Status of the HAPL Program Laser Fusion Energy with lasers and direct drive targets

Presented by John Sethian Plasma Physics Division Naval Research Laboratory

Presented to Fusion Power Associates Annual Meeting Oak Ridge, TN Dec 5, 2007

Sponsored by DOE/ NNSA/ Defense Programs

The HAPL team is dedicated to developing inertial fusion as an energy source

14th HAPL meeting March 21 & 22, 2006 Oak Ridge National Lab

Gov 1. 2. 3. 4. 5. 6.	ernment Labs NRL LLNL SNL LANL ORNL PPPL	Univ 1. 2. 3. 4. 5. 6.	versities UCSD Wisconsin Georgia Tech UCLA U Rochester, LLE UC Santa Barbara	Indu 1. 2. 3. 4. 5. 6.	stry General Atomics L3/PSD Schafer Corp SAIC Commonwealth Tech Coherent	9. 10. 11. 12. 13. 14.	Voss Scientific Northrup Ultramet, Inc Plasma Processes, Inc PLEX Corporation FTF Corporation
б. 7.	SRNL	6. 7.	UC Santa Barbara UC Berkelev	б. 7.	Conerent Onvx	14.	Research Scientific Inst
		8. 9.	UNC Penn State Electro-optics	8.	DEÍ	16. 17.	Optiswitch Technology ESLI

Progress Report: Basic S&T for laser fusion Energy

Where we started Where we are now What we still need to do

We take an "integrated system" approach

Much harder, but much more likely to yield something that works!

TARGET DESIGN

START 1999	What we have done	What we still need
1 D High gain DIRECT DRIVE target designs	Energy: Gain > 150 @ 2.4 MJ 3 different simulations* Threat spectra Fusion Test Facility: Gain > 50 @ 500 kJ 2 different simulations**	Ignition on the NIF Thoroughly evaluate Direct Drive (DD) Including experiments at prototypical energy / intensity
	Simulations Codes backed w/ expt's 2 D high resolution Realistic surface finish Sensitivity studies	Pursue advanced designs: Shock ignition

* NRL, LLE, LLNL ** NRL, LLE, LLNL

2 D high resolution simulations show gain of 56 for 480 kJ KrF Laser

Result: With NIF-spec.-equivalent outer surface finish, the RX3 pulse gives a yield of 27 MJ, ~90% of clean-1D yield

Shock Ignition (R Betti, LLE) shows promise for even higher performance: 1 D Gain = 100 @ 300 kJ KrF

2-D studies also give promising performance Collaborations with NRL (Schmitt) & LLNL (Perkins)

LASERS

START 1999	What we have done	What we still need
No high energy, rep-rate, Fusion-Class Laser existed	 Now have two lasers: Energy (50-700 J) Rep-rate (2 -10 Hz) Long runs (10⁴- 10⁵) (several hours) Low XDL Predict efficiency Scalability 	 Integrated test: Efficiency Durability Pulse shape High uniformity Wavelength
지수가 많아 많아요 아파가 아파 아파 아파가 아파가 아파가 가지 않아야 않아야 하나 않아야 하는 것이다.		

Both HAPL Lasers have demonstrated high energy, rep rate, long duration, operation.

> 230,000 shots
300-700 J @ 248 nm
120 nsec pulse
2.5 - 5 Hz
Predict >7% efficiency
16 k shots, 270 J, 2.5 Hz, 2 hrs
Operate as complete laser system

> 270,000 shots
55 J @ 1051 nm
15 nsec pulse
10 Hz
100 k shots continuous @ 10 Hz
73% Conversion to 2 ω
Installed advanced front end

FINAL OPTICS

START 2001	What we have done	What we still need
GIMM concept proposed Not tested or evaluated	 GIMM with solid solution AI shows high long term laser damage threshold. 3 D neutronics show downstream optics lifetime components 	 Large area test Integrated design: neutron x-rays resistant Revisit Dielectrics

Final Optics

Developed high laser damage Grazing Incidence Metal Mirror (GIMM) using Polished, solid solution alloy, AI + 1% Cu*

*Alloy: 5- μ m Al +1%Cu sputtered on 4" Si wafers, polished by CMP to < 1 nm RMS, < 10 nm PV $_{11}$

UCSD

Target Fabrication

START 2001	What we have done	What we still need
High Gain IFE targets did not exist No mass production ICF targets cost a lot of \$\$ each	 Demo mass produced foam shells that meet spec Au-PD alloy overcoat Smooth DT on foam Built Fluidized bed 	 Improve yield CH Overcoat Mass production cryo lavering
	 Cost estimate: < \$0.16 ea 	

Target Survival into Chamber

START 2001	What we have done	What we still need
Target can not be placed accurately	 Gas free chamber designs allows target survival, accurate placement 	• Measure DT/foam:
Target will not survive injection	 Demo DT layer over foam more robust to thermal load. 	 thermal inertia, mechanical strength
	 Demo Au/Pd overcoat offers thermal protection 	

DT ice layers grown over foam base are smoother than pure DT ice...and are far more robust

Target Injection into Chamber

START 2001

No work on target injection

 Models for target injection and survival into chamber

What we have done

- Built rep-rate light gas gun injector
- Bench demo of superconducting sabot to enable advanced injector

What we still need

- Build high accuracy injector
- Demo with cryo capability

gas gun for initial injection studies

Target Engagement

START 2001	What we have done	What we still need
Minimal work on tracking of target or steering laser beams	 Bench demo of concept to track and engage target 	 Improve engagement from 150 um to 20 um Use a real target at right velocity Full bench demo with injector

Target engagement

- Concept: Use glint return off injected target to steer driver beams
- Bench tests: steered laser to hit falling target with 150 um accuracy (Need 20 um)

Reaction Chamber

START 2001	TART 2001 What we have done	
	Tungsten armored LAF Steel wall concept	
	Fielded many sources to study effect of emissions on wall	Integrated chamber concept(s):
Power Plant Studies to	Established:Temperature limit	• Engineered wall
guide experiments	 Armor/substrate bond Conditions for target, wall, efficiency 	-and / or-
	Unsolved: He ion exfoliation	 Magnetic Intervention
	Possible Solutions: • Engineered materials • Magnetic Intervention to keep ions	

Tungsten sample irradiated with ions from the University of Wisconsin IEC Facility

An example of materials science performed in HAPL

MCHEROS Code Simulates IEC Surface Pores

McHEROS Results:

- Good Agreement between McHEROS
 Simulation and Experiment
- McHEROS provides an *EXPLANATION* for the oversized Surface Pores

"Magnetic Intervention" offers a way to keep the ions off the wall

- 1. Nuclear driven ions drag electrons, plasma stopped by magnetic pressure
- 2. lons never hit the wall!
- 3. lons, at reduced energy and power, escape cusp and absorbed in dumps
- 4. Physics demonstrated in 1979 NRL experiment*

Breeding, Pumping, Tritium handling

PPPL Tritium Recovery System

Availability...or, just how robust is your concept?

Path to high availability:

- Simplicity
- Understress materials
- Robust design
- Test to destruction

And most importantly...

Have the attitude you will build something at the end of the day