SNS DOE Review

RING PHYSICS ISSUES

Yannis PAPAPHILIPPOU

November 1, 2000

BROOKHAVEN NATIONAL LABORATORY

Contributors

• BNL-SNS group:

 D.T. Abell, J. Beebe-Wang, M. Blaskiewicz, N. Catalan-Lasheras, A.V. Fedotov, C. Gardner, J. Jackson, Y.Y. Lee, A. Luccio, N. Malitsky, W. Meng, D. Raparia, A. Shishlo, N. Tsoupas, P. Wanderer, J. Wei, W.T. Weng, S.Y. Zhang

• ORNL - SNS group:

- S. Cousineau, S. Danilov, J. Galambos, J. Holmes, J.G. Wang, W.
 Wan
- Other Collaborators
 - R. Gluckstern (Maryland), R. Macek (LANL), S. Machida (KEK),
 C.Prior, G.Rees (RAL), R. Talman (Cornell)

Sources of Beam Loss

- Primary concern: radio-activation
 - 100 200 m rem / h average activation (30 cm, 4h down)
 - -1-2 W / m average beam power loss → 0.01% of the total intensity @ 1GeV (actual record 0.3% in PSR)
- Sources of beam loss
 - Space charge: large tune-shift, crossing of resonances
 - Injection loss: Premature H⁻ and H⁰ stripping, foil hits
 - Magnet errors: eddy-current & saturation, fringe fields
 - Instabilities: Head-tail, microwave, coupled bunch, electron cloud
 - Accidental loss: Ion source and linac malfunction, extraction kicker failure

Low-loss Design Philosophy

(Wei et al., PRST-AB, 2000)

- Maximize acceptance (matching)
- Optimize injection process (stripping loss, foil hits, foil survival)
- Design a robust extraction system (two stages fast extraction)
- Improve magnet quality (multipole compensation), provide correction (chromaticity, amplitude detuning, resonances)
- Reduce space charge tune shift (painting)
- Control impedance & instabilities (chromatic sextupoles, energy spreader, tapering, TiN coating)
- Localize beam losses with collimators & Beam-In-Gap kicker
- Engineering issues (hardware shielding for an average 10⁻² beam loss and up to two full pulses, quick removal of devices)
- Operational flexibility (tuning, painting schemes, adjustable collimation, interchangeable RF cavities)
- Off-normal condition protection (device failures, ground motion)

Ring Optics Design

(J. Wei et al.)

- Separate-function magnets for robustness
- Split tune to suppress coupling (space charge + systematic skew quad errors)
- Avoid structure resonances

FODO

- Modest quad strength
- Easy for correction (alternating β functions)
- Doublet/triplet:
 - Long uninterrupted straights
 - Less joints, bellows, vacuum chambers
- Four straights with separate functions
 - Injection modules
 - Two-stage collimation
 - Extraction & Beam-in-gap kickers
 - 3(h=1)&1(h=2) interchangeable RF cavities

Ring Lattice and Optics Functions (J. Wei et al.)

SPALLATION NEUTION SO

- Perfect matching
- Arc achromats
- Zero dispersion in straights

- Chromatic correction with arc sextupoles
- Resonance correction with correctors in the straights

Tune Survey (cont'd)

(J. Holmes et al.)

Tunability: 1 unit in horizontal, 2 units in vertical

-1st-2nd order structural resonances -1st-2nd order non-structural resonances

- Excessive maximum **b**_x
- Excessive maximum **b**_y
- All constraints satisfied
- All constraints satisfied (preferred)

Injection Beam Loss

(J. Beebe-Wang)

injection dump:

 $FI = 2 \sim 10\%$

Foil miss (FM)

(see figures)

 $FM + FI \leq 10\%$

Major sources of

Foil Heating & Scattering

(J. Beebe-Wang)

Emittance optimization (foil life-time, uncontrolled loss)

BROOKHAVEN NATIONAL LABORATORY

SPALLATION NEUTBOR SOUDCE

Beam Loss Due to Foil Traversal

(J. Beebe-Wang et al.)

Beam loss as a consequence of foil traversal through the following mechanism:

(1GeV proton, foil = 300µg/cm², foil traversal rate = 7hits/particle)

- Nuclear Scattering estimated fractional loss = 3x10⁻⁵
- Particle loss in gap due to energy straggling estimated fractional loss = 3x10⁻⁶
- Transverse emittance growth due to multiple scattering estimated $\Delta \epsilon = 4 \times 10^{-2} \pi \text{mm-mr}$

Basic Painting Schemes

(J. Beebe-Wang et al.)

anti-correlated painting scenarios <u>correlated</u> Beam shape without SC Rectangular Oval Beam emittance evolution Small to large ~ constant Final emit. $\varepsilon_x + \varepsilon_v (\pi \text{mm-mr})$ 120 + 120160 Foil-hit rate (11 linac dist.) $6.1 \sim 8.3$ 8.0 ~ 10.5 2113~2273 Max foil temp. (K) (11 linac dist.) $2248 \sim 2376$ Horizontal aperture ($\Delta_{\rm H}$) 1:1 1:1 Vertical aperture (Δ_{v}) 1:1 1:1.5Susceptible to coupling No Yes Capable for KV painting No Yes Paint over halo Yes No Horizontal halo/tail Normal Normal Vertical halo/tail Normal Large Satisfy target requirements Likely Not likely **Bump function** Square root; Square root; candidates exp(-t/0.3ms); $exp(\pm t/0.6ms);$ Combination for optimization Sinusoidal

Injection Bump Optimization

(J. Beebe-Wang et al.)

Work is in progress in developing injection bumps that optimize between the goals:

Extraction Zone Design

(N. Tsoupas, YY. Lee et al.)

- Septum Lambertson type magnet
- Robust to 1 kicker failure

SNS Accelerator Physics

PFN moved out of the ring

Magnetic Imperfections

(Y. Papaphilippou et al.)

Fringe Fields

- Scaling law for relative impact of fringe fields for any multipole: (e^amax)/Lmag (10⁻² level for SNS)
- Dipole fringe fields are negligible (sextupole-like)
- Quadrupole fringe fields are dominant (octupole-like). Tune-shift can be corrected with 3 families of octupoles
- Higher order fringe fields are negligible (scaling law confirmed)
- 5th order fringe-field maps implemented in UAL; inclusion of correction elements in progress

Magnet errors

- 3D Tosca modeling (W. Meng) showed that sextupole and decapole errors in dipoles and dodecapole in quadrupoles are high (large tune-shifts)
- Local compensation provided
- 1GeV dipole, quadrupole measured and achieved a 10⁻⁴ level in all field errors (J.Jackson and P.Wanderer)
- Measurements of 1.3 GeV magnets are under way
- Magnet measurement analysis and error table data-base is under construction

Expected tune-spreads

Mechanism	Tune-spread	
Space Charge (2MW beam)	0.15	
Chromaticity (2% mom.spread)	±0.15	
Fringe-field	0.025	
Uncompensated magnet errors	±0.02	
Compensated magnet errors	±0.002	
Chromatic Sextupoles	±0.002	
Fixed injection chicane	0.004	
Injection painting bump	0.001	

Correction packages

(Y. Papaphilippou et al.)

Effects	Correctors	Quantity	Powering
Closed orbit distortion	Dipole	52	Individual
Quadrupole perturbation	TRIM Quadrupole strings	52	Individual
Fast tune variation	"Pulsed" Quadrupoles	8	2 families
Coupling	Skew Quadrupoles	16	Individual
Chromaticity correction	High-Field Sextupoles	20	4 families
Normal sextupole resonances	Normal Sextupoles	8	Individual
Skew sextupole resonances	Skew Sextupoles	16	8 families
Tune-shift with amplitude	Octupoles	8 (+4)	2 (+1) families

- In the baseline
- Required
- Under study

Chromatic Sextupoles

(N. Tsoupas and Y. Papaphilippou)

fields)

- Chromaticities (X_x, X_y) =(-7.7,-6.4)
- For $Dp/p = \pm 2\%$ (R) $Dn = \pm 0.15$

SNS Accelerator Physics

sextupoles (tune-shift 1/10 of guad. fringe-

Chromatic Sextupoles (cont'd)

(N. Tsoupas and Y. Papaphilippou)

- Dynamic aperture tracking without (left) and with (right) chromatic sextupoles
- Unacceptable drop of the DA without chromatic sextupoles for \mathbf{D} p/p=-0.02 due to the half integer resonance
- Smaller drop for **D**p/p=+0.02.

Space Charge & Halo Formation

(A. Fedotov et al.)

<u>Study of various mechanisms that can lead to beam tail</u> growth

- Other mechanisms may be more important for halo development than the parametric halo
- Combined effect of space charge and machine resonances is very important
- A less restrictive space-charge limit is expected due to the effective ("coherent") tune shift
- Painting schemes and bump optimization is needed to prevent excessive halo
- Space-charge induced resonances are under study
- Comparison of simulation results with different beam profiles are in progress

Space-charge Simulations

(A. Fedotov, N. Malitsky et al.)

New SNS package based on Unified Accelerator Libraries (UAL) was successfully benchmarked for space-charge studies.

We now perform simulations with the space charge and exact treatment of non-linear equations of motion (TEAPOT approach).

- Major effects included in simulations:
 - Multi-turn painting
 - Magnet field errors and misalignments
 - Fringe fields (up to 5th order maps)
 - Space charge

Systematic study of space-charge effects in the presence of magnet field errors for various working points is in progress.

Working Points and Space Charge

(A. Fedotov et al.)

- (Q_x,Q_y)=(5.82,5.8) we earlier concluded that this leads to nonlinear space-charge driven resonance 2Q_x -2Q_y = 0. Due to the fact that this is a difference resonance such coupling would not lead to significant emittance growth. However, for our case of correlated painting which results in a square shape beam and very strict beam loss requirements it leads to excessive halo.
- (Q_x,Q_y)=(6.3,5.8) leads to sum resonance in the presence of skew-quadrupole errors and space charge. This resonance can be corrected using the conventional schemes. However, due to a very large space-charge tune shift we will need very precise correction of the skew-quadrupole terms.
- Other working points are under study.

Ring RF System

(M. Blaskiewicz, J.M. Brennan, J.Delong, M. Meth, A. Zaltsman)

System Requirements

- Charge exchange injection (1ms) followed by 1 turn extraction with clean ~ 250 ns gap
- Minimize peak current to keep space charge forces small
- Maximize frequency spread to prevent instabilities
- Large beam currents imply heavy beam loading

System Chosen

- Dual harmonic with 40 kV on h=1 and 20 kV on h=2
- Median synchrotron frequency ~ 1kHz, (entire cycle is a transient in longitudinal phase space)

Progress

- Time domain analysis for both RF and beam dynamics in progress (simulations described in EPAC 2000)
- First cavity should be finished in June 2001
- First power amplifier and beam simulation will be ready sooner
- Rigorous system test including simulated beam current and beam response function planned for winter 2001
- Realistic integrated test of High and Low level system well before installation

Collimation schemes for the 248m accumulator ring (N. Catalan-Lasheras et al.)

e₁=140; e₁=180; e₂=300

• Cleaning efficiency over 95%

painting schemes

Cleaning efficiency against change in nominal conditions (N. Catalan-Lasheras et al.)

- Cleaning efficiency studied vs. working points and primary aperture
- Robust against closed orbit deviation and misalignment errors
- Two stage system efficiency shows no variation against emittance growth changes within three orders of magnitude

SNS Accelerator Physics

BROOKHAVEN NATIONAL LABORATORY

Loss distribution along the

collimation section (N. Catalan-Lasheras)

- Simulation results assuming 0.001 fractional loss
- Two absorbers added around the scraper reduce direct losses in downstream quadrupoles (~1/4)
- Residual radiation also reduced in a factor 2 to 4
- Cleaning straight section designed as a hot area

Ring Impedance Development

(S.Y. Zhang, S. Danilov et al.)

- Detailed study of collimator impedance has shown that it will not be a problem.
- Potential problem of the shielding contact leads to the discussion of not shielding the bellows.
- Extraction kicker.
 - Window frame kicker impedance has been measured and the results have been studied.
 - The kicker impedance needs to be reduced for the 2 MW machine.
 - It is decided to move PFN out of the ring.
 - New design of the extraction kicker system has been proposed. The impedance, reflection modes and image current effect have been studied.
 - Design optimization in progress

Extraction Kicker Impedance Measurement &

Model (S.Y. Zhang, J.G. Wang et al.)

- Left: Kicker transverse impedance measurement.
- Right: Simulation with different termination resistance.

- PSR threshold intensity scales linearly with RF voltage, for fixed bunch length
- Electron flux decreases with conditioning
- Strong indications that:
 - instability is E-P
 - electrons are produced by secondary emission
 - secondary emission yield is reduced by scrubbing
- For the SNS, TiN coating of the vacuum chamber should suppress the instability for design currents

Summary

- The design of the ring is solid and frozen
- It is considered as a reference for other projects (spallation sources, muon collider, multi-function facilities)
- Challenging physics issues are treated
 - Multi-turn injection
 - Phase space painting
 - Fast extraction
 - Magnet fringe-fields
 - Space-charge effects
 - Instabilities (E-P)
 - Collimation, radio-activation
- Long to-do list, especially on commissioning plans

