecture is a solution for

spacecraft ground systems that facilitates new and cost

effective approaches for system development,

integration, testing, and operations to meet the growing

challenges in the current and future NASA missions.

The main concept of the GMSEC architecture is

component based with a centralized message oriented

middleware (MOM) shown in Figure 1. MOM

provides the message services common to all system

components, such as the security, message filtering and

routing, and guaranteed delivery. The message services

include the point-to-point and multicast services

through the request/response the publish/subscribe

schemes. The applications or components

communicate with each other through their interface to

MOM using messages. Each message includes a

specific subject name that categorizes the message.

Component publish message by subject categories. The

components receive messages by providing the subject

names to the message middleware. The message

delivery mechanism by MOM can be either

synchronous or asynchronous.

The GMSEC architecture represents a natural

extension from the existing ground systems, in which

the interfaces and communications among the

subsystems and processes are implemented through the

TCP/IP socket connections that are mostly system

dependent and proprietary. Using the middleware

solution to provide the services common to all

subsystems or component enables the component

development to concentrate on its business logic. The

divide and conquer strategy simplifies both

components and middleware developments. It also

provides the flexibility to allow missions to choose

components and middleware that meet their own

specific requirements.

Figure 1. GMSEC architecture for spacecraft

ground system

The GMSEC architecture standardizes the interfaces

and protocols for the message deliveries through

MOM, and the standard is open and non-proprietary.

The experience in the Java enterprise computing

standard, J2EE, that defines an open standard interface

between the container and enterprise application

components shows that the open standard facilitates the

technological innovations and infusions in the market

place for both component and middleware

developments, which leads to the rapid development,

deployment, and testing of enterprise applications at

much lower cost. The granularity of the coupling

among components under the GMSEC architecture is

higher than that in the standard component

architecture, which leads to considerably simplified

component integration and testing.

The GMSEC standardization efforts are two fold:

the open standard API for the programming interface

between the component and MOM that allows the

point-to-point and multi-cast communications with

certain levels of the quality-of-service, and the

standard schema for event message, telemetry,

directive, data values, data transfer, and other types of

messages. The GMSEC standard event message

definition schema generally consists of a message

header and a content section, which has gone beyond

the traditional “time, type, fixed length text string”

format, and provides much more content to allow new

system monitoring capabilities. Key message

definitions and reference implementations of

programming API in some commonly used

programming languages, such as Java, C++, and Perl,

have been developed and released [4]. The reference

implementation of the programming API converts

proprietary interfaces of the several MOMs on the

market into the open standard interfaces on Windows,

Linux, and UNIX operating systems.

To provide an autonomic computing environment at

the system level, the GMSEC architecture has gone

beyond the standardization of the interfaces and the

message formats by establishing requirements for

GMSEC compliant components: every component

under the GMSEC architecture should be able to 1)

publish event messages of its own operational status

for real time monitoring and archiving, and 2) accept

and process GMSEC standard directive messages.

Components within the system may exercise discretion

in what event messages they publish and what services

they provide based on number of attributes, including

the source and authorization of requestor. The

expanded message definition as well as the real time

event log that covers every component in the system

enables system level monitoring and provides a very

broad context to analyze the system performance. It

also provides a very rich environment for data analysis

and data mining to identify the correlations among the

system components and system trends, and to

anticipate the potential system problems. These

requirements lead to a self-aware and interactive

system that provides a standard for autonomic elements

to interact with the managed elements, and enables the

development of autonomic computing tools

3. CAT Development under the GMSEC

architecture

CAT is a component under the GMSEC architecture

with standard interfaces to MOM, and also a part of

spacecraft ground systems. Thus, it should meet the

general requirements for a component in both GMSEC

architecture and ground systems. These requirements

are: the flexibility to manage any GMSEC compliant

component, the scalability to monitor a system with

many subsystems and processes, the extensibility to

incorporate additional capabilities in the future, and the

reliability and efficiency in a real time environment. In

addition, CAT should also be able to incorporate the

knowledge accumulated in the existing spacecraft

operation, which is particularly important for the

upgraded ground systems. This requires rigorous

testing of autonomic computing tools. GMSEC has

developed a laboratory for testing and simulating

GMSEC compliant components, which primarily tests

the robustness, reliability and performance of a

GMSEC component. The event analysis and

monitoring tool, GMSEC Reusable Event Analyses

Toolkit (GREAT)[5], has been developed for real time

event monitoring, archiving, report generation, and

event message generation for simulation and testing

purposes. GREAT provides the necessary support to

test and monitor the correctness of the decision making

process in an autonomic computing, real time

environment.

3.1. The CAT architecture

To meet these requirements, the system design and

implementation of CAT are based on the best

engineering practices and lessons learned in

developing component and middleware solutions for

both spacecraft ground systems and enterprise

applications. CAT is implemented with Java and the

latest J2EE technologies to ensure the portability

across the operating systems and rapid development

from significant code re-use.

 A layered approach for the CAT architecture is

shown in Figure 2, which consists of three layers: the

network layer, the service layer, and the configuration

layer. The network layer captures all messages in

MOM, and forwards them to the service layer. At the

same time, the network layer also accepts the actions

generated by the autonomic agents in the service layer,

and publishes them as GMSEC standard messages to

MOM. The message could be a directive message to a

specific component to change its behavior, or simply

an event log message for monitoring, archiving and

debugging purposes.

Network Layer

Managed System

Configuration Layer

Service Layer (Agent Pool)

. . .Agent Agent Agent Agent.

Monitor Class Monitor Class

Figure 2 CAT architecture

The configuration layer is an XML file that can be

configured during deployment or integration. The

configuration file contains the domain specific

information, rules and policies, as well as the

knowledge base for a managed element. It also

includes the necessary network information for the

network layer to interface with the message

middleware. The configuration management tool has

also been developed as part of CAT to manage,

modify, and create the configuration file through a

GUI. The configuration file provides the inputs for the

autonomic agents in the service layer that controls life

cycles, internal states, and the decision making

processes of autonomic agents, and determines the

number of the autonomic elements at run-time. The

configuration setup approach for the domain specific

layer allows the operation personnel and management

to setup the decision making rules based on their

accumulated knowledge in spacecraft operations,

which is important for upgrading the existing

spacecraft ground systems. The schema for CAT

configuration will be discussed in detail in the next

section.

The service layer is a component container, referred

to as the agent pool. The components within an agent

pool are monitor classes. A monitor class manages a

service provided by components or entities within a

system, and contains a group of autonomic agents that

have the same lifecycles, rules for data analyses and

decision making, and actions associated with decisions.

Each agent within a monitor class manages a service

provided by a single component or entity, has its own

internal state, and runs as an independent thread.

The monitor class manages the lifecycles of its

agents and provides the filtering capability to route the

relevant agent in the monitor class. The agent pool

provides mechanisms for fine grained collaboration

among the agents within the same agent pool.

Life cycle management is very important in

maintaining the efficiency of CAT and ensuring its

scalability. An autonomic agent is created dynamically

by an incoming message that meets certain criteria, and

it can be terminated if the internal states of an agent

satisfy a set of rules. Once an agent is terminated, it is

removed from the agent pool by a pre-defined action.

The life time for some agent could be very short, such

as the agents that monitor the limit violations of

spacecraft mnemonics, while the agent for monitoring

of the health and safety of a component in a ground

system remains active as long as the corresponding

component remains active.

Message filtering and routing ensure that the

autonomic agents only process the relevant incoming

messages from their managed elements. This is

particularly important since the message traffic in the

middleware can be heavy in real time, and most of the

messages in the traffic are not relevant for a particular

agent in the agent pool.

CAT provides the mechanisms for both fine and

coarse grained collaborations among the agents. The

fine grained collaboration enables a direct access of the

internal states of one agent by the other agent within

the same agent pool, while the coarse grained

collaboration among agents in the same agent pool or

different agent pools is achieved by exchanging the

information through the event message publishing and

monitoring scheme. For example, one agent could

publish its own internal states to the message

middleware as the event log message once its internal

states have been updated, while the other agent could

set up the configuration to monitor these states, and

extract the data accordingly. The agent collaborations

are very important at the system level monitoring to

identify the correlations among the different

subsystems, which provide comprehensive information

on the system health and performance. For example,

the power level of a spacecraft depends on whether the

spacecraft is facing the sun or in the dark, as

spacecrafts generally use solar power. The

collaboration between the agent that monitors the

power level on the spacecraft instruments and the agent

that monitors the positions of the spacecraft in the

spacecraft flight dynamics subsystem will provide

complete contextual information on the spacecraft

power status.

3.2. Data Processing within an Autonomic

Agent

The data processing and decision making processes

in an autonomic element generally have the local and

global control loops[2] based on Ashby’s Ultra-stable

system. The local loop handles known environmental

states based on the knowledge embedded in the

elements, which maps the environmental states to its

behaviors. When an environmental state changes, the

autonomic element will automatically generate actions

based on the existing knowledge and policies. The

global loop can handle the unknown environment

states. It generally involves machine learning, artificial

intelligence and/or human intervention, which in turn

generates the necessary knowledge base for the local

loop. The same architecture has been used in the

Learning Classifier Systems proposed by Holland[6].

One could create agents specifically dedicated to both

local and global loops in CAT. The agent collaboration

allows local agents to access the internal states of the

global agents to modify the existing rules and policies.

The basis of the data processing and decision

making in CAT is a standard representation, on which

the data analyses and decision making can be

performed. Generally, a set of attributes is used to

represent the internal states of an autonomic agent,

which can have integer, float, Boolean, and String

types. The attributes can also have the customized time

type, which are used regularly in a real time

environment. The attributes for a given agent are

classified into two groups: the original attributes { }o

iα

and derived attributes { }kd

jα . The original attributes

are extracted directly from the incoming messages

using the pattern matching technology, and the values

of derived attributes { }kd

jα are updated by

{ } { } { }()kd

j

o

i

kd

j f ααα ,
1 =+

where the integer k represents the kth iteration of the

update triggered by the incoming messages with

specified patterns. The function { } { }()kd

j

o

if αα , could

be a simple mathematical expression, such as the

trigonometry functions or exponential functions, or it

could also be a routine for machine learning

algorithms, such as the decision tree algorithm, which

depends on whether the routine or function is in the

CAT data processing library. Currently, a

mathematical library containing some basic

mathematical functions is included in CAT. This

framework could be easily extended to include libraries

containing the advanced machine learning algorithms,

adaptive algorithms, or an inference engine.

Both derived attributes { }kd

jα and original

attributes { }o

iα represent the actionable data, on which

an informed decision could be made. The decisions

made in an autonomic agent are based on rules having

both original attributes and derived attributes, and each

rule is associated with several actions. There could be

several rules for a given agent that correspond different

internal states, which may require different responses

or actions. The rule based autonomic agents are widely

used for monitoring and steering scientific

applications[7]. CAT provides the capability to

perform additional data processing and analysis so that

the data would be actionable, and the informed

decision can be made based on the management rules

and policies.

Figure 3 shows the data processing and decision

making process in CAT. It starts with the extraction of

the data from the fields of the incoming messages

using the pattern matching technology to generate the

original attributes. The incoming messages with

specified patterns may also trigger the update of the

values of derived attributes through the user defined

rules, the mathematical manipulation, or other data

analysis routines. The combination of the original and

derived attributes forms the actionable data. The

decision making combines the actionable data with the

management policies or rules, which leads to the

actions sent to the network layer.

Messages

Decision

Rules

Actions

Analysis/

Processing

Rules/

Processing

Routine

Data

Extraction

Original

Attributes

Derived

Attributes

Figure 3. Data processing in CAT

3.3. The Configuration Schema

The configuration file defines data processing,

decision making, and the lifecycle of a particular agent.

The basic unit for CAT configuration is the monitor

class, which defines a group of autonomic agents that

manage the same service provided by different

components. There could be as many monitor classes

for a configuration as needed. A monitor class

contains the following main sub-elements:

• The constraint element provides the filtering

mechanism for an agent pool to process only the

messages relevant to the attributes defined in the

monitor class, and also ensures the messages to be

processed come from the managed elements. This

element is an optional feature to improve the

processing efficiency.

• The attribute element defines both original

attributes and the derived attributes. The element

defines how the values of original attributes are

obtained from the incoming messages.

• The monitor trigger element defines the rules for

the agent pool to create an autonomic agent. It

represents a logical relationship between the

attribute value being extracted from the incoming

message and the critical value defined by the user.

• The primary key is used to uniquely identify an

autonomic agent within the agent pool, and it is

created by combining the values of the original

attributes in an agent. There is one-to-many

relationships between monitor classes and

autonomic agents, since there may be several

components that provide the same services.

• The action element provides the information

necessary for autonomic agents to send either

directive messages, or log messages to the

specified destination through the message

middleware, which is defined by the GMSEC

standard.

• The rule element defines a set of conditions for

both original and derived attributes and action

names that link to the action definition. The

conditions are defined as the logical expressions

for the relationship between the attributes

extracted and the critical values defined by the

user.

• The function element defines how a derived

attribute is updated from the existing attributes

through a combination of mathematical

expressions or an existing algorithm and rules.

In practice, not all elements listed here are needed

for a given monitor class. If there is a one-to-one

correspondence between the monitor class and an

autonomic agent, the primary key entry is not needed.

The monitor trigger element is not needed if the

message has only one pattern monitored by monitor

class. For a simple monitor that requires no data

processing, the equation element is not needed as well.

For example, the configuration for a monitor class

that monitors the heartbeat messages from components

is shown in Figure 4. The availability of the mission

critical component for continuous operations on 24/7

basis is one of the crucial requirements for spacecraft

ground systems. The subject and class constraints

provide the filtering mechanism, which identify the

messages with the specified patterns in their subject

field and specified subfields to be processed by the

agents. The two sub-elements within the same class

constraint element have an AND relationship: if both

patterns appear in their specified subfields of the

incoming message at the same time, the requirements

for processing the message are satisfied. The schema

allows more than one class constraint elements. The

class constraint elements in a monitor class have an OR

relationship. The primary key for corresponding

autonomic agents is the component name that appears

in the COMPONET subfield of heartbeat messages.

When an agent pool receives a heartbeat message from

a new component, it automatically creates a new agent

with the new primary key to monitor its heartbeat

message. The requirement sub-element in the rule

elements represents a logical expression; if the time

since receiving the last heartbeat message is larger than

5 seconds, the action with the name GIVE_UP will be

executed. The time variable t_sinceReceivingLastMsg

is an internal attribute, which automatically resets

when a new heartbeat message from the same

component is received. The GIVE_UP action in the

action element identifies the type of message as a

GMSEC event log message, the destination of the

message, and the entries in the specified message

fields. The expressions ${attribute_name} will be

replaced with the values of the attributes in the agent

when the GMSEC log message is generated. The

<monitor-class name="HeartBeatMonitor" enabled = "true">

<subject-constraint>

<requirement attribute="SUBJECT" operator="~" value=".*C2CX.*"/>

</subject-constraint>

<class-constraint>

<requirement attribute="MESSAGE-SUBTYPE" operator="~" value=".*C2CX.*"/>

<requirement attribute="COMPONENT" operator="!~" value="CAT"/>

</class-constraint>

<primary-key>

<key order="0">component</key>

</primary-key>

<attributes>

<attribute name="component” type="String” field="COMPONENT" pattern="(.*)"/>

</attributes>

<rule name=“GIVE_UP" enabled=“true">

<act>GIVE_UP</act>

<requirement attribute="t_sinceReceivingLastMsg" operator=">" value="5"/>

</rule>

<action name="GIVE_UP">

<destination type="LOG">GMSEC.DEMO.LOG.CAT</destination>

<text field="SEVERITY">4</text>

<text field="MSG-TEXT">frequency=${t_sinceReceivingLastMsg} component=${component} Heart beat missing </text>

<text field="COMPONENT">CAT</text>

</action>

</monitor-class>

Figure 4. The configuration for a heartbeat monitor

schema allows more than one action to be specified in

a given rule. In practice, the actions include the

directive to be sent to a backup component for the

failover procedure, the log message, and an exit action

that terminates the agent and removes it from the agent

pool.

The heartbeat monitor class listed here is very

simple and generic, but at the same time, very

powerful. The agent pool manages the heartbeat

autonomic agents for the whole system and is adaptive

to the changing environment: it automatically creates

an agent when the heartbeat message from a new

component is detected, and takes the failover action

and removes the agent from the agent pool in case of a

component failure. As the failed component is

generally off-line, the corresponding agent is no longer

needed.

4. Autonomic Computing in Spacecraft

Operations

Both the GMSEC architecture and the autonomic

tool, CAT, have been deployed in many NASA

missions for increasing automation and autonomy, and

reducing the operational cost, and have become a

standard for the ground systems in the current and

future NASA missions.

The autonomic computing solution for ground

systems is used to replace operations personnel for

monitoring and steering spacecraft operations. The

self-configuring and self-healing capabilities of

autonomic elements are crucial for fully autonomous or

“lights out” operations. In the upgraded ground system

for the Tropical Rainfall Measuring Mission (TRMM)

spacecraft, CAT is used to monitor the healthy and

safety data from the spacecraft and to inform the

management if an error is detected, which may

indicates a failure of either hardware or software on the

spacecraft. Generally, there are hundreds or even

thousands of parameters and attributes referred to as

mnemonics that describe the health and safety of each

hardware/software item on a spacecraft. Creating one

agent for each mnemonic is simply not practical and

inefficient; the combination of agents and a generic

monitor class has reduced 180 rules to around 40 rules

in CAT, and enables much more efficient processing in

real-time. CAT is also used to monitor the heartbeat for

the mission critical components and to initiate a

failover operation in case of a component failure.

As users get more familiar with CAT and its

capabilities, more sophisticated scenarios for

increasing the automation in their operations are being

implemented. In the effort for upgrading the ground

system for the Earth Observing System (EOS) satellite

Terra, CAT is providing the decision making for

configuring the ground system components for data

acquisition, command and control before, during and

after the contact between the satellite and the ground

stations. In particular, CAT will be performing the

tasks normally performed by operators during the

execution of procedures. Currently, Terra procedure

executions that configure the ground equipment for the

contact between the satellite and ground stations

require operator inputs at various decision points

during the execution process. These decision points

will be monitored and executed by CAT in the new

ground system. The same services for self healing in

the TRMM ground system will also be provided in

Terra.

The actionable data obtained through data analysis

in an autonomic agent provides the basis for decision

making not only for the autonomic agents, but also for

the management as well. One could configure an agent

that uses the data analysis capability to monitor system

wide events for statistical collections and other useful

data, and these data can be archived by defining an

action to send a directive message to the archive

component in the system. This is called business

intelligence in enterprise applications. The summary

report for spacecraft and ground activities can be

generated automatically for management.

The architectural solution and autonomic computing

concept have also been used in the ground system for

Small Explore (SMEX) mission, which controls a

constellation of small scientific spacecrafts. The

upgrade of the ground systems for other EOS satellites,

Aqua, and Aura missions, is planned in the near future.

The GMSEC architecture and autonomic computing

for the ground systems in the new missions are also

planned.

5. Summary: increasing autonomic

maturity

The architectural blueprint for autonomic

computing by IBM proposed an autonomic computing

maturity model in 5 levels[8]: 1) basic, 2) managed,

3) predictive, 4) adaptive, and 5) autonomic. The

capabilities provided by CAT under the GMSEC

architecture suggest that the autonomic maturity for the

current solution is between the predictive and adaptive

levels. Increasing the autonomic maturity requires the

improvements in both the GMSEC architecture and

CAT. The current GMSEC architecture does not go far

enough in the standardization process to enable

autonomic computing with a higher maturity.

To increase the autonomic maturity at the

architectural level, the GMSEC architecture should be

upgraded to the service-oriented GMSEC architecture

(SOGA). The component re-use paradigm in the

current GMSEC architecture will be replaced by the

service re-use paradigm. A service received from one

component is obtained through a locating, negotiating,

and leasing procedure, which is called “find bind and

execute” scheme. Thus, the service re-use enables

completely plug and play components.

The open standard for the message delivery through

the middleware under the GMSEC architecture is a

very important step toward SOGA. To upgrade

GMSEC architecture into a SOGA, new standard

ontology and protocol are needed for services, quality

of service, service discovery, and service contract in

the GMSEC standard messages. In addition, a service

registry based on these standards needs to be

developed as part of SOGA.

To ensure system awareness and an interactive

environment for autonomic computing, the common

attributes that represents the run-time properties of a

service need to be defined and standardized. Thus,

SOGA should require that a compliant component for a

given service publish these attributes as the standard

event messages when the values of these attribute

changes, and process directives that can change these

run-time properties. Both messages for publishing

these attributes and directive messages for changing

these attributes in a component should be standardized

as well.

The monitor classes defined in CAT are autonomic

elements that manage services. The same service in

SOGA can be provided by several components with

different qualities of service. Considering the heartbeat

monitor class example, publishing the heartbeat

message by each component in a system could be

regarded as a universal service in a SOGA

environment. Thus, the monitor class manages the

heartbeat service regardless of the specifics of a

component, and adapts to the changing environment.

Because the heartbeat service in the GMSEC

architecture is a standard, the same configuration can

be used in any GMSEC compliant system, which

makes it more adaptive, generic, and portable. The

standardized service in SOGA will standardize monitor

classes as services, which allows them to be re-used

from one mission to another without significant

changes.

The standardized event and directive messages for

attributes in a service make it possible to define

attributes at a system level for its overall performance,

which could be functions of the attributes of different

services in a system. Therefore, an optimal

performance boundary could be specified by

management or an administrator as overall objectives.

The machine learning algorithm and optimization

algorithm could be introduced on this platform for

establishing the relationship between the optimal

performance boundary that could generally be multi-

objective and the attributes of services. When a new

service component is connected with the message

middleware, the autonomic agent could be created

automatically, configure the service attributes based on

the optimal boundary.

There are still considerable scientific and

engineering challenges ahead for an autonomic

computing system. The GMSEC architecture and the

autonomic computing tool, CAT, presented here are an

important and significant step toward an autonomic

computing solution for spacecraft ground systems.

This approach may hopefully provide some useful

lessons in developing autonomic computing solutions

for other enterprise application systems.

6. References

[1] Paul Horn, “Autonomic Computing: IBM’s

Perspective on the State of Information Technology”;

http://www-1.ibm.com/autonomic., Oct. 2001. Jeffrey

O Kephart and David M. Chess, “The Vision of

Autonomic Computing”, IEEE Computer 35 (1); 41,

2003.

[2] Manish Parashar and Salim Hariri, “Autonomic

Computing: An Overview”, UPP 2004, Mont Saint-Michel,

France, Editors: J.-P. Banâtre et al. LNCS, Springer Verlag,

Vol. 3566, pp. 247 – 259, 2005 and references therein.

[3] See http://www.osd.noaa.gov/ for detailed information.

[4] See GMSEC project, http://gmsec.gsfc.nasa.gov for

further information.

[5] Zhenping Li, Cetin Savkli, and Dan Smith, “Increasing

The Operational Value of Event Messages”, Proceedings of

5th International Symposium On Reduce the Cost of

Spacecraft Ground System and Operations, July 8-12, 2003,

Pasadena, California.

[6] J. H. Holland, “Adaptation”, Progress in Theoretical

Biology, eds. R. Rosen and F.M. Shell, Plenum, 1976.

[7] Hua Liu and Manish Parashar, “Rule-based Monitoring

and Steering of Distributed Scientific Applications”,

International Journal of High Performance Computing and

Networking, issue 1, Inderscience, 2005.

[8] IBM Corporation. An Architectural Blueprint for

Autonomic Computing, http://www-03.ibm.com/autonomic

/library.shtml. April, 2003.

