

... for a brighter future

U.S. Department of Energy

A U.S. Department of Energy laboratory managed by The University of Chicago

APS Long-Term Upgrade Options

Michael Borland Operations and Analysis Group Accelerator Systems Division

Three-Way Meeting March 19, 2008

Introduction and Motivation

- APS is a mature, highly-optimized light source
 - Emittance pushed down to 3.1 nm
 - Close to the practical minimum with existing hardware
 - Difficult to make changes without increasing emittance
- Meanwhile,
 - Large, on-going investment in beamlines and facilities
 - New sources are on the horizon
 - LCLS in early stages of commissioning
 - NSLS II approaching construction
- An upgrade will eventually be required to
 - Keep APS scientifically relevant
 - Capitalize on our investments
- Long-term upgrade options include
 - In-tunnel replacement of the storage ring
 - Energy recovery linac injector.

Goals for Replacement Ring

- Tailored to experimental requirements
 - More than just lower emittance!
- Use "crab" cavities to support experiments requiring
 - Short pulse x-rays
 - Coherent imaging with large beam size
- Long straight sections essential
 - Innovative IDs (e.g., fast polarization switching)
 - More beamlines
 - Crab cavities
- Straight sections optimized for
 - Small beam size or
 - Small beam divergence
- Higher brightness.

Mostly from E. Gluskin

Layout for "APS 1nm" Replacement Ring Design¹

APSx3 Lattice Design¹

- Some users felt 1nm emittance not that useful
 - More beamlines are really what they need
- This design has 1 long and 2 short straights per sector
 - Main straight accepts 8m ID
 - Two short straight sections with ~1m available for ID
 - One is parallel to present BM beamline
 - Could provide a three-pole wiggler for beamlines that still want bending-magnet-like source

Summary of APS 1nm and APSx3 Studies^{1,2}

- Quadrupole and sextupole strengths feasible with 20mm bore radius
 - Vacuum chamber workable from impedance standpoint³
- Dipole gradient is on the margin of what's possible, needs work
- Dynamic aperture with ~1% beta beating is similar to APS today
 - Do on-axis injection and lattice correction to get to this point
 - Present 65 nm booster emittance low enough for symmetric lattice⁴
- Momentum aperture is about ±3%, giving 4~5 hour lifetime with 8mA bunch
 - Acceptable with top-up

¹A. Xiao *et al.*, PAC07, 3447-3449. ²V. Sajaev *et al.*, PAC07, 1139-1141.

APS Long-Term Upgrade Options

Discussion

- APS1nm lattice provides about 35-fold increase in brightness assuming 200 mA and 1% coupling
 - More than half of this comes from things other than emittance
 - Double the beam current
 - 8m-long instead of 2.4m U33
- Transverse coherence increases about 3-fold compared to best for present APS design (i.e., minimum coupling and maximum ID length)
- Most APS users were unexcited about these rings
 - Won't revolutionize x-ray science at APS
 - Beamline and detector improvements will give more benefit with less disruption and cost
 - Users very worried about ~1 year shutdown¹ needed to replace ring
- Conclusion:

In-tunnel ring replacement not a great approach to an upgrade.

¹J. Noonan, private communication.

Cornell ERL Parameters¹ Scaled to 7 GeV

	APS		ERL	
	now	High flux	High coherence	Ultrashort pulse
Average current (mA)	100	100	25	1
Repetition rate (MHz)	$0.3 \sim 352$	1300	1300	1
Bunch charge (nC)	0.3~60	0.077	0.019	1
Emittance (nm)	$3.1 \ge 0.025$	0.022 x 0.022	0.006 x 0.006	$0.37 \ge 0.37$
Rms bunch length (ps)	$20 \sim 70$	2	2	0.1
Rms momentum spread $(\%)$	0.1	0.02	0.02	0.3

- Promise of very high brightness
 - Extremely low emittance, equal in both planes
 - Very low energy spread
- Decent flux: 25 mA to 100 mA current.

¹G. Hoffstaetter, FLS 2006 Workshop, DESY.

Ultimate APS ERL Upgrade Concept¹

- Single-pass 7 GeV linac points away from APS to permit straight-ahead hard x-ray short-pulse facility
- Beam goes first into new, emittance-preserving turn-around/user arc
 - Second-stage upgrade would add many new beamlines
- ERL can benefit from very long undulators²
 - Higher flux and brightness
 - Would use somewhat different geometry than shown here
- Ability to store beam unchanged
- Existing injector complex unchanged
- Developed optics and modeled from 10 MeV to 7 GeV and back with elegant³.

¹M. Borland *et al.*, NIM A 582 (2007) 54-56.

²S. Gruner *et al.*, erl.chess.cornell.edu/papers/WhitePaper_v41.pdf, 11/30/2000. ³M. Borland *et al.*; M. Borland, APS LS-287, Sept. 2000.

Turn-Around Arc Cell¹

- 10m straights
- 48 cells
- Isochronous to avoid bunch shape changes
- x tune is 1.25 per cell
 - CSR effects cancel every 4 cells^{2,3}
 - I₅ minimized subject to other constraints to control emittance growth
- Four sextupole families
- As complex as a 3rd generation storage ring.

¹M. Borland *et al.*, AccApp'07, 196-203. ²J. Wu *et al.*, 2001 PAC, 2866-2868. ³G. Bassi *et al.*, NIM A 557 (2005), 189-204.

APS Long-Term Upgrade Options

CSR Effects Are Modest for 19 pC/bunch

Brightness Comparison for High Coherence Mode

Computed with sddsbrightness (H. Shang, R. Dejus).

Present-Day Injector Performance

- JLab ERL injector¹ is operating example of the type of system we'll need
 - 120 pC/bunch
 - ~10 µm normalized emittance
 - ~2 ps bunch duration
 - 9 mA average current with ~12 hour cathode lifetime
- Scaling to 20 pC/bunch (linear in charge), we get 1.5 μm
 - We're assuming 0.1 μm
 - We also want 25 to 100 mA with ~24 hour lifetime
- We are about an order of magnitude from where we need to be on several fronts
- Two promising simulation efforts
 - Cornell² gets 0.1 μ m emittances for ~100 pC without merger
 - JAERI³ gets 0.1 μ m emittances for ~10 pC with merger
 - High-coherence mode (0.1 µm, 19 pC) seems plausible.

¹C. Hernandez-Garcia et al., Proc. 2004 FEL Conference, 558-561. ²I.Bazarov and C. Sinclair, Phys. Rev. ST Accel. Beams 8 (2005) 034202. ³R.Hajima and R. Nagai, NIM A 557 (2006) 103-105.

Consequences of "Poor" Injector Emittance¹

¹M. Borland *et al.*, AccApp07, 196-203 (2008).

Consequences of "Poor" Injector Emittance¹

¹M. Borland *et al.*, AccApp07, 196-203 (2008).

Cryogenic Power a Concern

- Linac is large and complex^{1,2}
 - ~350 linac cavities
 - At 20 MV/m with Q=10¹⁰, wall losses are ~16 kW total at 2K
 - Experience (e.g., SNS) suggests
 - Add 50% for static load
 - Add 50% for other losses and overhead
 - This means we'll need ~32 kW cooling power at 2K
 - Cryoplant would require 40~45 MW wall plug power
- Solutions
 - Build a longer linac, since $P_{wall} \sim 1/L$ for fixed total energy
 - Optimize cavities for higher Q, unlike present push for high field
 - Build a multipass linac³
 - Gives up the 7 GeV short-pulse expansion option
 - Recent evidence that BBU would be easily manageable⁴.

¹A. Nassiri, private communication. ²M. White, private communication. ³M. White and Y. Cho, http://srf2003.desy.de/fap/paper/MoP42.pdf ⁴R. Hajima *et al.*, Proc. 2007 ERL Workshop, to be published.

Other Concerns

- Beam losses must be at 10⁻⁹ per pass level in APS ring
 - Halo production and loss
 - Touschek scattering¹
 - Collimation and beam abort system²
- Controlling effects of independent undulator gap motion on emittance, energy recovery
- Need for precision lattice correction in single-pass system
- Controlling ion trapping for ultra-low emittance beam
- Need to simplify the optics of the turn-around system
 - May be possible since charge is so low (CSR negligible)
- Need to move rf cavities from four to three straight sections in APS³

¹A. Xiao and M. Borland, PAC07, 3453-3455. ²C.Y. Yao *et al.*, "Beam Loss Issues for an ERL Upgrade to the APS," ERL07, WG2. ³G. Decker, OAG-TN-2006-058, 9/30/2006.

Can Rings Compete with ERLs?

- ERLs promise spectacular x-ray properties in a true multi-user facility
- What about "Ultimate Storage Rings"^{1,2,3}?
 - Three-pronged approach
 - Build a large ring compared to present sources
 - Use multi-bend achromats instead of double-bend⁴
 - Use damping wigglers
- Naively, a multi-kilometer ring could be several orders of magnitude brighter than APS.

¹A. Ropert *et al.*, EPAC 2000, 83-87.
²M. Borland, NIM A 557 (2006) 230-235.
³K. Tsumaki and N. Kumagai, NIM A 565 (2006), 394-405.
⁴D. Einfeld *et al.*, "A Lattice Design to Reach the Theoretical Minimum Emittance for a Storage Ring," EPAC 96, www.jacow.org.

Preliminary Results for a 7 GeV, 3.2-km Ring: USR7

- Uses conventional magnets with workable strengths
- For 200 mA in 4000 bunches, emittance is 16 pm in both planes with full coupling including IBS
- With ten 4-m-long PETRA III damping wigglers, drops to 11 pm

Brightness Predictions

Might improve both with better beta matching, longer IDs

USR7 Dynamic Aperture with Errors

- Nonlinear elements tuned using genetic optimization technique
- 4000-turn tracking with damping and synchrotron oscillations
- Dynamic aperture is small, but very large compared to ~10 µm beam size
- Momentum aperture about ±2%
 - 2 hour Touschek lifetime

A Different Idea for Ring Operation^{1,2}

- Need to abandon accumulation in favor of "swap-out"
 - Kick out depleted bunch or bunch train
 - Simultaneously kick in fresh bunch or bunch train
- Several possible modes
 - Full beam replacement in one shot
 - Bunch train replacement
 - Individual bunch replacement using fast kickers
- Allows us to operate on the coupling resonance
 - Provide round beams
 - Reduce intrabeam scattering
- Several possible injectors
 - Booster + Accumulator ring
 - Low-emittance same-tunnel booster
 - Full-energy linac

¹M. Borland, "Can APS Compete with the Next Generation?", APS Strategic Retreat, May 2002. ²M. Borland and L. Emery, PAC 2003, 256-258 (2003).

Ultimate Ring Looks Promising

- Two examples of comparable, workable ring designs
 - Tsumaki and Kumagai¹: 2-km, 32-sector ring
 - 21 pm x 21 pm at 6 GeV
 - Borland: 3.2-km, 40-sector ring
 - 11 pm x 11 pm at 7 GeV
- USR7 can perhaps be optimized further, e.g.,
 - More effective damping wigglers
 - Several long straight sections
- Injector requirements not dramatically different from APS today: For 200 mA, 4000-bunch beam, 20 bunches per train, and 2 hour lifetime
 - Inject a bunch train every 3.6 s
 - 3 nA average current from the injector (APS injector: 4 nA)
 - Each train has 11 nC (APS injector: 3 nC/bunch).

¹K. Tsumaki and N. Kumagai, NIM A 565 (2006), 394-405.

Conclusion

- APS upgrade options are being investigated in earnest
- Replacement ring designs developed
 - These don't offer enough to justify the expense and disruption
- An ERL upgrade would revolutionize x-ray science at APS
 - Disruption to APS operations greatly reduced
 - Our basic designs that appear to deliver on ERL promise, with some assumptions (e.g., injector performance)
 - We are carefully considering the challenges of an ERL upgrade
 - A few were noted above
 - Much R&D on-going around the world to address these
- Ultimate Storage Ring designs challenge ERLs
 - Use conventional technology
 - Large and costly
 - Higher brightness, but lower coherent fraction
 - Unconventional operation.

Acknowledgments

APS participants in upgrade discussions and computations:

M. Borland, J. Carwardine, Y. Chae, G. Decker, R. Dejus, L. Emery, R. Flood, R. Gerig, E. Gluskin, K. Harkay, M. Jaski, Y. Li, E. Moog, A. Nassiri, V. Sajaev, N. Sereno, H. Shang, R. Soliday, Y. Sun, N. Vinokurov, Y. Wang, M. White, A. Xiao, C. Yao

Others:

I. Bazarov, G. Hoffstaetter (Cornell) D. Douglas, G. Krafft, L. Merminga (JLAB) S. Krishnagopal (CAT)

