Lectures No. 6

Beam Optical Functions \& Betatron Motion.

David Robin

Concepts

Want to touch on a number of concepts including:

- Achromat
- Isochronous
- Weak Focusing
- Betatron Tune
- Strong Focusing
- Closed Orbit
- One-Turn Matrix
- Twiss Parameters and Phase Advance
- Dispersion
- Chromaticity

Optical Functions \& Betatron Motion
D. Robin

Dispersive Systems

- Dispersion is the distance between the design on-energy particle and the design off energy particle divided by the relative difference in momentum between the two.

$$
\begin{aligned}
x & =D_{x} \frac{\Delta p}{p} \\
x^{\prime} & =D_{x}^{\prime} \frac{\Delta p}{p}
\end{aligned}
$$

Figure 3.15. A bending magnet deflects particles of momentum higher than that of the ideal particle through a lesser angle, leading to a variety of closed orbits for particles of differing momenta.

Achromatic Transport

- No dispersion or dispersion slope at the beginning and end of the line

Figure 5.5 A simple achromatic system consisting of two bending magnets separated by a horizontally focusing quadrupole.

Optical Functions
\& Betatron Motion
D. Robin

Isochronous Transport

Isochronous means "same time"

- No dispersion or dispersion slope at the end of the line
- Dispersion is negative in the central bends (cuts the corner)

Figure 5.9 Principal trajectories in an isochronous system.
D. Robin

Chromatic Aberration

Focal length of the lens is dependent upon energy

Larger energy particles have longer focal lengths

Optical Functions \& Betatron Motion
D. Robin

Chromatic Aberration
Correction

By including dispersion and sextupoles it is possible to compensate (to first order) for chromatic aberrations

The sextupole gives a position dependent Quadrupole

$$
\begin{aligned}
& B_{x}=2 S x y \\
& B_{y}=S\left(x^{2}-y^{2}\right)
\end{aligned}
$$

Optics of Storage Rings

Particles may need to circulate for many (Billions) of turns

Storage Rings are a Periodic Systems

Special properties

Particle Storage Ring

In a particle storage rings, charged particles circulate around the ring in bunches for a large number of turns.

Optics elements

Particle bunches

Weak Focusing

-V. Veksler and E. M. McMillan around 1945

Strong Focusing
 -Christofilos (1950), Courant, Livingston, and Snyder (1952)

Optical Functions \& Betatron Motion
D. Robin

Weak-Focusing Synchrotrons

Weak Focusing

Figure 3.3. Cross section of weak focusing circular accelerotor.

The first synchrotrons were of the so called weakfocusing type.

- The vertical focusing of the circulating particles was achieved by sloping magnetic fields, from inwards to outwards radii.
- At any given moment in time, the average vertical magnetic field sensed during one particle revolution is larger for smaller radii of curvature than for larger ones.

Uniform field is focusing in the radial plane but not in the vertical plane

Weak focusing

Focusing in both planes if field Iines bend outwara

Fig. 6-7. Radially decreasing magnetic field between poles of a cyelotron magnet. showing shims for field correction.

$$
n=-\frac{d B / B}{d r / r}
$$

Stability in BOTH PLANES requires that $0<n<1$

Vertical focusing is achieved at the expense of horizontal focusing

Tune

The number of oscillations about the design orbit in one turn

Weak focusing

Expressing these results in terms of derivatives measured along the equilibrium orbit

$$
x^{\prime \prime}+\frac{(1-n) x}{R_{0}{ }^{2}}=0, \quad y^{\prime \prime}+\frac{n y}{R_{0}^{2}}=0
$$

where ' is a derivative with respect to the design orbit

The particle will oscillate about the design trajectory with the number of oscillations in one turn being

$$
\begin{array}{ll}
\sqrt{1-\mathrm{n}} & \text { radially } \\
\sqrt{\mathrm{n}} & \text { vertically }
\end{array}
$$

The number of oscillations in one turn is termed the tune of the ring.

$$
\text { Stability requires that } 0<n<1
$$

For stable oscillations the tune is less than one in both planes.

Disadvantage

- Tune is small (less than 1)
- As the design energy increased so does the circumference of the orbit
- As the energy increases the required magnetic aperture increases for a given angular deflection
- Because the focusing is weak the maximum radial displacement is proportional to the radius of the machine.
\rightarrow The result is that the scale of the magnetic components of a high energy synchrotron become unreasonably large and costly

Optical Functions \& Betatron Motion
D. Robin

Weak-Focusing Synchrotrons

Cosmotron

- The first synchrotron of this type was the Cosmotron at the Brookhaven National Laboratory, Long Island. It started operation in 1952 and provided protons with energies up to 3 GeV .
- In the early 1960s, the world's highest energy weak-focusing synchrotron, the 12.5 GeV Zero Gradient Synchrotron (ZGS) started its operation at the Argonne National Laboratory near Chicago, USA.
- The Dubna synchrotron, the largest of them all with a radius of $\underline{28}$ meters and with a weight of the magnet iron of 36,000 tons

Solution

Strong focusing

Use strong focusing and defocusing elements ($|\mathrm{n}| \gg 1$)

Strong Focusing

One would like the restoring force on a particle displaced from the design trajectory to be as strong as possible.

ALS Bend ($\mathrm{n} \sim 25$)

- In a strong focusing lattice there is a sequence of elements that are either strongly focusing or defocusing.
- The overall lattice is "stable"
- In a strong focusing lattice the displacement of the trajectory does not scale with energy of the machine
- The tune is a measure of the amount of net focusing.

In 1952 Ernest D. Courant, Milton Stanley Livingston and Hartland S. Snyder, proposed a scheme for strong focusing of a circulating particle beam so that its size can be made smaller than that in a weakfocusing synchrotron.

- In this scheme, the bending magnets are made to have alternating magnetic field gradients; after a magnet with an axial field component decreasing with increasing radius follows one with a component increasing with increasing radius and so on.
- Thanks to the strong focusing, the magnet apertures can be made smaller and therefore much less iron is needed than for a weakfocusing synchrotron of comparable energy.
- The first alternating-gradient synchrotron accelerated electrons to 1.5 GeV . It was built at Cornell University, Ithaca, N.Y. and was completed in 1954.

Size comparison between the Cosmotron's weak-focusing magnet (L) and the AGS alternating gradient focusing magnets

Describing the Motion

In principle knowing both the magnetic lattice and the initial coordinates of the particles in the particle beam is all one needs to determine where all the particles will be in some future time.

Ray-tracing each particle is a very time consuming \rightarrow especially for a storage ring where the particles go around for billions of turns.

Can do much more

Want to understand the characteristics of the ring \rightarrow Maps

Optical Functions
\& Betatron Motion
D. Robin

Find the Closed Orbit

A closed orbit is defined as an orbit on which a particle circulates around the ring arriving with the same position and momentum that it began.

In every working story ring there exists at least one closed orbit.

Optical Functions
\& Betatron Motion
D. Robin

Tune

- Tune is the number of oscillations that a particle makes about the design trajectory

Optical Functions \& Betatron Motion
D. Robin

Beam Envelope

- Some parts of the ring the beam is large and in others it is small

There are two approaches to introduce the motion of particles in a storage ring

1. The traditional way in which one begins with Hill's equation, defines beta functions and dispersion, and how they are generated and propagate, ...
2. The way that our computer models actually do it

I will begin with the first way

Optical Functions
\& Betatron Motion
D. Robin

First approach traditional one

This approach provides some insights but is limited

Begin with on-energy no coupling case. The beam is transversely focused by quadrupole magnets. The horizontal linear equation of motion is

$$
\frac{d^{2} x}{d s^{2}}=-K(s) x
$$

$$
\text { where } k=\frac{B_{T}}{(B \rho) a}, \text { with }
$$

B_{T} being the pole tip field a the pole-tip radius, and $B \rho[\mathrm{~T}-\mathrm{m}] \approx 3.356 p[\mathrm{GeV} / \mathrm{c}]$

Optical Functions
\& Betatron Motion
D. Robin

Piecewise Focusing

Assume that in a strong focusing synchrotron synchrotron the focusing varies "piecewise around the ring

$$
\mathcal{M}=\mathcal{M}_{10} \ldots \mathcal{M}_{5} \mathcal{M}_{4} \mathcal{M}_{3} \mathcal{M}_{2} \mathcal{M}_{1}
$$

Fig. 5.3. Example of a beam transport line (schematic)

$$
\begin{aligned}
& x^{\prime \prime}+K_{x}(s) x=0 \\
& y^{\prime \prime}+K_{x}(s) y=0
\end{aligned}
$$

Optical Functions
\& Betatron Motion
D. Robin

Case of Hill's Equation

Illustration in the simple case of Hill's Equation - onenergy
\rightarrow Analytically solve the equations of motion
\rightarrow Generate map
\rightarrow Analyze map

$$
x^{\prime \prime}+K_{x}(s) x=0
$$

In a storage ring

$$
y^{\prime \prime}+K_{x}(s) y=0
$$

with periodic
solutions $\quad K_{x}(s)=K_{x}(s+C), \quad K_{y}(s)=K_{y}(s+C)$

Optical Functions
\& Betatron Motion
D. Robin

Solution of Hill's Equation

The general solution of

$$
u^{\prime \prime}+k(s) u=0
$$

Can be written as

$$
u(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cos (\varphi(s)-\varphi(0))
$$

There are two conditions that are obtained

$$
\begin{gathered}
\frac{1}{2}\left(\beta \beta^{\prime \prime}-\frac{1}{2} \beta^{\prime 2}\right)-\beta^{2} \varphi^{\prime 2}+\varphi^{2} k=0 \\
\beta^{\prime} \varphi^{\prime}+\beta \varphi^{\prime \prime}=0
\end{gathered}
$$

Solution of the second condition

$$
\begin{aligned}
& \beta^{\prime} \psi^{\prime}+\beta \psi^{\prime \prime}=0 \\
& \Rightarrow \beta \psi^{\prime}=\mathrm{const}
\end{aligned}
$$

If we select the integration constant to be 1: $\beta \psi^{\prime}=1$ then

$$
\psi(s)=\int_{0}^{s} \frac{d s}{\beta(s)}+\psi(0)
$$

Knowledge of the function $\beta(\mathbf{s})$ along the line allows to compute the phase function

Optical Functions
\& Betatron Motion
D. Robin

The solution can be parameterized by a psuedoharmonic oscillation of the form

$$
\begin{aligned}
& \boldsymbol{x}_{\beta}(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cos \left(\varphi(s)+\varphi_{0}\right) \\
& \boldsymbol{x}_{\beta}^{\prime}(s)=-\sqrt{\varepsilon} \frac{\alpha}{\sqrt{\beta(s)}} \cos \left(\varphi(s)+\varphi_{0}\right)-\frac{\sqrt{\varepsilon}}{\sqrt{\beta(s)}} \sin \left(\varphi(s)+\varphi_{0}\right)
\end{aligned}
$$

where $\beta(s)$ is the beta function, $\alpha(s)$ is the alpha function, $\varphi(s)$ is the betatron phase, and ε is an action variable

$$
\varphi=\int_{0}^{s} \frac{d s}{\beta}
$$

Twiss Parameters

Define the Betatron or twiss or lattice functions (Courant-Snyder parameters)

$$
\begin{aligned}
& \beta(s) \\
& \alpha(s) \equiv-\frac{1}{2} \frac{d \beta(s)}{d s} \\
& \gamma(s) \equiv \frac{1+\alpha^{2}(s)}{\beta(s)}
\end{aligned}
$$

Optical Functions
\& Betatron Motion
D. Robin

Courant-Snyder invariant

- Eliminating the angles by the position and slope we define the Courant-Snyder invariant

$$
\gamma u^{2}+2 \alpha u u^{\prime}+\beta u^{2}=\epsilon
$$

- This is an ellipse in phase space with area $\pi \varepsilon$
- The twiss functions α, β, γ have a geometric meaning
- The beam envelope is

$$
E(s)=\sqrt{\epsilon \beta(s)}
$$

- The beam divergence

$$
A(s)=\sqrt{\epsilon \gamma(s)}
$$

Optical Functions
\& Betatron Motion
D. Robin

Meaning of Beam Envelope and Beta Function and Emittance

Area of ellipse the same everywere (emittance) Orientation and shape of the ellipse different everywhere (beta and alpha function)

Optical Functions \& Betatron Motion
D. Robin

ELSA

Optical Functions

\& Betatron Motion

Example from ELSA

Optical Functions
\& Betatron Motion
D. Robin

Beam Ellipse

In an linear uncoupled machine the turn-by-turn positions and angles of the particle motion will lie on an ellipse

$$
\begin{aligned}
& x^{\prime} \uparrow \quad \tan 2 \phi=\frac{2 \alpha}{\gamma-\beta} \\
& \varepsilon=\gamma \boldsymbol{x}^{2}+2 \alpha \boldsymbol{x} \boldsymbol{x}^{\prime}+\beta \boldsymbol{x}^{\prime 2} \\
& x_{\beta}(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cos \left(\varphi(s)+\varphi_{0}\right) \\
& x_{\beta}^{\prime}(s)=-\sqrt{\varepsilon} \frac{\alpha}{\sqrt{\beta(s)}} \cos \left(\varphi(s)+\varphi_{0}\right)-\frac{\sqrt{\varepsilon}}{\sqrt{\beta(s)}} \sin \left(\varphi(s)+\varphi_{0}\right)
\end{aligned}
$$

Optical Functions

Beam ellipse matrix

$$
\sum_{\text {beam }}^{x}=\varepsilon_{x}\left(\begin{array}{cc}
\beta & -\alpha \\
-\alpha & \gamma
\end{array}\right)
$$

Transformation of the beam ellipse matrix

$$
\sum_{b e a m, f}^{x}=\boldsymbol{R}_{x, i-f} \sum_{b e a m, i}^{x} \boldsymbol{R}_{x, i-f}^{T}
$$

Optical Functions

 \& Betatron Motion D. RobinTransport of the Beam Ellipse

Fig. 5.23. Transformation of a phase space ellipse at different locations along a drift section

Fig. 5.24. Transformation of a phase ellipse due to a focusing quadrupole. The phase ellipse is shown at different locations along a drift space downstream from the quadrupole.

Optical Functions \& Betatron Motion
D. Robin

Transport of the beam ellipse

er
Transport of the twiss parameters in terms of the transfer matrix elements

$$
\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{f}=\left(\begin{array}{ccc}
\boldsymbol{C}^{2} & -2 \boldsymbol{C} \boldsymbol{S} & \boldsymbol{S}^{2} \\
-\boldsymbol{C} \boldsymbol{C}^{\prime} & 1+\boldsymbol{C}^{\prime} \boldsymbol{S} & -\boldsymbol{S} \boldsymbol{S}^{\prime} \\
\boldsymbol{C}^{\prime 2} & -2 \boldsymbol{C}^{\prime} \boldsymbol{S}^{\prime} & \boldsymbol{S}^{\prime 2}
\end{array}\right)\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{i}
$$

Transfer matrix can be expressed in terms of the twiss parameters and phase advances

$$
\boldsymbol{R}_{f i}=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{f}}{\beta_{i}}}\left(\cos \varphi_{f i}+\alpha_{i} \sin \varphi_{f i}\right) & \sqrt{\beta_{f} \beta_{i}} \sin \varphi_{f i} \\
-\frac{1+\alpha_{i} \alpha_{f}}{\sqrt{\beta_{f} \beta_{i}}} \sin \varphi_{f i}+\frac{\alpha_{i}-\alpha_{f}}{\sqrt{\beta_{f} \beta_{i}}} \cos \varphi_{f i} & \sqrt{\frac{\beta_{i}}{\beta_{f}}}\left(\cos \varphi_{f i}-\alpha_{f} \sin \varphi_{f i}\right)
\end{array}\right)
$$

Optical Functions
\& Betatron Motion
D. Robin

What is a Map?

- Use a map as a function to project a particles initial position to its final position.
x
x^{\prime}
y
y^{\prime}
δ
τ
initial

- A matrix is a linear map
- One-turn maps project project the particles position one turn later

Generating a Map

Begin with equations of motion \rightarrow Lorentz force

Change dependent variable from time to longitudinal position

Integrate particle around the ring and find the closed orbit

Analyze and track the map around the ring

Optical Functions
\& Betatron Motion
D. Robin

Generate a one-turn Map Around the Closed Orbit

A one-turn map maps a set of initial coordinates of a particle to the final coordinates, one-turn later.

$$
\begin{aligned}
& x_{f}=x_{i}+\frac{d x_{f}}{d x_{i}}\left(x_{i}-x_{i, c o}\right)+\frac{d x_{f}}{d x_{i}^{\prime}}\left(x_{i}^{\prime}-x_{i, c o}^{\prime}\right)+\ldots \\
& x_{f}^{\prime}=x_{i}^{\prime}+\frac{d x_{f}^{\prime}}{d x_{i}}\left(x_{i}-x_{i, c o}\right)+\frac{d x_{f}^{\prime}}{d x_{i}^{\prime}}\left(x_{i}^{\prime}-x_{i, c o}^{\prime}\right)+\ldots
\end{aligned}
$$

The map can be calculated by taking orbits that have a slight deviation from the closed orbit and tracking them around the ring.

Steps

1. Compute the one turn transfer matrix 2. Extract the twiss parameters and tunes

Optical Functions
\& Betatron Motion
D. Robin

One Turn Transfer Matrix

One can write the linear transformation, $\boldsymbol{R}_{\text {one-turn, }}$ between one point in the storage ring (i) to the same point one turn later

$$
\binom{x}{x^{\prime}}_{i+1}=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)\binom{x}{x^{\prime}}_{i}
$$

$$
\text { where } R_{\text {one-turn }}=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)
$$

Optical Functions
\& Betatron Motion
D. Robin

One turn matrix

The one turn matrix (the first order term of the map) can be written

$$
\boldsymbol{R}_{\text {one-turn }}=\left(\begin{array}{cc}
\boldsymbol{C} & \boldsymbol{S} \\
\boldsymbol{C}^{\prime} & \boldsymbol{S}^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
\boldsymbol{\operatorname { c o s }} \varphi+\alpha \sin \varphi & \beta \sin \varphi \\
-\gamma \sin \phi & \boldsymbol{\operatorname { c o s }} \varphi-\alpha \sin \varphi
\end{array}\right)
$$

Where α, β, γ are called the Twiss parameters

$$
\alpha=-\frac{\beta^{\prime}}{2},
$$

and the betatron tune, $v=\phi /\left(2^{*} \pi\right)$

$$
\gamma=\frac{1+\alpha^{2}}{\beta}
$$

Emittance Conserved \rightarrow Det $|R|=1$
For long term stability ϕ is real \rightarrow

$$
|T R(R)|=|2 \cos \phi|<2
$$

Optical Functions
\& Betatron Motion
D. Robin

Computation of beta-functions and tunes

One can diagonalize the one-turn matrix, R

$$
\boldsymbol{N}_{\text {one-turn }}=\boldsymbol{A} \boldsymbol{R}_{\text {one--urn }} A^{-1}
$$

This separates all the global properties of the matrix into N and the local properties into A.

In the case of an uncoupled matrix the position of the particle each turn in x-x' phase space will lie on an ellipse. At different points in the ring the ellipse will have the same area but a different orientation.

Optical Functions \& Betatron Motion
D. Robin

Computation of beta-functions and tunes

The eigen-frequencies are the tunes. A contains information about the beam envelope. In the case of an uncoupled matrix one can write A and R in the following way:

$$
\begin{gathered}
\boldsymbol{N}_{\text {one-turn }}=\boldsymbol{A} \boldsymbol{R}_{\text {one-turn }} \boldsymbol{A}^{-1} \\
\left.\left(\begin{array}{cc}
\boldsymbol{\operatorname { c o s }} \varphi & \boldsymbol{\operatorname { s i n }} \varphi \\
-\boldsymbol{\operatorname { s i n }} \phi & \boldsymbol{\operatorname { c o s }} \varphi
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{\beta}} & 0 \\
\frac{\alpha}{\sqrt{\beta}} & \sqrt{\beta}
\end{array}\right) \begin{array}{cc}
\cos \varphi+\alpha \boldsymbol{\operatorname { s i n }} \varphi & \beta \sin \varphi \\
-\gamma \sin \phi & \boldsymbol{\operatorname { c o s }} \varphi-\alpha \sin \varphi
\end{array}\right)\left(\begin{array}{cc}
\sqrt{\beta} & 0 \\
-\frac{\alpha}{\sqrt{\beta}} & \frac{1}{\sqrt{\beta}}
\end{array}\right)
\end{gathered}
$$

The beta-functions can be propagated from one position in the ring to another by tracking A using the transfer map between the initial point the final point

$$
A_{f}=R_{f i} A_{i}
$$

This is basically how our computer models do it.

Optical Functions \& Betatron Motion
D. Robin

Transport of the beam ellipse

Transport of the twiss parameters in terms of the transfer matrix elements

$$
\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{f}=\left(\begin{array}{ccc}
\boldsymbol{C}^{2} & -2 \boldsymbol{C} \boldsymbol{S} & \boldsymbol{S}^{2} \\
-\boldsymbol{C} \boldsymbol{C}^{\prime} & 1+\boldsymbol{C}^{\prime} \boldsymbol{S} & -\boldsymbol{S} \boldsymbol{S}^{\prime} \\
\boldsymbol{C}^{\prime 2} & -2 \boldsymbol{C}^{\prime} \boldsymbol{S}^{\prime} & \boldsymbol{S}^{\prime 2}
\end{array}\right)\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{i}
$$

Transfer matrix can be expressed in terms of the twiss parameters and phase advances

$$
\boldsymbol{R}_{f i}=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{f}}{\beta_{i}}}\left(\cos \varphi_{f i}+\alpha_{i} \sin \varphi_{f i}\right) & \sqrt{\beta_{f} \beta_{i}} \sin \varphi_{f i} \\
-\frac{1+\alpha_{i} \alpha_{f}}{\sqrt{\beta_{f} \beta_{i}}} \sin \varphi_{f i}+\frac{\alpha_{i}-\alpha_{f}}{\sqrt{\beta_{f} \beta_{i}}} \cos \varphi_{f i} & \sqrt{\frac{\beta_{i}}{\beta_{f}}}\left(\cos \varphi_{f i}-\alpha_{f} \sin \varphi_{f i}\right)
\end{array}\right)
$$

Optical Functions
\& Betatron Motion
D. Robin

- Off-momentum particles are not oscillating around design orbit, but around chromatic closed orbit
- Distance from the design orbit depends linearlv with momentum spread and dispersion

$$
x_{D}=D(s) \frac{\Delta P}{P}
$$

Optical Functions
\& Betatron Motion
D. Robin

Assume that the energy is fixed \rightarrow no cavity or damping - Find the closed orbit for a particle with slightly different energy than the nominal particle. The dispersion is the difference in closed orbit between them normalized by the relative momentum difference

Optical Functions
\& Betatron Motion
D. Robin

Dispersion

Dispersion, D, is the change in closed orbit as a function of energy

Possible Homework

1. At the azimuthal position s in an proton storage ring, the Twiss parameters are $\beta_{x}=10 \mathrm{~m}, \beta_{y}=3 \mathrm{~m}$, and $\alpha_{x}=\alpha_{y}=0$. If the beam emittance ε is 10 nm for the horizontal plane and 1 nm for the vertical one and the dispersion function η at that location is zero for both planes, what is the rms beam size (beam envelope) and the rms beam divergence for both planes at the location s ? What will be the case for an electron beam?
2. Explain what the dispersion function represent in a storage ring. Explain what is the difference between dispersion and chromaticity.
3. Explain the difference between an achromat cell and an isochronous one.
4. In the horizontal direction, the one-turn transfer matrix (map) for a storage ring is:

- Is the emittance preserved?

$$
\left(\begin{array}{cc}
1.5 & 1 \\
0.05 & 0.7
\end{array}\right)
$$

L6 Possible Homework

D. Robin

Sketch the phase space ellipse at these locations

Optical Functions
\& Betatron Motion
D. Robin

Isochronous and Achromatic Transport

- No dispersion or dispersion slope at the end of the line
- Dispersion is positive in the central bend but the central bend is inverted

